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Abstract. We consider the hierarchic tree random energy model with
continuous branching and calculate the moments of the corresponding partition
function. We establish the multifractal properties of those moments. We derive
formulas for the normal distribution of random variables, as well as for the general
case. We compare our results for the moments of the partition function with
corresponding results of logarithmic 1d REM and conjecture a specific power law
tail for the partition function distribution in the high-temperature phase. Our
results establish a connection between reaction—diffusion equations and multi-
scaling.
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1. Introduction

Random energy models on hierarchic trees are rather well known and much investigated
objects of statistical physics [1]-[4]. The tree is constructed via a deterministic branching
process, starting from the root node and adding g branches from every node of the tree, so
that after K steps of the procedure there are ¢ nodes of the last generation (the endpoints
of the tree). One then associates random energy variables to every branch of the tree, and
further attributes the random energy to every node of the last generation by adding up all
the energy variables along the unique path connecting the given endpoint to the root. At
the last step of the procedure one builds up the partition function [1]-[3]. In the context
of statistical physics the model has been identified with directed polymers on the trees,
and has been also related to the spin-glass model REM [5,6]. Independently, similar
models have been applied and extensively investigated also in the context of financial
mathematics and turbulence [7,8,33,10,11]. They are also intimately connected to 2d
conformal models [12, 13]. The hierarchic structure of the tree naturally induces recursive
relations for the partition function, with the branching number ¢ being a parameter in the
recursion. While by construction the branching number ¢ is an integer, one can formally
consider the recursive equations [14, 1] in the ¢ — 1 limit, simultaneously allowing K > 1
and keeping the number of endpoints ¢ fixed. Such an idea has been suggested in [15],
and later worked out in more detail in [16]. Along that line an exact renormalization
equation for continuous tree models has been derived in [17] for the general distribution
of random variables.

The hierarchic tree models belong to the type of random energy models (REMs) which
all share the leading term in the free energy with that of the simplest Derrida model. The
investigation of REM-like models in finite dimensions was started in [18] and gained
serious impetus from recent solution of 1d models with logarithmic correlation of energies
at different sites [19,20]. That solution essentially used the generalization of Selberg
integrals [21,22] to a complex number of integrations (see the rigorous mathematical
justification in [23]). The 1d models are intimately connected with the model [24,25].
Recently [26] we have developed a statistical physics approach to related dynamical
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Markov switching multi-fractal (MSM) models [27]. While all three types of REM model:
hierarchic tree [1], 1d logarithmic REM [20] and MSM [27] have exactly the same mean
free energy as the standard REM, they have different distributions for the free energy and
the partition function. Most essentially, in the Derrida REM the probability distribution
of the partition function has no fat tails in the high-temperature phase [6], while such tails
are present in 1d models [19,20]. In this work we give an indication that such tails exist
in the hierarchic model, and also reveal the multifractal properties of the latter, which are
important for applications [7]-[10]. For a recent discussion of multifractal properties of
REMs, and other models with logarithmic correlations see [28,29] and references therein.
In the multifractal approach [30,31] one considers the moments of a random variable
(partition function) Z at some scale [ defined with respect to the maximal scale L:

(27) = WU A(L))" Z,, (1)

where the exponent £(n) defines the multi-scaling.

Knowing the £(n) and the coefficients Z, ~ O(1) in the limit of large L, one can
reconstruct the probability distribution of the partition function. In this way such a
distribution has been explicitly derived for 1d logarithmic REMs [19, 20].

In this paper we will calculate £(n) for hierarchic trees, and derive recursive relations
to define Zn, which, in principle, could be applied to calculate the probability distribution
of Z within some accuracy. We shall see indications of the fact that the divergence of
moments is essentially the same as for the 1d case, thus the two types of model must share
the same fat tails.

2. The calculation of the moments

2.1. The model with normal distribution of random variables

Let us define the model outlined in the introduction following the papers [15,17]. Starting
with the hierarchic tree with integer branching number ¢ and ¢ endpoints, we consider
two such endpoints w; and w;. The two paths connecting these points to the root coincide
up to a level m, counting from the root. Accordingly, we can define the hierarchic distance
between the two points as

mVi
v(w;, wy) = 70, (2)
where Vj is defined as
¢ =e" =L (3)

Associated with every branch of the tree is a Gaussian random variable e distributed
according to the law

%\ K [ K "
p K’E = 2V07reXp Vo |-

We define the energy y; at the endpoint w; as a sum of corresponding variables e sampled
along the unique path connecting the point w; to the end of the tree.
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Figure 1. The sum is over three marked endpoints I, J, K of the hierarchic tree.
Only the (a) contributes to the leading order. The locations of I, J, K given by
(b) yield negligible O(g—1) contribution to the partition function in equation (8).

We further define the partition function
7 — Z e Pui—Vo(8/2), (5)

where the sum is over eV

Then we obtain

(Z(e¥ b)) = Y (e P Puin, (6)

T1yeenyln

= [ endpoints.

In equation (6) the sum is over all endpoints of the tree separated by the hierarchic
distance V' from a chosen point.
Now we consider the limit

q—1 (7)

while keeping the value of 1} fixed and large. Recall that V; = Klogg. In such a limit
there are ¢’ endpoints at the hierarchic distance v. While calculating the (Z"), we may
discard the contributions given by figure 1(b).

We formally replace the sum over the tree with integration over a measure dw [15, 16],

<Z(ev,b)”> _ H/dwi <e*ﬁziy(wi)>' (8)

We are able to calculate (Z") for the integration range going over the maximal distance
V. When calculating the correlations in equation (8) we use the following trick: the part
of the trajectory of w; with hierarchic length v which has no overlap with trajectories
from other points yields a factor e#*v/2 while the part of the trajectory common to n such
trajectories and with hierarchic length v yields a factor e /2,

Consider n = 2 for simplicity, with summation going up to the maximal distance
V. We then have "~V positions for the top level of hierarchy. Then, summing (or
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‘integrating’) over the number of two points at the distance e? we get
v 2 2 2 ]. 2 2 1
(Z(e,b)2) = do e v e2(Vo—v)B2+v32 Vo - GVEB)R - V(2+h)-bVh
’ 0 ]_ - ﬁQ ]. + b ’
(9)
where we have introduced the parameter b = —32.

Consider now the integration in equation (8) going up to the maximal hierarchic
distance V. We assume the following ansatz:

<Z(€v, b)n> = e(V—Vo)(n+bn(n—1)/2)enVOZn7 (10)

where we have introduced dimensionless coefficients Zn. The results of our calculation
support the ansatz in equation (10), see equations (13)—(14).
Actually the ansatz equation (10) is correct only when

n—1)—n=>——, (11)

otherwise there is a phase transition to a different phase [6], which manifests itself via
diverging integration in equation (8).

We will explicitly consider the case of positive b (imaginary [3) while calculating some
eventual expression (there is not any restriction on n-like equation (11)), like the analytical
approximation of the fractional moment

(Z2(V,0)), (12)

and then continue analytically the resulting expressions to the realistic case of negative
b < 0. The analytical continuation gives the wrong results in SG, when we continue the
expressions for moments to the other statistical physics phase. Hopefully in our case we
are interested in continuing to expressions of moments in the same phase.

Considering now the general case we calculate Z,, recursively. At the highest hierarchy
level, n points are split into two groups with m and (n—m) points, 1 < m < n accordingly,
see figure 2. Having the expressions of Z,,, Z,_,, at our disposal, we can calculate Z,.
We assume that the minimum hierarchy level where all the paths from the root to n
points meet is given by v. There are e” ~¥ such locations on the tree. Integrating over the
positions of all points with a given v we arrive at

Z / dv [Z, _m(v)]eY T tbumnmm), (13)

1<m<n

Using the scaling ansatz equation (10) gives

2= D T o mim =)

S Zal0) Zaml®)
 (n—=1D(1+nb/2)

Thus, the problem amounts to solving the recursive equation (14) with the initial
condition (12).

Zm(b)Zn m
+(n—m)(n—m—1)—2m(n —m))

(14)
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(o]

Figure 2. The graphics for calculation of Z,, recursively fracturing n = [ + m.
The groups with [ and m endpoints meet at the hierarchic level v at the point A.

Equation (10) defines the so-called multifractal scaling. We can rewrite it in the form

<Z(l, b)n) = e(n—&-bn(n—l)/2) ln(l/L)Zn. (15)

Let us now define a characteristic function
u(z) = Z Zpa" (16)
n=1
for those values of § where the sum converges. We rewrite equation (14) as

(n—1)(1+nb/2)Zy(0) = > Zun(b) Znm(b). (17)

Using the equations

S Y Zn(b) Zem(b) = (Zx"Zn(b)> , ZnZn(b)x":x%ZZn(b)x",

1<m<n n

. d\’ .

l no__ n

Zn Zn(b)x" = (xa) ZZn(b)x :
we derive the following ODE for the characteristic function:
ba? d*u(x) du
—_ x_
2 da? dx
Unfortunately we could not solve equation (19) to derive explicitly analytical expressions
for Z,, in the case of general (complex) values of n, which precludes us from following the

procedure of [19,20]. Nevertheless, equation (19) allows us to extract a few first moments.
We find

= u(z) + u*(z), u(0) =1,4/(0) = 1. (19)

A A 1 A
71 =1 Ly = —— Js =
1 ) 2 1_'_b7 3

(1+0)(2+3b)’
. 4 1

Zy = + :
YT +0)(2+3b)(3+6b) (14 b)2(3+ 6b)
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The above relation allows us also to calculate the asymptotic expression of 7, at
large n. In doing this we assume that our function u(z) has a singularity at some p of the
form [34]

c
u(r) = ————. (21)
(1=(2/p)*
Putting the latter expression into equation (19), we derive
3b*
p
Equation (22) gives the asymptotic expression
~ 3(n+1)p?

We can define the value of p only numerically, looking at Z, for large values of the
parameter n. A similar problem has been considered in [35]. Slightly modifying their
results we arrive at the following algorithm to calculate p. For a given integer ng we are
looking for the minimum over 5 and obtain

(24)

~1 —1)p2/2)] M
5= min [S 140 —1) /)]

n(n +2)p;

0<j<no

It is possible to get accurate values of p by increasing the value of ny.
In [15,17] the following reaction-diffusion equation has been derived for the same
model:

G (z,v)  0*G(x,v)
ov 2022

where 0 < v < V played the role of time parameter in the reaction—diffusion equation.
We should solve that equation with the initial value of GG

+ G(z,v) InG(z,v), (25)

G(z,0) = exp[—e 7). (26)

Therefore, there must be a relation between ODE (19) and PDE (25): solving
equation (25) one can find the solutions of equation (19). Equation (25) allows one to
be investigated via the traveling wave approach [17] and 3 = 2 is its critical point. The
critical point of equation (19) should therefore correspond to b = —2, and is associated
with the anticipated freezing transition from the high-temperature phase to the spin-glass-
like phase.

2.2. The case of general distribution

Instead of equation (4) we now consider

p (%x) = % / b exp [%qﬁ(ih) - m] . (27)

o0
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Then for the sum y; of K random variables z, we can compose the distribution p(Vj, €)
simply by multiplying ¢ in the exponent of equation (27) by K:

1 [e.9]
o) =5 [ dh explVa(ih) — ihe| (28)
T J -0
We define
7 — Z o Byi—Vod(B) (29)

We calculate the correlations in (Z™) using the following trick: the part v of the trajectory

of w; which belongs only to w; (no intersection with trajectories of other points) gives a

factor e?®?  while the part v of the trajectory common to n trajectories gives the factor
d(nB)v

e .

Repeating the calculations of section 2.1 we obtain
1%
(72) = / dp oV —0)9(28) 209(8)~2V6(5) 2vgV v (50)
0

The factor eV =928 corresponds to the part of trajectories [A, O], see figure 1(a), while
any of the lines [I, A] and [J, A] gives the factor e?*?(?) with e? being the number of
possible locations of I,J at the hierarchic distance v, whereas ¢V ~? is the number of
possible positions of the point A.

Performing the integration over all 0 < v <V, we arrive at

. A 1
7 ev,ﬂ = Z(B e(V*Vo)(%(ﬁ)*d)(?ﬁ)Jr?)GQVO, Zs(B) = ) 31
(=) = 4lh) ) = 1508 +2009) oy
Let us derive recursive equations to calculate Z,,,n > 1, defined as
Z(B,V) = oV =V0)(n¢(B) = (nB)+n) nVoZ (8). (32)

We need to consider all possible splittings n = m + (n — m), with 1 < m < n. Let us
assume that two groups with m and n —m endpoints of our hierarchic tree are separated
by the hierarchic distance v, and their trajectories meet at some point A. Calculations
similar to those used to derive equation (14) give

Zu(BV) = D Zn(B.0) Zn (B, v)elV D ma(E) (33)
1<m<n

Then the scaling in equation (32) yields

2 B Z1gmgn Zm(ﬂ)ZAnfm(ﬂ)
ZnB) = L= 3(nB) T nolB)

One can use equations (31) and (34) to calculate any positive integer moment of the
partition function under the condition

(34)

no(B) +n <1+ o(np). (35)
Equation (32) implies multifractal behavior with
§(n) = ng(B) — ¢(nf) + 1. (36)
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For the corresponding generating function we now obtain an equation

d d
(1+6(8))x Z(;) —¢ (ﬁxa) (@) = u(z) + @*(x),  w(0) =1,4/(0) = 1. (37)
For the same model in [17], another equation has been derived:
% — $(97)G(x,v) + Gz, v) In Gz, v). (38)

Thus the two equations must be related.

2.3. Comparison of the logarithmic 1d REM and the hierarchic model with normal
distribution

In [20] the following partition function has been considered:

59 1 N — /
7= / dye@ | {y()y(a) = 2 2= (39)
0

€

with the parameter € being an ultraviolet cutoff needed to regularize the model.
The above model shares the multifractal properties with our model for normal
distribution of random energies, with the mapping

e=1/e", 26% = 2. (40)
Let us compare the moments. In [20] the following expression is given for the moments:
Jj=n . 2 .
A M1—(—1)y)T1 -
Z=T11 (1= (= Dy)"T( ) , (41)
T2 =(+i-29r1-7)
where y = 2. )
We have, naturally, Z; = 1, and further
5 = ['(1—2y) B 1
CTR-T2-2y) (I-9)(I-2y)
A [(1—2v)*T(1 -3
= (1= 29) T —3y) (19)
['(2 =292 —=37)1'(2 - 29)
s T(1—=29)’T(1—39)°T(1 —4v)

'TTI TR - 3T @ -~ T2 - 57)

Comparing with the results of section 2.1, we see that the second moment Z, has a
different expansion for small 32,

Zy =1+ 3. (43)
More important information contained in the moments is, however, the smallest real pole
Yo as a function of 7 (respectively, b). Indeed, precisely these poles define the critical

temperatures T}, = yn /2 below which the given moment of the partition function starts
to diverge. It is easy to see from equation (41) that for the one-dimensional model v = 1/n,
n = 2,3,..., while equation (42) gives the smallest poles at b/2 = 1/2 for Z,, b/2 = 1/3
for Zs, b/2 = 1/4 for Z4, etc. The results for a few lower moments indicate that the two
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models share the same sequence of ‘transition temperatures’. Although we are unable to
prove this statement in full generality, the factor (1 —bn/2) appearing in the denominator
of the right-hand side of the recursion equation (14) makes the statement very plausible,
if no special cancelations occur. Assuming that the correspondence is correct, the latter
property would imply that the probability densities for the partition function in both
models share the same power law tail: P(Z) o< Z~'=(/%*) valid everywhere in the high-
temperature phase # < . = 1. Such a tail was indeed proposed as one of the universal
features characterizing the class of models with logarithmic correlations [20].

We obtained analytical expressions for the hierarchic model’s Z,, at positive b,
equation (14). Having large series of Z,, for positive b, one can try to construct an
approximate expression for the probability distribution and fractional moments.

3. Conclusion

The investigation of the statistical mechanics of REM-like models in finite dimension
and their multifractal properties remains an active field of research, especially since the
advances achieved in [27] and [20]. In this paper we confirmed that the multifractal
properties are shared by the third class of REM-like models: directed polymers on a
hierarchic tree. We calculated the corresponding moments important for the applications.
In particular, we used those moments to conjecture the power law tail of the distribution of
the partition function Z in the high-temperature phase. Unfortunately it is impossible to
derive the exact probability distribution, as has been achieved in [20] for the 1d logarithmic
REM. Nevertheless, our formulas allow the calculation of infinite series of moments for
some values of parameters. We hope that such information will be able be applied to
recover the probability distribution, a well-known problem in probability theory [32].

Our results are interesting for the mathematics of reaction-diffusion equations as
well, as we related them to a certain nonlinear ODE. Moreover, we found the connection
between the multifractal spectrum and the hierarchic tree model equation (36), while
the latter has been mapped to some reaction—diffusion equations [17], see equation (38)
in the present article. Thus the reaction—diffusion equations have some multi-scaling
structures. One can connect the reaction—diffusion equation and the nonlinear ODE with
the interesting versions of the multifractal phenomenon, i.e. [37], and try to investigate
them to derive the multifractal scaling from the reaction—diffusion equation (38). Such a
work is currently in the progress.

The directed walk model on hierarchic trees describes a rather rich physics, as well as
some connections with quantum models in finite dimension. The relation to 2d conformal
field models is rather well known [12,13], and the work [17] mentions the relations to
the quantum disorder problem in finite dimensions [36]. It will be interesting to try to
apply the methods of the current work or our renormalization group (38) to the finite
dimensional quantum disorder problem.
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