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Abstract – We consider finite population size effects for Crow-Kimura and Eigen quasispecies
models with single-peak fitness landscape. We formulate accurately the iteration procedure for
the finite population models, then derive the Hamilton-Jacobi equation (HJE) to describe the
dynamic of the probability distribution. The steady-state solution of HJE gives the variance of
the mean fitness. Our results are useful for understanding the population sizes of viruses in which
the infinite population models can give reliable results for biological evolution problems.
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Introduction. – Investigation of biological evolution
models [1–6], such as the Eigen model [3,4] and the Crow-
Kimura model [5], by methods of statistical or theoretical
physics is highly fruitful in evolution research. The meth-
ods used include quantum-statistical mechanics [7–11];
quantum field theory [10–14]; Hamilton-Jacobi equation
(HJE) [15–18], etc. Such approach has given many exact
results for evolution models [3–19], solved a paradox of the
origin of life [20], and produced exact finite genome length
corrections for the mean fitness and gene probabilities in
some evolution models [21].
In the original formulation of the Eigen and Crow-

Kimura models, the configurations of the genome of
length L are represented by M ≡ 2L spin configurations
(s1, s2, . . . , sL), where sk for 1� k�L take +1 or −1.
Such representation was used by Peng et al. to study the
long-range correlation in the nucleotide sequences [22].
The M configurations Si are labelled by 0� i�M − 1
and the i-th configuration Si is assigned a number ri to
represent the reproduction rate or fitness of that config-
uration and another number pi to represent the proba-
bility in that configuration. Such pi satisfies the normal-
ization condition:

∑M−1
i=0 pi = 1. The coupled differential

equations satisfied by pi for the Crow-Kimura model [5]
and the Eigen model [3,4] are given in appendix A and
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appendix B, respectively. However, such coupled differen-
tial equations are valid only in the limit of infinite popu-
lation size N , which is not the case in many real systems,
e.g. a virus in a given environment. Thus the study of the
finite population size problem has attracted much atten-
tion in recent decades [24–31]. While the case of two alleles
(types of genes) in the Wright-Fisher model [1] and the
Moran model [2] can be analytically solved [6], the realis-
tic case of evolution with many sequences (genomes) stays
intractable by traditional methods. In [25] the additive
fitness landscape has been considered, when the contribu-
tions of different alleles to the fitness are random numbers
and in [26] a finite population was considered in which
the finesses of different sequences are independent random
numbers.
The purpose of the present letter is to formulate the

Crow-Kimura model and the Eigen model for finite
population size and solve them for the single-peak fitness
landscape, popular in quasispecies literature. In such a
landscape, the fitness of a configuration, say S0, is larger
than the fitness of other configurations, i.e. r0 > ri for
i > 0 and all ri are equal for i > 0. We first formulate the
iteration procedure for the finite population models, then
derive HJE to describe the dynamic of the probability
distribution. The steady-state solution of HJE gives
the variance of the mean fitness. Our results are useful
for understanding the population sizes of a virus in
which the coupled differential equations can give reliable
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results for biological evolution problems. Our results are
exact derivations in comparison with the numerics or
uncontrolled approximations of the vast majority of finite
population articles.
Consider the case when the total number of different

genotypes Ng is either Ng ∼ 4L, where L is the number
of nucleotides in the virus genome, or Ng ∼ 2L, where L
is the number of two types of alleles or (spins), located
in different places (loci). The infinite population case is
when the population size N is large enough to have a
large number of viruses of any type. The convergence of
evolutionary dynamics with population size depends on
the mutation rate and the fitness landscape. In the infinite
population limit the evolution equations are deterministic,
and, for molecular evolution models [3–7], there are many
exact results [7–18]. It is possible even to find exact
solutions for the steady state and dynamics [15–18]. In
biology, the populations are often relatively small. In
the case of viruses, the population size can be rather
large, even 1012. Then the collective characteristics of the
evolving population will fluctuate.

Finite population Crow-Kimura model with
symmetric fitness landscape. – We consider the
symmetric fitness landscape, popular in virology. The
genome is a collection of letters (spins) ±1, denoting
the alleles type. Thus a sequence is identified with a
spin configuration of a one-dimensional Ising model. By
mutation any letter may randomly change to the other
value.
An important characteristics of the sequence space is

the number of neighbors L and the number of sequences
at the Hamming distance d (the sequences have d alleles

different from the reference sequence) Nd =
L!

d!(L−d)! ∼ Ld

d!

for the two-loci case at d�L. We consider a simple
fitness landscape, popular in population genetics, when
the sequence from the l-th Hamming class has a
fitness wl.
As evolution is a stochastic process, we should work

with probabilities. We are interested in the steady-state
properties of the evolution model. We consider the finite
population version of the Crow-Kimura model, see the
appendix. In this case we consider the evolution as a
Markov process, where the state (the state of the popu-
lation is characterized by the number of individuals for
the different possible numbers of mutations) is defined by
L+1 integers, the numbers of different Hamming types.
During one evolution step, there are three processes: birth
of new individuals proportional to the fitness of the corre-
sponding Hamming class, transitions between Hamming
classes proportional to l/L to the lower Hamming class
and transitions proportional to (L− l)/L to the higher
Hamming class [8,19]. These factors l/L and (L− l)/L
have been derived in [8,19] for the infinite population
models, and should be applied to the discrete-time scheme
of the finite population models as well. The iteration step
is completed by the random reduction of the population

to the initial size, N . This evolution dynamics described
here corresponds to the Moran model with many alleles.
Compared to the ordinary multi-allele Moran model [2],
in our case there is a non-trivial geometry in the sequence
space, defined by the Hamming distance.
We first define our model for the case of a general

symmetric fitness landscape with Wrightian fitness r̂l =
eUrl , in the l-th Hamming class, 0� l�L, where rl is
the fitness defined earlier. Here the average number of
mutations of genome per one replication period is U ≡ γ0τ ,
where γ0 is a mutation rate per genome in the continuous-
time parallel model, and τ is the time step. At any moment
the state of our model is characterized via L+1 integers
nl. We choose γ0 = 1, therefore U = τ . We consider the
U � 1 limit. In this case the steady-state results and
dynamics are U independent (U gives just the scale).
During the iteration step we consider the following

processes:

– A. Random growth with nl→ nl+ δnl. The δnl is a
random binomial process with probability Ur̂l and nl
trials.

– B. Mutations.

There are fl forward mutations from the class l.

We consider random integer number fl with binomial
distribution with the probability parameter (1− l

L
)U

and nl trials. There are bl back mutations from the
class l.

We consider a random integer number bl with bino-
mial distribution with the probability parameter l

L
U

and nl trials. Due to back mutations we have the
following change of nl: nl→ nl− bl+ bl+1.

– C. We randomly remove
∑
l δnl individuals from the

population to keep a fixed population size.

Sharp peak (single-peak) model. – Consider the
Wrightian fitness with r̂0 = e

εJ for the peak sequence,
U � 1 is the number of mutations per generation, J is a
fitness gap in the corresponding continuous-time parallel
selection-mutation model, and ri = 1 for i� 1. Our goal is
to investigate how the mean fitness depends on the finite
population size.
In the case of infinite population, one can calculate

the number of viruses with the peak sequence using a
single equation, with 1/L accuracy. Assume that there
is some probability distribution ρ(n) for the number
n of viruses with the peak sequence, which satisfies
the normalization condition

∑N
n=0 ρ(n) = 1. Then we can

derive both the steady-state distribution, which is a rather
simple function, and even the exact dynamics, which is a
complicated expression for ρ(n).
We consider a discrete-time scheme of evolution with

small U . During each iteration we consider the steps A,
B, C. In step A, there are δn new viruses with the peak
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sequence. The number δn is derived via a binomial n
sampling with a small probability UJ . During the step
C of reduction to keep a constant population size anyone
of these δn viruses could be removed from the system. The
total number of viruses removed from the peak sequencem
is calculated via the binomial distribution with δn trials
and probability x≡ n/N . Therefore, the result of the A
and C steps should be a sampling of n particles with
a probability UJ(1−x). Thus after steps A and C the
original n changes as n→ n+h, where h has a binomial
distribution with a probability parameter p=UJ(1−x),
and the number of trials is n. During the step B of
mutation, n→ n−m, wherem has a binomial distribution
with a probability parameter U and the number of trials
is n. Thus after one iteration n→ n+h−m.
If we have a distribution ρ(t, n) at the t-th moment of

time, then after an iteration with the period of time U we
have a distribution

ρ(t+U, n) = 〈ρ(t, n−h+m)〉 (1)

when the averaging is over the (binomial) distributions of
h and m.
Let us assume the following anzats for the probability

distribution at time t:

ρ(t, n) = exp[Nφ(t, x)], x= n/N. (2)

After an iteration

eNφ(t+U,x) =

∫
dteNφ(x)〈e−(h−m)φ′(t,x)〉|h,m, (3)

where φ′ ≡ ∂φ(t,x)
∂x
. As we used binomial probability distri-

butions in the iteration step, we should perform an average
via the binomial distribution in eq. (3). We use the follow-
ing formula of the binomial distribution of h with success
probability p and M trials:

〈ehk〉 ≡
M∑
h=0

ehkph(1− p)M−h M !

h!(M −h)!
= (1+ p(ek − 1))M
≈ epM(ek−1). (4)

We consider the case of p� 1.
Taking k=−φ′,M =Nx and p=UJ(1−x) in eq. (4)

(see the definition of iteration steps A, C) we find

〈e−hφ′〉 = [(1−x)UJe−φ′ +1−UJ(1−x)]Nx

≈ eJNUx(1−x)(e−φ
′−1). (5)

In the same way we consider the mutation, taking
k= φ′, p=U,M = xN we derive

〈eφ′m〉= [Ueφ′ +1−U ]xN = exp[NUx(eφ′ − 1)]. (6)

Combining eqs. (5), (6) and holding only the linear
terms in U , we obtain the following expression:

φ(t+U, x) = φ(t, x)+UxJ(1−x)(e−φ′ − 1)+Ux(eφ′ − 1)
(7)
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Fig. 1: Verification of eq. (10) for variance: V = 1/J . The hori-
zontal lines from top to bottom are the analytic results for
J = 1.5, 2, 3 and 4, respectively. Circles, squares, diamonds,
and triangles represent numerical data for J = 1.5, 2, 3 and 4,
respectively. Analytic and numerical results are quite consis-
tent with each other.

or
∂φ(t, x)

∂t
= xJ(1−x)(e−φ′ − 1)+x(eφ′ − 1). (8)

In the steady state we just have an ordinary differential
equation for φ. We derive the following non-trivial solution
φ0(x) = φ(∞, x) and the corresponding distribution

φ0(x) =

∫ x
x0

dx lnJ(1−x) = (x−x0) ln J
+(1−x)(1− ln(1−x))− (1−x0)(1− ln(1−x0)),

ρ(x) =

√
NJ

2π
exp[Nφ(x)], (9)

where we added the pre-factor
√
NJ
2π to ensure the condi-

tion that the total probability is 1. Here the distribu-
tion has a maximum at x= x0 ≡ (1− 1/J), see [9], and
φ(x0)

′′ =−J . Then we derive for the variance:

V ≡ (〈x2〉− 〈x〉2)N = 1
J
. (10)

Thus we derived the whole steady-state distribution
via eqs. (2), (8), and the expression for the variance,
eq. (10).
Equation (10) is verified numerically in fig. 1 for J =

1.5, 2, 3, 4. One could follow the method used in [18] to
solve eq. (8) and get the time evolution of φ(t, x).

Finite population version of the Eigen model. –
Consider now the finite population version of the Eigen
model with zero degradation. There are n viruses at the
peak sequence.
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At any discrete moment of time we consider three
processes:

A. The number of viruses in the class l grows with a
probability Url. There are mutations. New viruses mutate
with a finite mutation probability 1−Q,
C. There is a dilution of the whole population, keeping
strictly the total population size as N .

Consider again the single-peak fitness, r0 =A, and for
l > 0, rl = 1. n is the number of viruses with the peak
sequence, and x= n/N .
Let us give the details of the processes A and B.

A1. Reproduction in the peak sequence S0: We randomly
choose l elements from a pool of n elements and each
element is chosen independently with a probability UA.
Thus the probability to get l elements is

ρ1(l) =
n!

l!(n− l)! (UA)
l(1−UA)n−l. (11)

l is the number of new sequences at the peak sequence.
A2. Reproduction in the other sequences, i.e. Si for i > 0:
We randomly choose k elements from a pool of (N −n)
elements and each element is chosen independently with
probability U . Thus the probability distribution to get k
elements is

ρ2(k) =
(N −n)!

k!(N −n− k)!U
k(1−U)N−n−k. (12)

After the A1 and A2 steps there are n+ l viruses at
the peak sequences and N −n+ k sequences at other
sequences.
B. We randomly choose m elements from a pool of l
elements in S0 and each element is chosen independently
with probability Q= exp[−γ] to be in S0. Thus the
probability to get m elements in S0 is

ρ3(m) =
l!

m!(l−m)!Q
m(1−Q)l−m. (13)

After the step B, there are n+m viruses in the peak
sequence S0 and N −n+ k+(l−m) viruses in other
sequences. Thus there are N + k+ l sequences in Si for
0� i�M − 1. In the next step, we will uniformly remove
l+ k sequences so that the total population is still N .
C. We randomly choose h elements from a pool of l+ k
elements in S0 and each element is chosen independently
with probability x. Thus the probability to remove h
elements from S0 is

ρ4(h) =
xh(1−x)(l+k−h)
h!(l+ k−h)! . (14)

Besides, we remove l+ k−h elements from Si for i > 0.
We have that during one iteration step n→ n+m−h,

therefore we need to find the average 〈e−φ′(m−h)〉 via the
distributions ρ1(l)ρ2(k)ρ3(m)ρ4(h). We consider

〈e−φ′(m−h)〉=∑
l,k,m,h

n!(UA)l(1−UA)n−l
l!(n− l)!

l!Qm(1−Q)l−me−φ′m
m!(l−m)!

× (N −n)!U
k(1−U)N−n−k

k!(N −n− k)!
(l+ k)!xh(1−x)(l+k−h)

h!(l+ k−h)! eφ
′h.

(15)

First we transform∑
m

l!Qm(1−Q)l−me−φ′m
m!(l−m)! = (Qe−φ

′
+1−Q)l. (16)

Using the transformation

∑
h

(l+ k)!xh(1−x)(l+k−h)
h!(l+ k−h)! eφ

′h = (1−x+xeφ′)l+k,

(17)

we obtain∑
l,k

n!(UA)l(1−UA)n−l
l!(n− l)!

(N −n)!Uk(1−U)N−n−k
k!(N −n− k)!

×(Qe−φ′ +1−x)l(1−x+xeφ′)l+k.
(18)

The sum over l, k gives an equation

dφ

dt
= F (φ′), (19)

where

F (φ′) = xA[(Qe−φ
′
+1−Q)(xeφ′ +1−x)− 1]

+x(1−x)(eφ′ − 1). (20)

We need to consider the first two terms in the φ′ expansion

F (φ′) ≈ −x[(QA− 1)− (A− 1)x]φ′

+x[QA(1− 2x)+ (A− 1)x+1]φ
′2

2
. (21)

In the steady state we consider F (φ′) = 0. We expand eq.
(21) in powers of y≡ x− (QA−1)(A−1) and find the following
steady-state solution:

φ′ =−2 (A− 1)y
Q(1−Q) 2A2(A−1) − (2QA+1−A)y

. (22)

Therefore,

φ′′(0) =− (A− 1)2
Q(1−Q)A2 , (23)

and eventually we obtain for the variance V of distribution

V =N〈y2〉 ≡N(〈p20〉− 〈p0〉2) =
Q(1−Q)A2
(A− 1)2 . (24)

In appendix C, we derive the steady-state distribution
and the variance for the Eigen model with degradation
eq. (C.6).
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Discussion. – The investigation of the finite popu-
lation problem is the hardest mathematical problem in
evolution theory. In this article we solved exactly some
aspects of the finite population version of the Crow-
Kimura and Eigen model with degradation. We calculated
the variance of the distribution for the mean fitness at
equlibrium. Our equation could be applied to calculate
the dynamics of the distribution as well.
The quasispecies model, especially the one with single-

peak fitness and its simple generalizations, has a lot of
applications in the virus evolution [32], cancer model-
ing [33] and molecular evolution [34]. Therefore any rigor-
ous results here should be welcomed.
In this article we considered just one aspect of conver-

gence of finite population result to the results in infinite
population considering the variance of the mean fitness.
According to this criterion, N ∼L2 is large enough to have
the same mean fitness as the infinite population with accu-
racy 1/L. Actually an important open problem is to inves-
tigate the equilibrium here (mutation-selection), like the
equilibrium in thermodynamics, and how the equilibrium
is affected by the finite size of the population.
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Agency DARPA grant No. HR00110510057, DARPA
Prophecy Program and Academia Sinica for financial
support. This work was supported in part by NSC
100-2112-M-001-003-MY2 and NCTS in Taiwan.

Appendix A. Crow-Kimura model. – We here
consider the infinite population model. The M ≡ 2L
genome configurations (sequences) are defined as chains
of L spins sk, 1� k�L having values ±1. There is a
reference sequence S0 with all spins +1. We define the
Hamming distance between the given sequence and the
reference sequence by

∑
k(1− sk)/2≡N(1−m)/2, where

m is an overlap.
The state of the system is specified by the M relative

frequencies pi, 0� i�M − 1:
dpi
dt
=
∑
j

Aijpj − pi
∑
j

pjrj ,

Aij = δijrj +mij . (A.1)

Here mij is the rate of mutation from the sequence j to
the sequence i, and ri is the fitness. Two sequences have
a Hamming distance dij = (L−

∑
k s
k
i s
k
j )/2. Here mii =

−γ0. When dij = 1, mij = γ0/L, mij = 0 for dij > 1 [7].
We are interested in the symmetric fitness landscape with

ri = f(1− 2di0/L). (A.2)

We choose the first L+1 sequences such that the l-th
sequence has a Hamming distance l from the reference
sequence, 0� l�L. Then our rl are connected with the r̂l
in the main text as

r̂l = exp[rlU ], (A.3)

where
U = τγ0, (A.4)

where τ is the iteration duration and l in eq. (A.3) is
the Hamming class of the i-th sequence. In the main text
we consider the discrete-time evolution with minimal time
interval τ =U , choosing γ0 = 1.

Appendix B. Eigen model. – In Eigen’s quasispecies
theory [3,4], the i-th sequence produces offspring of the
type j with probability Qij = q

L−dij (1− q)dij , where 1− q
is the average number of errors per site and dij is the
Hamming distance.
Eigen proposed that pi satisfy [3,4]

dpi
dt
=

{
Qiiri−Di

∑
k

r̂kpk(t)

}
pi(t)

+
∑
k �=i
Qikrkpk(t). (B.1)

HereDi describes the degradation. It is convenient to work
with the error rate γ ≡L(1− q), leading to Q= e−γ .
Appendix C. Eigen model with degradation. –

We now consider the Eigen model when there is a degra-
dation D in the peak sequence S0, and zero degradation
for other sequences Si for i > 0. In this case we should add
the random sampling for the degradation case. The calcu-
lation procedure is similar to the case dealt with in the
section on the Eigen model. We should just modify the
iteration sub-steps from that section, after the point B.
C. There is a dilution of the population with the peak

sequence. We randomly choose t elements from a pool of
n elements and each element is chosen independently with
probability UD.
D. There is a dilution of the whole population, keeping

strictly the total population size as N .
We randomly choose h elements from a pool of l+ k− t

elements and each element is chosen independently with
probability U(1−x).
Now after one iteration step n→ n+m−h− t. Thus

we should calculate 〈e−φ′(m−t−h)〉. We get the following
expression:

〈e−(m−t−h)φ′〉=∑
l,k,m,t,h

n!(UA)l(1−UA)n−l
l!(n− l)!

l!Qm(1−Q)l−me−φ′m
m!(l−m)!

×n!e
φ′teφ

′h)(UD)t(1−UD)n−t
t!(n− t)!

× (N−n)!U
k(1−U)N−n−k

k!(N −n− k)!
(l+k−t)!xk(1−x)(l+k−t−h)

h!(l+ k− t−h)! .

(C.1)

We first perform the sum over h:∑
h

(l+ k− t)!xh(1−x)(l+k−t−h)
h!(l+ k− t−h)! eφ

′h =

(1+x(eφ
′ − 1))l+k−t, (C.2)
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then perform the sum over t:

∑
t

n!eφ
′t(UD)t(1−UD)n−t
t!(n− t)! (1+x(eφ

′ − 1))−t =
(
U

deφ
′

(1+x(eφ′ − 1)) + 1−U
)Nx

= exp

[
Ux

(
eφ
′

1+x(eφ′ − 1) − 1
)
dN

]
. (C.3)

Comparing our formulas with the expression of F (φ′) from
the section on the finite population Eigen model, we find
just a new additional term to those of eq. (20). Eventually
we have

dφ′

dt
= xA[(Qe−φ

′
+1−Q)(xeφ′ +1−x)− 1]

+x

(
eφ
′

1+x(eφ′ − 1) − 1
)
D+(1−x)x(eφ′ − 1).

(C.4)

We expand in powers of φ′:

F (φ′)≈−[(QA− 1−D)− (A− 1−D)x]φ′

+
φ′2

2
[QA(1− 2x)+ (A− 1)x+1+D(1−x)(1− 2x)].

(C.5)

Putting the value of x= AQ−D−1
A−D−1 , we derive

F (φ′)≈−[(QA− 1−D)− (A− 1− d)x]φ′

+
φ′2

2

(2a(−1+Q)((D+D2+(−1+ a)aQ− 2aDQ)))
(1+D− a)2 .

and obtain for the variance

V =
A(1−Q)((A− 1)AQ+2AQd− d− d2)

(A− 1− d)3 . (C.6)

ForD= 0, eq. (C.6) reduces to eq. (20) for the Eigen model
without degradation.
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