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Outline:

2. Light boson dark matter (mass                    ) 
   - with Jerry Ostriker, Scott Tremaine, Edward Witten.
               

1. Spontaneously broken symmetry in the theory of LSS
   - with Kurt Hinterbichler & Justin Khoury;
               Walter Goldberger & Alberto Nicolis;
               Creminelli, Gleyzes, Simonovic &Vernizzi;
               Bart Horn & Xiao Xiao.

∼ 10−22 eV
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Idea 1: non-perturbative consistency relations in LSS
1. Consider a familiar example of symmetry: spatial translation.

x → x+∆x , where ∆x = const.

Its consequence for correlation function is well known:
 x1

x2

For small        , we have:∆x

is invariant under

�φ(x1)φ(x2)φ(x3)� = �φ(x1 +∆x)φ(x2 +∆x)φ(x3 +∆x)�

�φ(x1 +∆x)φ(x2 +∆x)φ(x3 +∆x)� ∼ �φ(x1)φ(x2)φ(x3�+∆x · ∂1�φ(x1)φ(x2)φ(x3�+ perm.

Thus, alternatively, we say:
φ → φ+∆x · ∂φ i.e. ∆x · ∂1�φ1φ2φ3�+ perm. = 0�φ1φ2φ3�
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φ → φ+∆x · ∂φ i.e. ∆x · ∂1�φ1φ2φ3�+ perm. = 0�φ1φ2φ3�

�φ1φ2φ3�

2. Consider a different symmetry: shift in gravitational potential.
φ → φ+ c , where c = const.

Conclude :                       is not invariant under 

For small     , we have:c

Thus, saying                                                                       is equiv. to saying :�φ1φ2φ3� = �(φ1 + c)(φ2 + c)(φ3 + c)�
c(�φ1φ2�+ �φ2φ3�+ �φ1φ3�) = 0

�(φ1 + c)(φ2 + c)(φ3 + c)� ∼ �φ1φ2φ3�+ c�φ1φ2�+ c�φ2φ3�+ c�φ1φ3�

clearly false!
φ → φ+ c
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What makes the second case so different?  
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Thus, saying                                                                       is equiv. to saying :�φ1φ2φ3� = �(φ1 + c)(φ2 + c)(φ3 + c)�
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clearly false!
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What makes the second case so different?  We generally choose some expectation value  
for       e.g.                  . The choice breaks the shift symmetry i.e. spontaneous symm. breaking.     

1. Unbroken symmetries                invariant correlation functions. 
2. Spontaneously broken symmetries               consistency relations.

φ �φ� = 0
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Maldacena; Creminelli & Zaldarriaga; Creminelli, Norena, Simonovic; Assassi, Baumann 
& Green; Flauger, Green & Porto;  Pajer, Schmidt, Zaldarriaga;  Kehagias & Riotto; 
Peloso & Pietronni; Berezhiani & Khoury; Pimentel; Creminelli, Norena, Simonovic, 
Vernizzi; Goldberger, LH, Nicolis; Hinterbichler, LH, Khoury; Horn, LH, Xiao.

References:
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comoving gauge ds2spatial = a2e2ζ [eγ ]ijdx
idxj

dilation symm. x → e−2λx , ζ → ζ + λ

x → x+M · xN+1 , ζ → ζ +M · xN , γ → γ +M · xN

lim
q→0

∂N
q

�
1

Pζ(q)
�ζ(q)ζk1 ...ζkm�� + 1

Pγ(q)
�γ(q)ζk1 ...ζkm��

�
∼ k·∂N+1

k �ζk1 ...ζkm��

lim
q→0

1

Pζ(q)
�ζ(q)ζk1 ...ζkm�� ∼ k · ∂k�ζk1 ...ζkm��

generalization

Relativistic symmetries and consistency relations

Maldacena

Note:
1. The symmetries originate as diff. But consistency relations are not empty statements i.e. they 
can be violated (e.g. curvaton); they are a test of initial conditions (e.g. single clock, etc).

2. They are non-perturbative, derived from Ward identities.

3. Testing these requires seeing general relativistic effects, but there exists 2 Newtonian
     consistency relations (Peloso & Pietroni; Kehagias & Riotto).

δρ = 0

N = 0 dilation , N = 1 special conformal , etc.
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Newtonian limit

δ� +∇ · (1 + δ)v = S mass/number conservation (or lack thereof)

v� + v ·∇v +Hv = −∇φ+ F equation of motion

∇2φ = 4πGa2δρm Poisson equation

Symmetries: 1. φ → φ+ c

2. x → x+ n , v → v + n� , φ → φ− (n�� +Hn�) · x
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Consistency relations from SSB
Schematic form: lim

q→0

1

Pφ(q)
�φ(q)O(k1)...O(kN )� ∼ �O(k1)...O(kN )�

soft ‘pion’φ
∼

They are (momentum space) statements about how correlations of observables        
behave in the presence of a long wave-mode Nambu-Goldstone boson/pion.

O
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soft ‘pion’φ
∼

They are (momentum space) statements about how correlations of observables        
behave in the presence of a long wave-mode Nambu-Goldstone boson/pion.

O

Why are they interesting?

1. These are symmetry statements, and are therefore exact, non-perturbative i.e. they hold     
    even if  the observables        are highly nonlinear, and even if they involve astrophysically
    complex objects, such as galaxies. The main input necessary is how they transform 
    under the symmetry of interest (robust against galaxy mergers, birth, etc.)

O

2. In the fully relativistic context, there is an infinite number of consistency relations.
    Two of them have interesting Newtonian limits (shift and time-dependent translation).

3. Two assumptions go into these consistency relations, which can be experimentally tested
     (using highly nonlinear observables!): Gaussian initial condition (or more precisely,
      single-clock initial condition such as provided by inflation), and the equivalence 
      principle (that all objects fall at the same rate under gravity).         

4. Non-trivial constraints on analytic models.
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Connection with asymptotic symmetries (e.g. BMS in the case of scattering amplitudes).

An open issue:
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Idea 2: light boson dark matter mass m ∼ 10−22 eV

Invoke shift symmetry to make small mass technically natural 
i.e. a Nambu-Goldstone boson in the                limit.m → 0

Concrete realization: an angular field of periodicity            i.e. an axion-like field  
with a potential from non-perturbative effects (not QCD axion).

m ∼ Λ2/F

Relic abundance:

φ ∼ F at early times until H ∼ m

ρφ ∼ m
2
F

2
, ρrad. ∼ H

2
M

2
pl

subsq. oscill. : ρφ ∝ a−3

V (φ)

Ωmatter ∼
�

F

1017 GeV

�2 � m

10−22 eV

�1/2 (standard story)
self − interaction can be ignored

L ∼ −1

2
(∂φ)2 − Λ4(1− cos [φ/F ])

2πF

2πF

(low scale inflation)
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Ignoring self-interaction:

−�φ+m2φ = 0

Non-relativistic limit:
φ =

1√
2m

�
ψe−imt + ψ∗eimt

�

|ψ̈| � m|ψ̇| iψ̇ =

�
−∇2

2m
+mΦgrav.

�
ψ

High occupancy implies        should be thought of as a classical scalar. ψ

See simulations by Hsi-Yu Schive, Tzihong Chiueh & Tom Broadhurst.

An alternative viewpoint:       as a (classical) fluid.ψ

ρ = m |ψ|2

Recall conservation of probability:    current ∝ i(ψ∇ψ∗ − ψ∗∇ψ)

i.e.  ψ =
�

ρ/meiθ

Reinterpreted as conservation of mass: 
ρ̇+∇ · ρv = 0 where v =

1

m
∇θ i.e.   a superfluid.

Dynamics of a free massive scalar
m−1 ∼ 0.06 pc

(mv)−1 ∼ 2 kpc (10 km s−1/v)
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Fluid formulation
Euler equation:

v̇ + v ·∇v = −∇Φgrav. +
1

2m2
∇
�∇2√ρ

√
ρ

�

“quantum pressure”

More precisely, an unusual form of stress:

Tij = ρvivj +
1

2m2
[∂i

√
ρ ∂j

√
ρ−√

ρ ∂i∂j
√
ρ]

(Madelung)

Can be implemented in standard hydrodynamics codes (Mocz & Succi).

For linear perturbations (on cosmological bgd.):

Jeans scale                              at    z ∼ 0.03Mpc ∼ 10

Perturbations suppressed on small scales - could help alleviate small scale
problems of standard CDM (Hu, Barkana, Gruzinov: Fuzzy DM).

Typical focus: density profile (cusp versus core), number of satellite galaxies.

Issue: baryonic effects make it hard to draw definitive conclusions.
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ABSTRACT

We examine the circular velocity profiles of galaxies in ΛCDM cosmological hydro-
dynamical simulations from the EAGLE and LOCAL GROUPS projects and compare them
with a compilation of observed rotation curves of galaxies spanning a wide range in
mass. The shape of the circular velocity profiles of simulated galaxies varies system-
atically as a function of galaxy mass, but shows remarkably little variation at fixed
maximum circular velocity. This is especially true for low-mass dark matter-dominated
systems, reflecting the expected similarity of the underlying cold dark matter haloes.
This is at odds with observed dwarf galaxies, which show a large diversity of rotation
curve shapes, even at fixed maximum rotation speed. Some dwarfs have rotation curves
that agree well with simulations, others do not. The latter are systems where the in-
ferred mass enclosed in the inner regions is much lower than expected for cold dark
matter haloes and include many galaxies where previous work claims the presence of
a constant density “core”. The “cusp vs core” issue is thus better characterized as an
“inner mass deficit” problem than as a density slope mismatch. For several galaxies the
magnitude of this inner mass deficit is well in excess of that reported in recent simula-
tions where cores result from baryon-induced fluctuations in the gravitational potential.
We conclude that one or more of the following statements must be true: (i) the dark mat-
ter is more complex than envisaged by any current model; (ii) current simulations fail to
reproduce the diversity in the effects of baryons on the inner regions of dwarf galaxies;
and/or (iii) the mass profiles of “inner mass deficit” galaxies inferred from kinematic
data are incorrect.

Key words: dark matter, galaxies: structure, galaxies: haloes

1 INTRODUCTION

Cosmological simulations have led to a detailed theoretical
characterization of the clustering of dark matter on galaxy
scales. It is now well established that, when baryons may be
neglected, the equilibrium mass profiles of cold dark matter
(CDM) haloes are approximately self-similar and can be ad-
equately approximated by a simple formula (Navarro et al.
1996b, 1997). The “NFW profile”, as this is commonly known,
has a formally divergent density “cusp” near the centre, ρ ∝

� koman@uvic.ca

r−γ , with γ = 1, and steepens gradually at larger radii. The cor-
responding circular velocity profile, Vcirc(r), is thus relatively
steep near the centre, Vcirc ∝ r1/2, in contrast with the rotation
curves of some dwarf galaxies, where the inner rotation speed
rises linearly with radius. The latter behaviour suggests that the
dark matter density profile has a shallower inner slope than pre-
dicted by simulations, closer to a constant density “core” rather
than a steeply divergent “cusp”. This “cusp vs core” problem
(Moore 1994; Flores & Primack 1994) has been known since
the mid 1990s and has elicited a number of proposed solutions.

One is that the dark matter is not “cold”. Cores can be pro-
duced in dark matter haloes by particle physics effects if the
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Fornax galaxy and its globular clusters
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Chandrasekhar’s classic calculation:

Dynamical friction

globular cluster   M

Quantum stress smooths out density wake, lowering friction.

Use known solution for the Coulomb scattering problem:

ψ ∝ F [ iβ, 1, ikr(1− cos θ) ] where      is the confluent hypergeometric func.F

β ≡ (GM/v2)/k−1 with                                    de Broglie wavelengthk−1 = (mv)−1 =

v

v

Small        means quantum stress is important.β

integrate momentum flux to compute friction: 
�

dSj Tij  Key -
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Question: shouldn’t the quantum and classical answers be identical? 

Recall that for Coulomb differential cross section,

quantum = classical.

But recall also the integrated cross section has a logarithmic divergence.

Thus, we expect dynamical friction                                                                              ,      ∝ ln [r/rc] where r ∼ size of galaxy

rc ∼ GM/v2 or k−1

This is borne out by analytic calculation, made possible by obscure identities (some 
dating to 18th century) involving hypergeometric functions.
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β ≡ (GM/v2)/k−1

ln [2r/(GM/v2)] = 10, 6, 3
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Given the density profile of a galaxy (which can be experimentally determined),
standard CDM has a definite prediction for the dynamical friction, which can be 
checked against observations.

Fuzzy DM of m                         can lower dynamical friction by an order of 
magnitude.

∼ 10−22 eV

Conclusion:
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A side remark: 

The Newtonian consistency relation simplifies greatly in Lagrangian space:

lim
�q→0

1

Pv(q, η)
�vi(�q, η)O(�k1, η1)...O(�km, ηm)� = 0

Bart Horn, LH, Xiao Xiao

Related: Tanaka; Pajer, Schmidt, Zaldarriaga
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FIG. 5: Dark matter power spectra from the nonlinear DGP model (nlDGP) , linear DGP (lDGP), and GR perturbations with
the same expansion history (GRH) at z = 1. The left panels show the power spectra, and the right panels shows ratios to
better see the differences. Two sets of computational boxes are shown for each case, covering a different range in k (see text).
The solid line denotes the predictions from paper I for PnlDGP (left panel) and PGRH/PnlDGP (right panel).

FIG. 6: Same as Fig. 5 but for z = 0

than at z = 1 at large scales, so the Vainshtein effect
has to overcome a larger difference at z = 0. A Vain-
shtein scale (analogous to r∗ in the Schwarzshild case)

may be defined by the scale at which PGRH/PnlDGP starts
to decrease, this is about k∗ ! 2 h Mpc−1 at z = 1 and
k∗ ! 1 h Mpc−1 at z = 0. Note that at intermediate

Chan & Scoccimarro 2009 
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e.g. DGPVainshtein screening

(Einstein frame)

ϕ ∝ 1

r

ϕ ∝
√

r

large r

small r
point mass solution 

ϕ

r

r−1√
r

α = scalar-matter coupling = O(1) generically

Sscalar ∼
�

d4x
�

−1

2
(∂ϕ)2 − 1

m2 (∂ϕ)2✷ϕ + αϕTm
µ
µ

�

✷ϕ +
1

m2

�
(✷ϕ)2 − ∂µ∂νϕ∂µ∂νϕ

�
∼ αρm

e.o.m.: 

graviton mass 

rV ∼ (rSchwm
−2)1/3

Galileon symmetry (Nicolis, Rattazzi, Trincherini): ϕ → ϕ+ c+ bµx
µ
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