ATLAS DiBoson Anomaly

KC, Wai-Yee Keung, Po-Yan Tseng, Tzu-Chiang Yuan 2015

Table 2: Summary of the event selection requirements in the different search channels. The selected events are further classified into different kinematic categories as listed in Table 3.

Channel	Leptons	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	Boson Identification
<i>lvl'l</i> '	3 leptons $p_{-} > 25 \text{ GeV}$	-	$E_{\rm T}^{\rm miss} > 25 { m GeV}$	$ \mathbf{m}_{ll} - \mathbf{m}_Z < 20 \text{ GeV}$
	$p_{\rm T} > 25 {\rm Gev}$			
$\ell \ell q ar q$	2 leptons		-	$ m_{ll} - m_Z < 25 \text{ GeV}$
	$p_{\rm T} > 25 \text{ GeV}$	2 small- <i>R</i> jets or 1 large- <i>R</i> jet		$70 \text{ GeV} < m_{jj} < 110 \text{ GeV}$
				$70 \text{ GeV} < m_J < 110 \text{ GeV}$, $\sqrt{y} > 0.45$
ℓvq <i>q</i>	1 lepton	2 small-R jets or 1 large-R jet	$F^{\text{miss}} > 30 \text{ GeV}$	$65 \text{ GeV} < m_{jj} < 105 \text{ GeV}$
	$p_{\rm T} > 25 { m GeV}$	No <i>b</i> -jet with $\Delta R(b, W/Z) > 0.8$	$L_{\rm T} > 50 {\rm GeV}$	65 GeV $< m_J < 105$ GeV, $\sqrt{y} > 0.45$
JJ	0 lepton	2 large- <i>R</i> jets, $ \eta < 2.0$	$E_{\rm T}^{\rm miss} < 350 { m GeV}$	$ m_{W/Z} - m_J < 13 \text{ GeV}$
				$\sqrt{y} > 0.45, n_{\rm trk} < 30$

 $m_{W'}$ [GeV]

Local p-value

Figure 15: Profile likelihood scans for $\ell \nu \ell' \ell'$, $\ell \ell q \bar{q}$, $\ell \nu q \bar{q}$, and JJ channels separately and in combinations for the EGM W' signal hypothesis for a W' mass of 2 TeV.

Figure 2: Limits at 95% CL on $\sigma \times \mathcal{B}(W' \to 3\ell\nu)$ as a function of the mass of the EGM W' (blue) and ρ_{TC} (red), along with the 1σ and 2σ combined statistical and systematic uncertainties in-

Figure 9: Expected and observed upper limits on the production cross sections for $Z' \rightarrow HZ$ (left) and $W' \rightarrow HW$ (right), including all five decay categories. Branching fractions of H and V decays have been taken into account. The theoretical predictions of the HVT model scenario

A short summary of data

- ATLAS WZ → JJ channel showed a deviation larger than 3σ, but after combining with leptonic and semileptonic channels the deviation reduces to about 2.4σ.
- ATLAS $WW, ZZ \rightarrow \text{all also reduces to less than } 2\sigma$.
- There may be something we do not fully understand the boosted jets of W, Z bosons. Or there may be other exotic particles with similar mass decaying into dijets only.
- The CMS saw something but not as significant in all channels.
- It is a narrow resonance.

A brief summary of possible interpretations

- The baseline is one or more resonance(s) at around 2 TeV that decay into WW, ZZ, and/or WZ.
- A spin-0 resonance Higgs-like particles. Require a very large Yukawa coupling for the first generation, or many colored scalars running in the loop.
- A spin-1 gauge boson, typically a W' and Z' of some higher symmetry groups, or technirhos from Technicolor theories.
- A spin-2 heavy graviton, e.g., the Randall-Sundrum graviton, but the cross section is not large enough.

Outlines

- 1. Some existing constraints on W', Z' models
- 2. $W' \to WZ$
- 3. $Z' \to WW$
- 4. A unified model

Existing constraints

- Electroweak precision measurements: W, W' mixing, Z, Z' mixing.
- Leptonic decays of W' and Z'.
- Dijet production, e.g., $\sigma(pp \to W') \times B(W' \to jj)$.
- WH and ZH production that are specific to this work.

W and W' mixing

Limit on W_L - W_R Mixing Angle ζ

Lighter mass eigenstate $W_1 = W_L \cos \zeta - W_R \sin \zeta$. Light ν_R assumed unless noted. Values in brackets are from cosmological and astrophysical considerations.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$								
-0.020 to 0.017	90	BUENO	11	TWST	$\mu \rightarrow e \nu \overline{\nu}$			
< 0.022	90	MACDONALD	08	TWST	$\mu \rightarrow e \nu \overline{\nu}$			
< 0.12	95	¹ ACKERSTAFF	99 D	OPAL	au decay			
< 0.013	90	² CZAKON	99	RVUE	Electroweak			
< 0.0333		³ BARENBOIM	97	RVUE	μ decay			
< 0.04	90	⁴ MISHRA	92	CCFR	νN scattering			
-0.0006 to 0.0028	90	⁵ AQUINO	91	RVUE				
[none 0.00001-0.02]		⁶ BARBIERI	89 B	ASTR	SN 1987A			
< 0.040	90		86	ELEC	μ decay			
-0.056 to 0.040	90	7 JODIDIO	86	ELEC	μ decay			

Z and Z' mixing

					-			_
Z'	$M_{Z'}$ [GeV]				$\sin \theta_{ZZ'}$			$\chi^2_{\rm min}$
	EW (this work)	CDF	DØ	LEP 2	$\sin \theta_{ZZ'}$	$\sin \theta_{ZZ'}^{\min}$	$\sin \theta_{ZZ'}^{\max}$	
Z_{χ}	1,141	892	640	673	-0.0004	-0.0016	0.0006	47.3
Z_{ψ}	147	878	650	481	-0.0005	-0.0018	0.0009	46.5
Z_{η}	427	982	680	434	-0.0015	-0.0047	0.0021	47.7
Z_I	1,204	789	575		0.0003	-0.0005	0.0012	47.4
Z_S	1,257	821			-0.0003	-0.0013	0.0005	47.3
Z_N	623	861			-0.0004	-0.0015	0.0007	47.4
Z_R	442				-0.0003	-0.0015	0.0009	46.1
Z_{LR}	998	630		804	-0.0004	-0.0013	0.0006	47.3
$Z_{\not\!\!\! E}$	(803)	(740)			-0.0015	-0.0094	0.0081	47.7
Z_{SM}	1,403	1,030	780	1,787	-0.0008	-0.0026	0.0006	47.2
Z_{string}	1,362				0.0002	-0.0005	0.0009	47.7
SM	∞				0			48.5

0906.2435

Leptonic W' constraint

Leptonic Z' constraint

Constraint from WH, ZH production

• Due to Equivalence theorem:

$$\Gamma(W'^+ \to W^+ Z) \approx \Gamma(W'^+ \to W^+ H)$$

$$\Gamma(Z' \to W^+ W^-) \approx \Gamma(Z' \to ZH)$$

to LO in $1/M_{W'}^2$.

• The mixing angle ϕ_w between W and W' comes from the off-diagonal mass matrix entry, which also gives the tree-level unsuppressed coupling for W'-W-H.

Leptophobic Z', W' model

• The required mixing angle to explain the anomaly is $10^{-3} - 10^{-2}$. So the usual Z' models cannot work. We need the leptophobic version.

$$\sin\phi_z < 8 \times 10^{-3}$$

• We assume the right-handed neutrinos are heavy enough that

$$W'^+ \not\rightarrow e^+ \nu_R$$

The W' Model

- The extra W_2 arises from $SU(2)_R$. The RH fermions are arranged as $(u_R, d_R)^T \nu_R, e_R$.
- W_1 and W_2 mix:

$$\left(\begin{array}{c}W_1\\W_2\end{array}\right) = \left(\begin{array}{c}\cos\phi_w & -\sin\phi_w\\\sin\phi_w & \cos\phi_w\end{array}\right) \left(\begin{array}{c}W\\W'\end{array}\right)$$

• Vertices:

$$\begin{split} \mathcal{V}_{W'ff'} &: -\frac{g_R}{\sqrt{2}} \bar{f}' \gamma^{\mu} P_R f \, \epsilon_{\mu} (p_{W'+}) \ , \\ \mathcal{V}_{W'WZ} &: +g \cos \theta_w \sin \phi_w \left[(p_{W'+} - p_{W^-})^{\beta} g^{\mu\alpha} + (p_{W^-} - p_Z)^{\mu} g^{\alpha\beta} + (p_Z - p_{W'+})^{\alpha} g^{\mu\beta} \right] \\ & \times \epsilon_{\mu} (p_{W'+}) \, \epsilon_{\alpha} (p_{W^-}) \, \epsilon_{\beta} (p_Z) \ , \\ \mathcal{V}_{W'WH} &: +g M_W \sin \phi_w \left(\cos^2 \theta_w \frac{M_{W'}^2}{M_W^2} \right) \, g^{\mu\alpha} \, \epsilon_{\mu} (p_{W'+}) \, \epsilon_{\alpha} (p_{W^-}) \ , \end{split}$$

We require $\Gamma_{W'}/M_{W'} < 0.1$, thus $\sin \phi_w \lesssim 1.5 \times 10^{-2}$.

The Z' Model

• $\begin{aligned} \mathcal{V}_{Z'ff} &: -\bar{f}\gamma^{\mu}(g_{f,r}P_{R} + g_{f,l}P_{L})f\epsilon_{\mu}(p_{Z'}) , \\ \mathcal{V}_{Z'WW} &: +g\cos\theta_{w}\sin\phi_{z}\left[(p_{Z'} - p_{W^{+}})^{\beta}g^{\mu\alpha} + (p_{W^{+}} - p_{W^{-}})^{\mu}g^{\alpha\beta} + (p_{W^{-}} - p_{Z'})^{\alpha}g^{\mu\beta}\right] \\ & \times\epsilon_{\mu}(p_{Z'})\epsilon_{\alpha}(p_{W^{+}})\epsilon_{\beta}(p_{W^{-}}) , \\ \mathcal{V}_{Z'ZH} &: +\frac{g}{\cos\theta_{w}}M_{Z}\sin\phi_{z}\left(\frac{M_{Z'}^{2}}{M_{Z}^{2}}\right)g^{\mu\alpha}\epsilon_{\mu}(p_{Z'})\epsilon_{\alpha}(p_{Z}) .\end{aligned}$

• We set

$$g_{f,l} = 0, g_{f,r} = g_R T_{3,f}^{(2)}$$

for leptophobic and only right-handed current $T_3^{(2)}$.

We require $\Gamma_{Z'}/M_{Z'} < 0.1$, thus $\sin \phi_z \lesssim 1.5 \times 10^{-2}$. The Z-Z' mixing needs to be $\lesssim 8 \times 10^{-3}$.

Dijet Constraint

Combined Constraints on W'

Combined Constraints on Z'

To fit to the WZ Bump

To fit to the WW Bump

A unified $SU(2)_1 \times SU(2)_2 \times U(1)_X$ model

• Symmetry breaking pattern:

$$SU(2)_1 \times SU(2)_2 \times U(1)_X \xrightarrow{TeV} SU(2)_L \times U(1)_Y \xrightarrow{EW} U(1)_{em}$$

• The SM hypercharge convention is fixed by

$$Q = T_3^{(1)} + \frac{Y}{2} = T_3^{(1)} + T_3^{(2)} + \frac{Y_X}{2}$$

• Note
$$(u_R, d_R)^T$$
, ν_R , e_R :

f	u_R	d_R	$ u_R$	e_R
$T_3^{(2)}$	$+\frac{1}{2}$	$-\frac{1}{2}$	0	0
$\frac{Y_X}{2}$	$+\frac{1}{6}$	$+\frac{1}{6}$	0	-1

• The first step of symmetry breaking at TeV scale can occur via a

Higgs doublet Φ :

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \qquad \langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ u \end{pmatrix}$$

• The gauge field B'_{μ} of the $U(1)_X$ and the W'^{3}_{μ} of the $SU(2)_2$ are rotated by angle ϕ into the B_{μ} of the $U(1)_Y$ and the Z' boson:

$$\begin{pmatrix} B'_{\mu} \\ W'^{3}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} B_{\mu} \\ Z'_{\mu} \end{pmatrix}$$

• We require for B_{μ} the same as the SM hypercharge boson:

$$g_X \cos \phi = g_1, \quad g'_2 \sin \phi = g_1, \quad \tan \phi = \frac{g_X}{g'_2}, \quad \frac{Y_X}{2} + T_3^{(2)} = \frac{Y}{2}$$

• The W' and Z' boson masses are

$$M_{W'}^2 = \frac{e^2 v^2}{4\cos^2 \theta_w \sin^2 \phi} (x+1), \quad M_{Z'}^2 = \frac{e^2 v^2}{4\cos^2 \theta_w \sin^2 \phi \cos^2 \phi} (x+\cos^4 \phi),$$

where $x \equiv u^2/v^2$ is very large. If $\cos \phi \approx 1$, the $M_{Z'} \approx M_{W'}$

• In limit x large: the LH and RH couplings of the W' becomes

$$\frac{g_L^{W'ff'}}{g_R^{W'ff'}} \longrightarrow \frac{1}{x} , \quad \text{with} \ g_R^{W'ff'} = \frac{g_2'}{\sqrt{2}} ,$$

• In limit x large and $\sin \phi$ small:

$$g_{f,l} \longrightarrow \frac{g_2'}{\cos \phi} (T_3^{(1)} - Q) \sin^2 \phi \approx 0$$

$$g_{f=\ell,r} \longrightarrow \frac{g_2'}{\cos \phi} (-Q \sin^2 \phi) \approx 0$$

$$g_{f=q,r} \longrightarrow \frac{g_2'}{\cos \phi} (T_3^{(2)} - Q \sin^2 \phi) \approx g_2' T_3^{(2)}$$

Conclusions

- 1. The ATLAS diboson anomaly in WZ is amore than 3σ in the JJ channel. However, if the leptonic and semileptonic channels are included, the sigma level reduces.
- 2. The $W' \to WZ$ and $Z' \to WW$ can explain the WZ and WW bumps, but the ZZ is very difficult. Spin 1 cannot go into ZZ.
- 3. Spin 0 that decays into WW and ZZ is hard to a narrow width.
- 4. Spin 2 graviton does not have enough cross sections.
- 5. The strongest constraint on Z' is the mixing. The $\sin \phi_z \lesssim 10^{-3}$ for a general Z' model. For leptophobic one, $\sin \phi_z \lesssim 8 \times 10^{-3}$.
- 6. Afterall, we can still find a sweet spot in the parameter space to fit to the $W' \to WZ$ bump and $Z' \to WW$ bump.