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jet’s mass must fall within either the W or Z mass window, consistent with the WZ, WW or ZZ final state
being studied.
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Figure 1: The distribution of the boson-tagging variables (a) subjet momentum balance py, (b) number of tracks
ntrk matched to the jet, and (c) mass mj of the groomed jet, in simulated signal and background events. The signal
and background distributions are normalised to unit area, and the last bin of each histogram includes the fraction
of events falling outside of the displayed range. Requirements are placed on the events used to ensure that the
kinematics of the signal and background events are comparable.

5 Event selection

High-mass resonances decaying to a pair of boosted vector bosons with subsequent hadronic decay are
recognised as two large-radius massive jets with large momentum, typically balanced in pT. Events in
this search must therefore first satisfy the high-pT large-radius jet trigger, which is found to select over
99% of C/A R=1.2 jets within |⌘| < 2.0 and with ungroomed pT greater than 540 GeV.

Events are removed if they contain a prompt electron candidate with ET > 20 GeV in the regions |⌘| < 1.37
or 1.52 < |⌘| < 2.47, or a prompt muon candidate with pT > 20 GeV in the region |⌘| < 2.5. This
requirement ensures that this analysis has no events in common with other diboson search analyses [21,
22]. Events with reconstructed missing transverse momentum exceeding 350 GeV are also removed, as
these are used in searches sensitive to diboson resonances with a Z boson decaying to neutrinos [47].
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, ✓, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp

= nsig

+ nbg

. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg

is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig

, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e↵ects of the systematic uncertainties described in
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di↵erence between the data and the fit in units of the uncertainty on this di↵erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W 0 with mW0 = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.
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Figure 6: Upper limits, at 95% C.L., on the section times branching ratio limits for the WZ window selection as a
function of mW0 , and for the WW window selection and the ZZ window selections as a function of mGRS . The solid
red line in each figure displays the predicted cross section for the W 0 or GRS model as a function of the resonance
mass.

the WZ channel, and an excited bulk graviton GRS to represent resonances decaying to WW and ZZ. A
W0with EGM couplings and mass between 1.3 and 1.5 TeV is excluded at 95% CL.
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Table 2: Summary of the event selection requirements in the di↵erent search channels. The selected events are
further classified into di↵erent kinematic categories as listed in Table 3.

Channel Leptons Jets Emiss
T Boson Identification

`⌫`0`0
3 leptons

– Emiss
T > 25 GeV |mll � mZ | < 20 GeV

pT > 25 GeV

``qq̄
2 leptons

2 small-R jets or 1 large-R jet –
|mll � mZ | < 25 GeV

pT > 25 GeV 70 GeV < m j j < 110 GeV
70 GeV < mJ < 110 GeV , py > 0.45

`⌫qq̄
1 lepton 2 small-R jets or 1 large-R jet

Emiss
T > 30 GeV

65 GeV < m j j < 105 GeV
pT > 25 GeV No b-jet with �R(b,W/Z) > 0.8 65 GeV < mJ < 105 GeV, py > 0.45

JJ 0 lepton 2 large-R jets, |⌘| < 2.0 Emiss
T < 350 GeV

|mW/Z � mJ | < 13 GeV
p
y > 0.45, ntrk < 30

Table 3: Summary of the event classification requirements in the di↵erent search channels. The classifications are
mutually exclusive, applying the requirements in sequence beginning with the high-pT merged, followed by the
high-pT resolved and finalizing with the low-pT resolved classification.

Channel High-pT merged High-pT resolved (high mass) Low-pT resolved (low mass)

`⌫`0`0 –
�y(W,Z) < 1.5

��(`3rd, Emiss
T ) < 1.5 ��(`3rd, Emiss

T ) > 1.5

``qq̄
pT(``) > 400 GeV pT(``) > 250 GeV pT(``) > 100 GeV

pT(J) > 400 GeV pT( j j) > 250 GeV pT( j j) > 100 GeV

`⌫qq̄

1 large-R jet, pT > 400 GeV 2 small-R jets, pT > 80 GeV 2 small-R jets, pT > 30 GeV

pT(`⌫) > 400 GeV
pT( j j) > 300 GeV pT( j j) > 100 GeV

pT(`⌫) > 300 GeV pT(`⌫) > 100 GeV

��(Emiss
T , j) > 1 (electron channel)

JJ
|�y12| < 1.2

–
m(JJ) > 1.05 TeV

19th September 2015 – 14:33 9
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2.6 �. For the bulk G⇤ assuming k/M̄Pl = 1 the observed combined lower mass limit is 810 GeV, with an367

expected limit of 790 GeV. The most stringent individual limit is from the `⌫qq̄ channel with 760 GeV.368
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Figure 2: The combined 95% CL limit on the EGM W 0 evaluated using the `⌫`0`0, ``qq̄, `⌫qq̄, and JJ channels.
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PDF uncertainty associated with the signal cross sections. The predicted cross sections for rTC
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4 MrTC � 25 GeV and that the LSTC parameter sin c = 1/3.
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graviton production cross section and the branching fraction of Gbulk ! WW (left) and Gbulk !
ZZ (right). The cross section for the production of a bulk graviton multiplied by its branching
fraction for the relevant process is shown as a red solid (dashed) curve for k/MPl = 0.5 (0.2),
respectively.

ity of the sample is not large enough to allow us to set mass limits on the bulk graviton models
with k/MPl = 0.2 or 0.5. Fig. 10 (right) presents also the local p-value of the significance of
the excesses observed in the data. No excesses with significances larger than two standard
deviations are observed.

8.2 Model-independent limits

The analysis as presented above is specific to the case of a narrow bulk graviton model, but this
is not the only extension of the SM predicting resonances decaying to vector bosons. Therefore
it is useful to allow the reinterpretation of these results in a generic model. In this section
we present the exclusion limits on the visible number of events after having introduced some
modifications to the analysis that greatly simplify its structure, at a moderate price in terms
of performance. Together with the upper limits on the number of signal events, we provide
tables with the reconstruction and identification efficiencies for vector bosons in the kinematic
acceptance of the analysis. Following the instructions detailed in Appendix A, it is possible to
estimate the number of events for a generic signal model that would be expected to be detected
in CMS with the collected integrated luminosity and to compare it with the upper limit on the
number of events.

To avoid the dependence on the assumptions in the construction of the separate categories, we
perform a simplified analysis, reducing the event classification to one single category. We do
this by adding the muon and electron channels and dropping the low-purity category (whose
sensitivity is much smaller than the high-purity category). The loss in performance is very
small over a large range of masses. The effect of dropping the LP category is visible only at
very high masses, where the upper limit on the cross section becomes 15% less stringent.

A generic model cannot restrict itself to narrow signal widths, hence we provide limits as a
function of both mass (MX) and natural width (GX) of the new resonance. The generated line
shape is parametrized with a Breit–Wigner function (BW) and its width is defined as the G
parameter of the BW. The BW line shape is convoluted with the double-sided CB introduced
in Section 6.2 for describing the detector resolution. While different values of GX are scanned,
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Figure 10: Left: observed (solid) and expected (dashed) 95% CL upper limit on the graviton
production cross section obtained with this analysis and the analysis of the all-hadronic chan-
nel [32]. The cross section for the production of a bulk graviton with k/MPl = 0.5 is shown as
a red solid curve. In region I, only the ``+V-jet channel contributes. In region II, both ``+V-jet
and `n+V-jet channels contribute. In region III, both the semi-leptonic and all-hadronic chan-
nels contribute. Right: observed p-value as a function of the nominal signal mass. Conversions
of the p-value to the number of standard deviations of a two-sided Gaussian distribution are
drawn as dashed horizontal red lines.

the parameters of the double-CB function are kept fixed to the values determined under the
narrow-width approximation. It was checked that the parametrization of the detector effects
factorizes from the natural width of the resonance and is stable as GX increases. The width
scan is done at regular steps of the relative width, GX/MX. The range of values considered
spans from the zero width approximation (as in the nominal analysis), up to GX/MX = 0.40, in
regular steps of 0.05.

We provide the efficiency as a function of the vector boson kinematic variables, as the effi-
ciency can depend significantly on the production and decay kinematic quantities of the new
resonance. The efficiencies are extracted from the bulk graviton samples generated for the
baseline analysis. The efficiencies are calculated by first preselecting simulated signal events
according to the acceptance requirements of the analysis. Thus the usage of the tables is valid
only within this kinematic region, summarized in Tables 4 and 5 of Appendix A for the `n+V-
jet and ``+V-jet analyses, respectively. For preselected events, the reconstructed V candidates
are then independently checked to pass the full analysis selection. The efficiency tables are
presented as a function of the pT and h of the V boson from the resonance decay prior to any
simulation of detector effects. Bins with fewer than 25 events generated therein are excluded
from the final tables. This choice controls the statistical uncertainty of the parametrization and
has a very limited impact on the precision of the parametrized efficiencies because they are
located in extreme regions of phase space. All the reweighting and rescaling effects (including
lepton identification and trigger efficiencies, and V-tagging scale factors) are included in the
efficiencies.

The efficiencies of the second-lepton and b-jet vetoes in the `n+V-jet analysis are found to be
independent of the diboson event kinematic in signal events. We use a constant efficiency of
91.5% for the b-jet veto and 98.3% for the second-lepton veto, resulting in a total efficiency for
the two combined vetoes of #vetoes = 90%.
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Figure 7: Expected and observed 95% CL limits on the production cross section as a function of
the resonance mass for (upper left) qW resonances, (upper right) qZ resonances, and (bottom)
WZ resonances, compared to their predicted cross sections for the corresponding benchmark
models.

tainties are removed.

7 Summary

An inclusive sample of multijet events corresponding to an integrated luminosity of 19.7 fb�1,
collected in pp collisions at

p
s = 8 TeV with the CMS detector, is used to measure the W/Z-

tagged dijet mass spectrum for the two leading jets, produced within the pseudorapidity range
|h| < 2.5 with a separation in pseudorapidity of |Dh| < 1.3. The generic multijet background
is suppressed using jet-substructure tagging techniques that identify vector bosons decaying
into qq’ pairs merged into a single jet. In particular, the invariant mass of pruned jets and the
N-subjettiness ratio t21 of each jet are used to reduce the initially overwhelming multijet back-
ground. The remaining background is estimated through a fit to smooth analytic functions.
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Figure 8: Expected and observed 95% CL limits on the production cross section as a function
of the resonance mass for (upper left) GRS ! WW resonances, (upper right) GRS ! ZZ res-
onances, (bottom left) Gbulk ! WW resonances, and (bottom right) Gbulk ! ZZ resonances,
compared to the predicted cross sections.

With no evidence for a peak on top of the smoothly falling background, lower limits are set at
the 95% confidence level on masses of excited quark resonances decaying into qW and qZ at
3.2 and 2.9 TeV, respectively. Randall–Sundrum gravitons GRS decaying into WW are excluded
up to 1.2 TeV, and W0 bosons decaying into WZ, for masses less than 1.7 TeV. For the first time
mass limits are set on W0 ! WZ and GRS ! WW in the all-jets final state. The mass limits on
q⇤ ! qW, q⇤ ! qZ, W0 ! WZ, GRS ! WW are the most stringent to date. A model with
a “bulk” graviton Gbulk that decays into WW or ZZ bosons is also studied, but no mass limits
could be set due to the small predicted cross sections.
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Figure 9: Expected and observed upper limits on the production cross sections for Z0 ! HZ
(left) and W0 ! HW (right), including all five decay categories. Branching fractions of H and
V decays have been taken into account. The theoretical predictions of the HVT model scenario
B are also shown.
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Figure 10: Expected and observed upper limits on the production cross section for V0 ! VH,
obtained by combining W0 and Z0 channels together. Branching fractions of H and V decays
have been taken into account. The theoretical prediction of the HVT model scenario B is also
shown.
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Figure 1: Distributions of the reconstructed (a) transverse mass mT
⌫⌫ j j for the ⌫⌫bb̄ final state, (b) invariant mass
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(lower) channels. The background expectation is shown after the profile likelihood fit to the data. Any overflow is
included in the last bin. The signals are shown stacked on top of the background and correspond to the benchmark
models MWT with mR1 = 700 GeV and HVT with mV 0 = 1000 GeV normalized to the expected cross sections.
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(700 < mR±1
< 1150 GeV). The dip near 500 GeV in this theory curve is due to the interference between

R1 and R2 [7]. To study the scenario in which the masses of charged and neutral resonances are the
same, a combined likelihood fit over all signal regions and the tt̄ control region is also performed. The
exclusion contours in the {mA,g̃} plane for MWT are presented in Fig. 3. For this result, both resonances
predicted by MWT, R1 and R2, are fitted simultaneously and, at each g̃, the di↵erent branching ratios

9
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A short summary of data

• ATLAS WZ → JJ channel showed a deviation larger than 3σ, but

after combining with leptonic and semileptonic channels the

deviation reduces to about 2.4σ.

• ATLAS WW,ZZ → all also reduces to less than 2σ.

• There may be something we do not fully understand the boosted

jets of W,Z bosons. Or there may be other exotic particles with

similar mass decaying into dijets only.

• The CMS saw something but not as significant in all channels.

• It is a narrow resonance.
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A brief summary of possible interpretations

• The baseline is one or more resonance(s) at around 2 TeV that

decay into WW , ZZ, and/or WZ.

• A spin-0 resonance - Higgs-like particles. Require a very large

Yukawa coupling for the first generation, or many colored scalars

running in the loop.

• A spin-1 gauge boson, typically a W ′ and Z′ of some higher

symmetry groups, or technirhos from Technicolor theories.

• A spin-2 heavy graviton, e.g., the Randall-Sundrum graviton, but

the cross section is not large enough.
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Outlines

1. Some existing constraints on W ′, Z′ models

2. W ′ → WZ

3. Z′ → WW

4. A unified model
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Existing constraints

• Electroweak precision measurements: W,W ′ mixing, Z,Z′ mixing.

• Leptonic decays of W ′ and Z′.

• Dijet production, e.g., σ(pp → W ′)×B(W ′ → jj).

• WH and ZH production that are specific to this work.
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W and W ′ mixing
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Z and Z ′ mixing

0906.2435
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Leptonic W ′ constraint
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Leptonic Z ′ constraint
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Constraint from WH, ZH production

• Due to Equivalence theorem:

Γ(W ′+ → W+Z) ≈ Γ(W ′+ → W+H)

Γ(Z′ → W+W−) ≈ Γ(Z′ → ZH)

to LO in 1/M2
W ′ .

• The mixing angle ϕw between W and W ′ comes from the

off-diagonal mass matrix entry, which also gives the tree-level

unsuppressed coupling for W ′-W -H.
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Leptophobic Z ′, W ′ model

• The required mixing angle to explain the anomaly is 10−3 − 10−2.

So the usual Z′ models cannot work. We need the leptophobic

version.

sinϕz < 8× 10−3

• We assume the right-handed neutrinos are heavy enough that

W ′+ ↛ e+νR
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The W ′ Model

• The extra W2 arises from SU(2)R. The RH fermions are arranged as

(uR, dR)
T νR, eR.

• W1 and W2 mix:(
W1

W2

)
=

(
cosϕw − sinϕw

sinϕw cosϕw

) (
W

W ′

)
.

• Vertices:

VW ′ff′ : −
gR√
2
f̄
′
γ
µ
PRf ϵµ(pW

′+ ) ,

VW ′WZ : +g cos θw sinϕw

[
(p

W
′+ − pW− )

β
g
µα

+ (pW− − pZ)
µ
g
αβ

+ (pZ − p
W

′+ )
α
g
µβ
]

×ϵµ(pW
′+ ) ϵα(pW− ) ϵβ(pZ) ,

VW ′WH : +gMW sinϕw

(
cos

2
θw

M2
W ′

M2
W

)
g
µα

ϵµ(pW
′+ ) ϵα(pW− ) ,
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We require ΓW ′/MW ′ < 0.1, thus sinϕw
<∼ 1.5× 10−2.
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The Z ′ Model

•

VZ′ff : −f̄γ
µ
(gf,rPR + gf,lPL)f ϵµ(pZ′ ) ,

VZ′WW : +g cos θw sinϕz

[
(pZ′ − pW+ )

β
g
µα

+ (pW+ − pW− )
µ
g
αβ

+ (pW− − pZ′ )
α
g
µβ
]

×ϵµ(pZ′ ) ϵα(pW+ ) ϵβ(pW− ) ,

VZ′ZH : +
g

cos θw
MZ sinϕz

(
M2

Z′

M2
Z

)
g
µα

ϵµ(pZ′ ) ϵα(pZ) .

• We set

gf,l = 0, gf,r = gRT
(2)
3,f

for leptophobic and only right-handed current T
(2)
3 .
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We require ΓZ′/MZ′ < 0.1, thus sinϕz
<∼ 1.5× 10−2. The Z-Z ′

mixing needs to be <∼ 8× 10−3.



NCTS ATM, Dec 10, 2015 16

Dijet Constraint
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Combined Constraints on W ′

1. ΓW ′/MW ′ < 0.1,

2. σ(W ′) × B(W ′ → jj) · A < 60 fb

3. σ(W ′) × B(W ′ → WZ) < 40 fb

4. σ(W ′) × B(W ′ → WH) < 7 fb
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Combined Constraints on Z ′

1. ΓZ′/MZ′ < 0.1,

2. σ(Z′) × B(Z′ → jj) · A < 60 fb

3. σ(Z′) × B(Z′ → W+W−) < 30 fb

4. σ(Z′) × B(Z′ → ZH) < 7 fb

5. σ(Z′) × B(Z′ → W+W−) < 3 fb
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To fit to the WZ Bump

WZ

• Excess events: 8–9

• Convert to

σ(W
′
).B(W

′ → WZ) ≈ 6−7 fb

• sinϕw = 3 × 10−3, gR = 0.4

• sinϕw = 1.3 × 10−2, gR =

0.2



NCTS ATM, Dec 10, 2015 20

To fit to the WW Bump

WW

• Excess events: 7–8

• Convert to

σ(W
′
).B(W

′ → WZ) ≈ 5−6 fb

But restrict it < 3 fb.

• sinϕw = 2.28 × 10−3, gR =

0.4

• sinϕw = 8 × 10−3, gR =

0.18
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A unified SU(2)1 × SU(2)2 × U(1)X model

• Symmetry breaking pattern:

SU(2)1 × SU(2)2 × U(1)X
TeV−→ SU(2)L × U(1)Y

EW−→ U(1)em

• The SM hypercharge convention is fixed by

Q = T
(1)
3 +

Y

2
= T

(1)
3 + T

(2)
3 +

YX

2

• Note (uR, dR)
T , νR, eR:

f uR dR νR eR

T
(2)
3 + 1

2 − 1
2 0 0

YX
2 + 1

6 + 1
6 0 −1

• The first step of symmetry breaking at TeV scale can occur via a
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Higgs doublet Φ:

Φ =

 ϕ+

ϕ0

 , ⟨Φ⟩ = 1√
2

 0

u

 .

• The gauge field B′
µ of the U(1)X and the W

′3
µ of the SU(2)2 are

rotated by angle ϕ into the Bµ of the U(1)Y and the Z′ boson: B′
µ

W
′3
µ

 =

 cosϕ − sinϕ

sinϕ cosϕ

  Bµ

Z
′
µ

 .

• We require for Bµ the same as the SM hypercharge boson:

gX cosϕ = g1, g′2 sinϕ = g1, tanϕ =
gX
g′2

,
YX

2
+ T

(2)
3 =

Y

2
.

• The W ′ and Z′ boson masses are

M2
W ′ =

e2v2

4 cos2 θw sin2 ϕ
(x+1), M2

Z′ =
e2v2

4 cos2 θw sin2 ϕ cos2 ϕ
(x+cos4 ϕ),

where x ≡ u2/v2 is very large. If cosϕ ≈ 1, the MZ′ ≈ MW ′
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• In limit x large: the LH and RH couplings of the W ′ becomes

gW
′ff ′

L

gW
′ff ′

R

−→ 1

x
, with gW

′ff ′

R =
g′2√
2
,

• In limit x large and sinϕ small:

gf,l −→ g′2
cosϕ

(T
(1)
3 −Q) sin2 ϕ ≈ 0

gf=ℓ,r −→ g′2
cosϕ

(−Q sin2 ϕ) ≈ 0

gf=q,r −→ g′2
cosϕ

(T
(2)
3 −Q sin2 ϕ) ≈ g′2T

(2)
3
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Conclusions

1. The ATLAS diboson anomaly in WZ is amore than 3σ in the JJ

channel. However, if the leptonic and semileptonic channels are

included, the sigma level reduces.

2. Thw W ′ → WZ and Z′ → WW can explain the WZ and WW

bumps, but the ZZ is very difficult. Spin 1 cannot go into ZZ.

3. Spin 0 that decays into WW and ZZ is hard to a narrow width.

4. Spin 2 graviton does not have enough cross sections.

5. The strongest constraint on Z′ is the mixing. The sinϕz
<∼ 10−3 for

a general Z′ model. For leptophobic one, sinϕz
<∼ 8× 10−3.

6. Afterall, we can still find a sweet spot in the parameter space to fit

to the W ′ → WZ bump and Z′ → WW bump.
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