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Based on the series of works

on the 3-point functions in the prototypical duality between

N = 4 SYM in 4D and string in AdS5 × S5

¨ arXiv:1512.????? (KKN) to appear soon

weak and strong coupling

¨ arXiv:1205.6060 (KK) strong coupling

¨ arXiv:1312.3727(KK) strong coupling

¨ arXiv:1410.8533(KKN) weak coupling

¨ arXiv:1506.03203(KKN) weak coupling

KK = Yoichi Kazama and Shota Komatsu (Perimeter)

KKN = Yoichi Kazama, Shota Komatsu and Takuya Nishimura (U. of Tokyo)

Proper explanation requires much more time than is available today.

So I will just focus on the essence of the story.

weak-strong-2



1 Introduction and motivation

• Discovery of Higgs ⇒ establishment of the standard model (at least

as an accurate effective theory)

• One of the most profound remaining problems in high energy physics

in years to come is undoubtedly that of physics at the Planck scale, which

necessarily includes

Quantum gravity ⊃ • true nature of quantum black

holes

• problem of observer dependence

• role of Planck scale

• necessarily a string theory ?

etc. etc.

• Unfortunately not much reliable hints exist so far.
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¨ AdS/CFT e.g.

N = 4 SYM theory in 4D

m
string theory in AdS5 × S5

= a concrete possibility that may reveal the crucial nature of quantum

gravity through the study of gauge theories which are well-defined.

¨ Enormous investigations have been already performed but not re-

vealing what we want:

• Only the computations and the comparisons of results on the two sides (im-

pressive as they may be)

• Various “applications” ( in condensed matter physics and high energy QCD,

etc) often based on rather unwarrantable foundations.

¨ What we crave for is the understanding of the dynamical mechanism

of this weak/strong duality so that we may get new firmer hints for quatum

gravity problems.
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With this motivation deep in mind, I have been studying in the past few years

the simplest basic dynamical objects

= the non-BPS three-point functions

Recent important development:

¨ Hexagon form factor approach for computation of certain three-point

functions at all finite coupling (B. Basso, S. Komatsu and P. Vieira, 1505.06745)

C123 =
⇠

Z

(momentum of )

mirror part icles

where we glue

X

part it ions

of physical

rapidit ies

H ⇥H ⇥H H

ident ify

ident ify

( c©Basso,Komatsu,Vieira)
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Characteristic features of this work:

? Strong assumption: integrability holds to all orders,

which is an unproven miracle.

? The three-point structure constant C123 is computed

from several integrability axioms, where neither SYM nor

string theory is visible.

Our series of works can be said to be complementary to such an

approach:

¨ Our results (so far) are at the tree (or partly 1-loop) level for SYM at weak

coupling and at the semi-classical level for string theory at strong coupling.

¨ However, except for small assumptions, the results are based on the

integrability properties which have been firmly established.
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¨ Both SYM and string theory are clearly visible and our emphasis will be on

the observation of the

structure common to
¨ SYM (weak coupling)

and

¨ string theories (strong coupling)

This should help reveal the mechanism of strong/weak AdS/CFTduality.

¨ In particular, we compare the semiclassical behaviors, which are physi-

cally most intresting and suggestive.

We will concentrate on the most well-studied prototypical duality

N = 4 SYM ⇔ String theory on AdS5 × S5

primarily for the “SU(2) sector ”
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Plan of the talk

1. Introduction and motivation

2. A “lightening” review of the weak coupling computation of the

3-point functions in the SU(2) sector

3. A “short” review of the essential ingredients for strong coupling

computation using string theory in AdS space

4. New weak coupling technology for more general 3-point functions

in SYM: Wick-contraction as singlet projection

5. Monodromy relation: A cognate integrability structure at weak

and strong coupling

6. New computation of semiclassical three-point functions

at weak coupling by strong coupling technology

with the use of the Landau-Lifshitz formulation

7. Summary and future problems
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2 A lightening review of the weak coupling computation

of the 3-point functions in the SU(2) sector

¨ Minahan and Zarembo made the following remarkable discovery in N = 4

SYM theory (2002):

1-loop dilatation operator or renormalization mixing matrix for the gauge-

invariant composite operators in the so-called “SU(2)” sector1 takes the form

of the Hamiltonian of the XXX1/2 Heisenberg spin chain with the identi-

fication ↑ Z = Φ1 + iΦ2 (pseudo) vacuum component

↓ X = Φ3 + iΦ4 excitation= magnon

Example: “4-magnon” configuration:

∼ Tr (ZZZ · · · XZZ · · · XZZ · · · XZ · · · X)+ · · ·
mixed under renormalization with other similar configurations

1Actually, Minahan and Zarembo discussed the case of SO(6) sector ⊃ SU(2) sector.
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Mixing operator ∼ Hamiltonian of the periodic Heisenberg spin 1/2 chain of

length L

H= −J
L∑

n=1

~Sn · ~Sn+1 , ~S =
1

2
~σ

2 Diagonalization of H via algebraic Bethe ansatz method:

Minimal ingredients and results:

Ln(u)=

(
u + iS3

n iS−
n

iS+
n u − iS3

n

)
= Lax matrix at site n

u = magnon “rapidity”(momentum) or the spectral parameter

=
1

2
cot

p

2
, or eip =

u + i
2

u − i
2
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Ω(u)= L1(u)L2(u) · · · LL(u) =

(
A(u) B(u)

C(u) D(u)

)

= monodromy matrix

B(u) ' “creation operator” , C(u) ' “annihilation operator”

T̂ (u)= Tr Ω(u) = transfer matrix =
L∑

i=0

T̂nun

{T̂n} = mutually commuting and hence are conserved charges

since H itself can be constructed out of them

M -magnon eigenstates of T̂ (u) (and hence of H)

T̂ (u)
M∏

i=1

B(ui)|0〉 = T (u)
M∏

i=1

B(ui)|0〉

provided the following Bethe equations for the rapidities are satisfied
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Bethe equations

(
uk + i

2

uk − i
2

)L

=
M∏

i=1,i6=k

uk − ui + i

uk − ui − i
, k = 1, 2, . . . , M

⇔ eipkL=
M∏

i=1,i6=k

S(uk, ui) , S(uk, ui) = two-particle S-matrix

Expresses consistency of the phase for the magnon with momentum

pk as it goes around the spin-chain once, hitting other magnons.

Hereafter, all the composite operators (spin chains) are taken to be

eigenstates of H (i.e. with definite conformal dimension).

The corresponding states
∏M

i=1 B(ui)|0〉 are called on-shell Bethe states.
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2 3-point functions in the SU(2) sector:

Actually to construct 3-point functions in the “SU(2)” sector, we need to include

all the single trace operators made out of the 4 scalars Φi ( among the 6 scalars

present in N = 4 SYM)

Z ≡ Φ1 + iΦ2 , Z̄ = Φ1 − iΦ2 ,

X ≡ Φ3 + iΦ4 , X̄ ≡ Φ3 − iΦ4 .

There is an SO(4)=SU(2)L×SU(2)R symmetry rotating the 4 scalars, be-

coming important later

The choice of operators to form a proper 3-point function is essentially unique2

O1 : (Z, X) , O2 : (Z̄, X̄) , O3 : (Z, X̄)

2This was generalized in our work arXiv:1410.8533.
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¨ Lines connecting the fields forming the op-

erators represent the Wick contraction

in N = 4 SYM at the tree level, like

X(x1) X̄(x2) ∝ 1
|x1−x2|2 , etc.

¨ The lines representing the operators are

actually closed chains

¨ Each operator Oi actually consists

of superpositions of many terms due to

mixing.

2 Systematic “tailoring” procedure for constructing 3-point functions

Basic idea due to [Escobedo, Gromov, Sever, Vieira (2010)]3:

3-point function can be constructed by cutting, flipping and sewing.

3Earlier works include: Okuyama-Tsent, Roiban-Volovich, Alday-David-Gava-Narain,etc
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¨ Cutting

Many ways of cutting ⇒ sum

¨ Flipping

• We should contract the left part of O1 with

the right part of O2 and so on.

• One wishes to express the Wick-contraction

as an operation in the spin-chain Hibert space.

• So one should flip the order of, say, the right

part of the operator and make it into a “bra”

state.
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¨ After some analysis, the effect of flipping operation F◦ turns out to

be remarkably simple:

F ◦
(

M∏

i=1

B(ui)|0〉
)

= 〈0|
M∏

i=1

C(ui)

¨ Sewing

Finally, we can contract (sew) the appropriate left and the right parts and

express them in terms of spin-chain “inner products”

〈v|u〉 ≡ 〈↑L |
M∏

i=1

C(vi)
M∏

j=1

B(uj)| ↑L〉

When the set {vi} or {ui} satisfies the Bethe equations (i.e. on-shell),
this is known to be expressible in terms of the M ×M Slavnov determinant.
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For example, if {ui} are on-shell,

〈v|u〉 = ∆−1(v)∆−1(u)
M∏

i=1

Q+(vi)Q
−(ui)

× det


 1

vi − ui




M∏

k 6=j

(vi − uk − i) −
M∏

k 6=j

(vi − uk + i)
L∏

l=1

vi − i
2

vi + i
2







∆(x) = Vandermonde determinant for M variables {x} = (x1, . . . , xM)

Q±(u) ≡ (u ± i

2
)L

Explicit and exact but appears complicated for large L and M .

weak-strong-17



Result of tailoring:

With a clever trick, the result can expressed in terms of the 〈off-shell|on-shell〉
products: (z = {z1, z2, . . . , zL} with zi = i/2 )

C
(0)
123=

√
L1L2L3

〈v ∪ z|u〉L1〈z|w〉L3√
〈u|u〉〈v|v〉〈w|w〉

This can be expressed in terms of the Slavnov determinant.

Semiclassical expression

Computing the semiclassical limit (L, M → ∞ with M/L =fixed) of C
(0)
123

is quite non-trivial . Nevertheless, with a lot of effort, people4 have succeeded

in obtaining the following remarkably compact expression for the log of the

structure constant in this limit

4Gromov, Sever and Vieira 1111; More general non-BPS case: Kostov 1203
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ln C
(0)
123

'
∮

Au∪Av

du

2π
Li2(e

ipu+ipv+iL3/(2u))+

∮

Aw

du

2π
Li2(e

ipw+i(L3−L1)/(2u))

−1

2

∮

Au

du

2π
Li2(e

2ipu) − 1

2

∮

Av

du

2π
Li2(e

2ipv)−1

2

∮

Aw

du

2π
Li2(e

2ipw)

where pu(u) and pv(u) are called “quasimomenta” defined here by

pu(u) =
M∑

i=1

1

u − ui

− L

2u
, pv(u) =

M∑

i=1

1

u − vi

− L

2u

Li2(z) is the dilog function

Li2(z)=
∞∑

n=1

zn

n2

The contours Au, Av, Aw encircle the “cut”

formed by the on-shell Bethe roots corre-

sponding to u, v, w counter-clockwise.

Au

Cut formed by on-shell Bethe roots {ui}
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3 A short review of the semiclassical strong coupling

computation using string theory in AdS space

3.1 Structure of semiclassical 3-point functions at strong coupling

Basic structure in the saddle-point approximation

¶ ³

G(x1, x2, x3) = e−S[X∗]
3∏

i=1

Vi[X∗; zi, xi, Qi]

= Action part × Vertex operator part

S ∼ log Vi[Qi] ∼ O(
√

λ), large action, large charge

λ = large ’t Hooft coupling

µ ´
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V1(x1) V2(x2) V3(x3) X∗ = solution to the saddle-point equation

δ

δX

(
−S[X] +

∑

i

log Vi[X]

) ∣∣∣∣
X∗

= 0

xi = Points on the boundary of AdS

• Vi(xi) = (1, 1) conformal primary vertex operator.

Serious obstacles

¨ No systematic method to construct proper Vi(xi) of interest in

curved spacetime.

¨ No three-pronged saddle solutions in curved spacetime are known.
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So we know almost nothing !

Nontheless, we have been able to overcome these difficulties by exploiting

the classical integrability of the string in AdS? × S∗ and certain

analyticity properties.

3.2 String in EAdS3× S3 and its classical integrability

3.2.1 Spacetime carrying the same symmetries as those of the SU(2)

sector of SYM

We want to consider the string background having the same symmetry

structure as the SU(2) sector of SYM: This is given by

EAdS3 × S3 (⊂ AdS5 × S5)
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Embedding string coordinates with constraints,

expressing the relevant backgrounds

AdS5 : XMXM ≡ XMηMNXN = −1 , M, N = −1, 0, 1, 2, 3, 4 ,

ηMN = diag (−1, 1, 1, 1, 1, 1) ,

EAdS3 : XµXµ ≡ XµηµνX
ν = −1 , µ, ν = −1, 1, 2, 4 ,

ηµν = diag (−1, 1, 1, 1) ,

S3 : Y IYI ≡ Y IδIJY J = 1 , I, J = 1, 2, 3, 4 .

Action of the string in EAdS3 × S3

S =

√
λ

π

∫
d2z

(
∂Xµ∂̄Xµ + Λ(XµXµ + 1) + ∂Y I∂̄YI + Λ̃(Y IYI − 1)

)

string tension =

√
λ

2π
=

1

2πα′

’t Hooft coupling = λ = g2
Y MN =

1

(α′)2
, in the unit RAdS5 = RS5 = 1
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Eq. of motion are non-linear after eliminating the Lagrange multipliers

∂∂̄Xµ − (∂Xν∂̄Xν)X
µ = 0 ,

∂∂̄Y I + (∂Y J∂̄YJ)Y I = 0 .

Two sectors are connected solely by the Virasoro constraints for the

total system

TAdS(z) + TS(z)= 0 , T̄AdS(z̄) + T̄S(z̄) = 0 ,

TAdS(z) = ∂Xµ∂Xµ , TS(z) = ∂Y I∂YI ,

T̄AdS(z̄) = ∂̄Xµ∂̄Xµ , T̄S(z̄) = ∂̄Y I∂̄YI .
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3.2.2 Formulations to deal with the string equations using the the

classical integrability of the system

For simplicity, we will focus on the string on the S3 part.
(EAdS part is quite similar.)

There are 2 formulations5 to deal with a string in such a background

using classical integrability.

¨ Sigma model formulation: Uses variables covariant under the global

symmetry group G

¨ Pohlmeyer reduction: Uses variables invariant under G

• Although we actually need both formulations, we will only sketch the Pohlmeyer

reduction, relevant for the computation of the action part.

5They are actually related by a (field-dependent) gauge transformation. (Y. Kazama and S.

Komatsu, arXiv:1312.3727)
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2 Method of Pohlmeyer reduction for a string in S3:

The method of Pohlomeyer reduction uses the “moving frame” made out

of the string coordinate Y (≡ ~Y = (Y 1, Y 2, Y 3, Y 4)) and then constructs

the connections (gauge fields) invariant under G.

Moving frame qi

Basic frame of 4-component fields qi are defined as

q1 ≡ Y , q2 ≡ a∂Y + b∂̄Y , q3 ≡ c∂Y + d∂̄Y , q4 ≡ N

N is made out of Y, ∂Y, ∂̄Y such that it is orthogonal to q1, q2, q3:

N · Y = N · ∂Y = N · ∂̄Y = 0

From these definitions it is immediate that

q2
1 = 1 , q1 · q2 = q1 · q3 = 0

Further one can impose the simple conditions

q2 · q3 = −2 , q2
2 = q2

3 = 0
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They provide conditions for the coefficients a ∼ d.

Further it is convenient to define SO(4)-invariant quantity γ through an expres-

sion of the kinetic term:

∂Y · ∂̄Y =
√

T T̄ cos 2γ

Then one can solve a, b, c, d in terms of T, T̄ and γ and obtain q2 and q3 in

terms of them.

Closure under differentiation

It is easy to check that the derivatives of qi’s are expressed in terms of qi

again. This gives the compact closed equations
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Assemble qi’s in the form

W =
1

2

(
q1 + iq4 q2

q3 q1 − iq4

)

Then we get the W equations

∂W + BL
z W + W (BR

z )t = 0 , ∂̄W + BL
z̄ W + W (BR

z̄ )t = 0

BL
z , BR

z and BL
z̄ , BR

z̄ are called connections and are given by

BL
z ≡


 −i∂γ

2
ρeiγ

√
T sin 2γ

−
√

T
2

e−iγ

ρe−iγ
√

T sin 2γ
−

√
T
2

eiγ i∂γ
2




BR
z ≡




i∂γ
2

− ρe−iγ
√

T sin 2γ
−

√
T
2

eiγ

− ρeiγ
√

T sin 2γ
−

√
T
2

e−iγ −i∂γ
2



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BL
z̄ ≡




i∂̄γ
2

ρ̃e−iγ
√

T̄ sin 2γ
+

√
T̄
2

eiγ

ρ̃eiγ
√

T̄ sin 2γ
+

√
T̄
2

e−iγ −i∂̄γ
2




BR
z̄ ≡


 −i∂̄γ

2
− ρ̃eiγ

√
T̄ sin 2γ

+
√

T̄
2

e−iγ

− ρ̃e−iγ
√

T̄ sin 2γ
+

√
T̄
2

eiγ i∂̄γ
2




where we have introduced some SO(4) invariant quantities ρ and ρ̃.

¨ Now for the connections BL and BR, the W equations imply the

flatness (zero-curvature) conditions ([∂µ +Aµ, ∂ν +Aν] = Fµν = 0)

∴ Original equations of motion can be written as

[∂ + BL
z , ∂̄ + BL

z̄ ] = 0 , [∂ + BR
z , ∂̄ + BR

z̄ ] = 0

¨ The flatness conditions still hold with an introduction of

a complex spectral parameter ζ and leads to the Lax equation:
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[∂ + Bz(ζ), ∂̄ + Bz̄(ζ)] = 0

Bz(ζ) ≡ Φz

ζ
+ Az , Bz̄(ζ) ≡ ζΦz̄ + Az̄

with

Φz ≡
(

0 −
√

T
2

e−iγ

−
√

T
2

eiγ 0

)
, Φz̄ ≡

(
0

√
T̄
2

eiγ

√
T̄
2

e−iγ 0

)

Az ≡

 −i∂γ

2
ρeiγ

√
T sin 2γ

ρe−iγ
√

T sin 2γ

i∂γ
2


 , Az̄ ≡




i∂̄γ
2

ρ̃e−iγ
√

T̄ sin 2γ
ρ̃eiγ

√
T̄ sin 2γ

−i∂̄γ
2




¨ Lax equation, as it is an extension of the eq. of motion, is non-linear.

To analyze it, one introduces the auxiliary linear problem (ALP) in the

following way.

(∂ + Bz(ζ)) ψ̂ = 0 ,
(
∂̄ + Bz̄(ζ)

)
ψ̂ = 0
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¨ Existence of such ψ̂ ⇔ Lax equation.

¨ ψ̂ ⇒ Reconstuction of string solutions

Remark: Often, instead of ζ, one uses x as the spectral parameter

ζ =
1 − x

1 + x
, or x =

1 − ζ

1 + ζ
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Monodromy matrix

Zero-curvature condition is extremely important for integrability.

Let J(x) = Jτ(x)dτ + Jσ(x)dσ be a connection 1-form.

Monodromy matrix is defined by

Ω(x) = P exp

(
−

∮

γ

J(x)

)

= P exp

(
−

∫ 2π

0

dσ′Jσ(x; σ′, τ )

)
τ

σ

γ(σ, τ )

(σ, τ )

Zero-curvature condition ⇒ monodromy matrix Ω(x) is independent

of the contour γ and hence actually τ -independent:

¨ Expanding Ω(x) in powers of x ⇒ ∞ number of conserved charges .
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quasimomentum

By diagonalizing Ω(x), one defines quasimomentum p(x)

u(x)Ω(x)u−1(x) =

(
eip(x) 0

0 e−ip(x)

)

spectral curve' Riemann surface in x (with singularities)

x can be thought of as parametrizing a spectral curve Γ defined by the

characteristic equation

det (y1 − Ω(x)) = 1

In the present case, Ω(x) is 2 × 2, and hence Γ is a

hyperelliptic curve y2 = f(x)
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3.3 Computation of the action part of the 3-point function

Recall the structure of the 3-point function we want to compute

〈V1(x1)V2(x2)V3(x3)〉

= e−S[X∗]
3∏

i=1

Vi[X∗; zi, xi, Qi]

= Action part × Vertex operator part

V1(x1) V2(x2) V3(x3)
3.3.1 The structure of the action part of S3

Write the structure of the 3-point function as

〈V1V2V3〉 = exp (FS3 + FEAdS3)

We will first focus on the action part of FS3.

FS3 = Faction + Fvertex ,
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Action part is invariant under the global symmetry transformation.

⇒ Natural to make use of the Pohlmeyer reduction. We can then write the

action as

SS3 =

√
λ

π

∫

Σ\{εi}
d2z∂YI∂̄YI =

√
λ

π

∫

Σ\{εi}
d2z

√
T T̄ cos 2γ

where T (z) ≡ TAdS(z) = −TS(z)

Σ\{εi} = a two-sphere with a small disk

of radius εi cut out at each vertex oper-

ator insertion point zi (for regularization

purpose).

z1

z2
z3

radius = εi

Σ\{εi}
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To simplify the integral, introduce the following closed 1-forms:

$ ≡
√

T (z)dz

η ≡ −
√

T̄ (z̄) cos 2γdz̄ +
2√
T

(
−(∂γ)2 +

ρ2

T

)
dz

︸ ︷︷ ︸
added to make dη = 0

d$ = dη = 0

Then using the closedness of η, we can write

SS3 =
i
√

λ

2π

∫

Σ\{εi}
$ ∧ η =

i
√

λ

2π

∫

Σ\{εi}
d(Πη)

where Π is the integral of $:

Π(z) =

∫ z

z0

$(z′)dz′

¨ Now we can use Stokes theorem to rewrite the action as a

contour integral along a boundary ∂Σ̃ of a certain region Σ̃.
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It turns out that there is a √ branch cut (as

well as log branch cuts) ⇒ Σ̃ =two-sheeted

Riemann surface∫

Σ̃

$ ∧ η = Local + Double + Global + Extra ,

Local =
∑

i

∮

Ci

$

∮

Ci

η +
∑

i<j

(∮

Ci

$

∮

Cj

η − ($ ↔ η)
)
,

Double = −2
∑

i

∮

Ci

η

∫ z

z∗
i

$ .

Global =
(∮

C1+C2̄−C3

$

∫

`21

η +

∮

C2̄+C3−C1

$

∫

`23

η +

∮

C3+C1−C2̄

$

∫

`3̄1

η
)

− ($ ↔ η) .

Extra =
∑

k

∮

Dk

Πη (integrals around the zeros of
√

T )
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¨ Almost all the integrals can be easily evaluated or only give phases, which we

ignore.

¨ But the crucial line integrals
∫

η`ij
in Global involve the contours

intertwining the three punctures and hence give the essential infor-

mation of the 3-point function. But they are impossible to compute

directly !

3.3.2 A sketch of the logic of how
∫

η`ij
can be computed

¨ Study the solutions of the ALP(auxiliary linear problem) for the Pohlmeyer

reduction formalism.(
∂ +

1

ζ
Φz + Az

)
ψ̂ = 0 ,

(
∂̄ + ζΦz̄ + Az̄

)
ψ̂ = 0

and make “WKB” expansion around ζ = 0 at each zi = vertex

insertion point
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⇒ The leading behaviors near ζ = 0

ψ̂d
1 ∼

(
0

1

)
exp

[
1

2ζ

∫ z

z0

$

]
, ψ̂d

2 ∼
(

1

0

)
exp

[−1

2ζ

∫ z

z0

$

]

Denote the solutions of ALP around zi which are eigen-

functions of Ωi with eigenvalues ±1 to be i±

One of the i± is exponentially small and the other is big.

Only the small solution is unambiguous. (big’ = big + a × small)

¨ Now we define the skew-symmetric product called

“Wronskian” between two-component vectors φ and χ as

〈φ, χ〉 ≡ φαεαβχβ

This will play a central role in what follows.
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¨ After a tedious computations, we find that the Wronskians between small

solutions can be expressed as

For Re ζ > 0 , (〈i+, j+〉 is small)

〈2+ , 1+〉 = exp (−S2→1) , 〈2+ , 3+〉 = exp (−S2→3)

〈3+ , 1+〉 = exp (−S3̂→1)

For Re ζ < 0 , (〈i−, j−〉 is small)

〈2− , 1−〉 = exp (S2→1) , 〈2− , 3−〉 = exp (S2→3)

〈1− , 3−〉 = exp (S3̂→1)

where

Si→j =
1

2ζ

∫

`ij

$ +

∫

`ij

α +
ζ

2

∫

`ij

η + O(ζ2)
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The quantity
∫

`ij
η we needed for computing the action part appeared

in the expressions of these Wronskians of small solutions !

Thus, the crucial task for the evaluation of the action part will be

to compute the Wronskians 〈i±, j±〉
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3.4 Contribution from the vertex operators

3.4.1 Problems

Recall the serious problems

¨ No proper Vi(xi)’s are known

¨ No saddle point solution with three prongs are known

V1(x1) V2(x2) V3(x3)
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3.4.2 The way out: State-operator correspondence

In the saddle point approximation

V [q∗(z = 0)]e−Sq∗(τ<τ0) = Ψ[q∗(τ0, σ)]

z = e�+i� � = �0	[q�(�0; �)℄V (0)e�S(�<�0)
q∗(τ, σ) = saddle point configuration in some canonical variable q(τ, σ).

If we can employ the action-angle variables (Sn, φn), the wave func-

tion can be expressed simply as (with Virasoro constraints used)

Ψ[{φ}]= exp

(
i
∑

n

Snφn

)
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♠ It is extremely hard to construct action-angle variables for non-

linear systems.

? But for integrable systems, Sklyanin’s method allows one to construct

action-angle variables

3.5 Construction of the action-angle variables by Sklyanin’s “magic

recipe”

Consider the normalized eigenvector h(x; τ ) of Ω(x; τ, σ = 0)

(?) Ω(x; τ, σ = 0)h(x; τ ) = eip̂(x)h(x; τ )

n · h = 1 , n =

(
n1

n2

)
= normalization vector , h =

(
h1

h2

)
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Important theorem (on a Riemann surface Γ of genus g)

h(x; τ ) has g+1 poles, as a function of x.

Their positions on Γ = (γ1, γ2, . . . , γg, γ∞)(τ )

γi(τ ) depends on n

¨ Sklyanin6 explicitly constructed canonical variables associated to

each pole γi of h(x; τ )

Canonical pairs “(q, p)”∼ (z(γi), p̂(γi))

{√
λ

4πi
p̂(γj) , z(γi)

}

P

= δij

{z(γi) , z(γj)}P = {p̂(γi) , p̂(γj)}P = 0

p̂ = quasimomentum

z = x + 1
x

= Zhukovski variable

6Applied to string in R × S3 by Dorey and Vicedo. Applicable to Euclidean AdS3 case as

well.
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Then, the conserved action variables Si
can be defined in the usual way as ∼ ∮

pdq

Si ≡ i
√

λ

8π2

∫

ai

p̂(x)dz

= “filling fraction”

(i = 1, 2, . . . , g, ∞)

ai

aj

a∞

∞

Angle variables φi conjugate to Si:

Generating function F (Si , z(γi)) for the canonical transformation

(∗)
∂F

∂z(γi)
= −

√
λ

4πi
p̂(γi) , (∗∗)

∂F

∂Si

= φi

They can be solved and we get the angle variable φi conjugate to Si in

the nice form

weak-strong-46



φi(τ ) =
∂F

∂Si
= 2π

∑

k

∫ γk(τ )

x0

ωi = Abel map

ωi = normalized holomorphic differential ,

∮

aj

ωi = δij

3.6 Construction of the wave functions corresponding to the vertex

operators

Now that we have the action and angle variables, we can construct the wave

function essentially as ∼ exp(iSiφi) .
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¨ We need to take into account several points, which require rather non-trivial

considerations. (We skip all the details.)

¨ Normalization with respect to 2-point function: ⇒ the difference

of angle variables is important

∆φ = φ (3-point) − φ(2-point)

¨ The angle variables that actually contribute to the wave functions are

∆φR and ∆φL, conjugate to the global SU(2) charges R and L.

¨ Theorem: The vertex operator corresponding to the SYM on-shell Bethe

state is a highest weight state of the global SU(2)L and SU(2)R.

⇒
SU(2) property of the vertex operators can be characterized by 2-

component “polarization spinors” n (for R) and ñ (for L)

which conincide with normalization vectors.
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After a considerable amount of analysis, we obtain

ΨS3

R = exp

(
−i

3∑

i=1

(−Ri) ∆φR,i

)
=

∏

{i,j,k}

(
〈ni, nj〉

〈i−, j−〉∣∣∞

)Ri+Rj−Rk

ΨS3

L = exp

(
−i

3∑

i=1

Li∆φL,i

)
=

∏

{i,j,k}

(
〈ñi, ñj〉

〈i+, j+〉∣∣
0

)Li+Lj−Lk

Again Wronskians are the building blocks!
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3.7 Evaluation of the Wronskians 〈i±, j±〉
3.7.1 Relations following from the global monodromy condition:

Ωi = local monodromy for ALP equations around zi

Crucial ingredient:

Monodromy relation Ω1Ω2Ω3 = 1 ⇒ Global information

⇔ Monodromy around all the singularities at the positions zi of the

vertex operators on the worldsheet must be trivial7.

Ω1

Ω2

Ω3

7This was first utilzed for AdS2 case by Janik and Weresczenski.
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Consequence of the monodromy relation

Take Ω1-diagonal basis: Ω1 =

(
eip1 0

0 e−ip1

)

Ω2,3, which are not diagonal in this basis, can be expressed in terms

of the Wronskians 〈i±, j±〉 and p2(u) and p3(u).

∵ Set of eignevectors j± at zj form a complete basis

⇒ One can expand i± in terms of j±: i± = 〈i±, j−〉j+ − 〈i±, j+〉j−
⇒ Expression of Ω2 in the Ω1-diagonal basis

Ω2 = M12

(
eip2 0

0 e−ip2

)
M21 , Mij =

(
−〈i− , j+〉 −〈i− , j−〉
〈i+ , j+〉 〈i+ , j−〉

)

Substituting such forms into the relation Ω1Ω2Ω3 = 1, we get the crucial

equations expressing the product of Wronskians in terms of the quasi-

momenta
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〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2+p3

2
sin p1+p2−p3

2

sin p1 sin p2

,

〈2+ , 3+〉〈2− , 3−〉 =
sin p1+p2+p3

2
sin −p1+p2+p3

2

sin p2 sin p3

,

〈3+ , 1+〉〈3− , 1−〉 =
sin p1+p2+p3

2
sin p1−p2+p3

2

sin p3 sin p1

,

〈1+ , 2−〉〈1− , 2+〉 =
sin p1−p2+p3

2
sin p1−p2−p3

2

sin p1 sin p2

,

〈2+ , 3−〉〈2− , 3+〉 =
sin p1+p2−p3

2
sin −p1+p2−p3

2

sin p2 sin p3

,

〈3+ , 1−〉〈3− , 1+〉 =
sin −p1+p2+p3

2
sin −p1−p2+p3

2

sin p3 sin p1

.

Major task = Extract individual Wronskian from the product
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3.7.2 Extraction of individual Wronskian from analytic properties

Consider one of the relations

〈1+ , 2+〉〈1− , 2−〉 =
sin p1+p2+p3

2
sin p1+p2−p3

2

sin p1 sin p2

analyticity structure

RHS

¨ poles when sin p1 = 0 or sin p2 = 0

¨ zeros when sin p1+p2+p3
2

= 0 or sin p1+p2−p3
2

= 0

LHS : Study which factor on the LHS has a pole or a zero under

what condition. (This requires a fairly delicate analysis. )

¨ We need to make some natural global analyticity assumption to proceed:

We assume: No singularity for the string coordinate on the world-

sheet except at the positions of the vertex operators.
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⇓

¨ Rules to tell when which of the Wronskian factor

has a pole or a zero.

Wiener-Hopf decomposition to project out individual Wronskian

F (x) = a function which decreases sufficiently fast at ∞.

Suppose F (x) can be decomposed as

F (x)= F+(x) + F−(x) , F±(x)= analytic in H±

Wiener-Hopf decomposition formla gives the integral representation of F±(x) in

terms of the function F (x). It reads

F+(x) =

∫

Γ+

dx′

2πi
K(x′; x)F (x′) (Im x > 0)

F−(x) = −
∫

Γ−

dx′

2πi
K(x′; x)F (x′) (Im x < 0)

kernel K(x′; x) =
1

x′ − x
Γ+

Γ−
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2 Some remarks on the Wiener-Hopf integral:

¨ For the product F (x) = F+(x)F−(x),

take the log ln F (x) = ln F+(x) + ln F−(x) and use the decomposition.

¨ A caution: pi(x) is defined on a two-sheeted Riemann surface.

Thus we must modify the simple kernel 1/(x′ −x), such that the pole

occurs only when x′ and x coincide on the same sheet. This is achieved

by the kernel

K̂i(x
′; x) ≡ 1

2(x′ − x)




√
(x − ui)(x − ūi)

(x′ − ui)(x′ − ūi)
+ 1




u

ū

cut

¨ Integration contour must be chosen so that it divides the regions with

different analyticity.

weak-strong-55



3.8 Remark: Contribution from the EAdS3 part

Since the logic is very much the same as for the S3 case, we just list the different

features.

¨ The right and the left polarization spinors n̂, ˆ̃n specifying the vertex operators

are related in this case to their positions (x1, x2) on the boundary of EAdS3

x ≡ x1 + ix2 , x̄ ≡ x1 − ix2

n̂ =

(
1

x

)
, ˆ̃n =

(
x̄

1

)

⇒ The wave function part, containing the Wronskians 〈n̂i, n̂j〉 etc.,

produces precisely the correct coordinate dependence of the 3-point

function with non-zero spins
∏

{i,j,k}
(xi − xj)

−(Ri+Rj−Rk)(x̄i − x̄j)
−(Li+Lj−Lk)
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¨ Various quantities of EAdS3, such as the energy-momentum tensor,

have opposite signs compared to the S3 case. ⇒ Contributions to

the structure constant ln C123 come with opposite signs.

3.9 Final answer for the 3-point function at strong coupling

〈V1V2V3〉 =
1

N

C123

|x1 − x2|∆1+∆2−∆3|x2 − x3|∆2+∆3−∆1|x3 − x1|∆3+∆1−∆2

× 〈n1 , n2〉R1+R2−R3〈n2 , n3〉R2+R3−R1〈n3 , n1〉R3+R1−R2

× 〈ñ1 , ñ2〉L1+L2−L3〈ñ2 , ñ3〉L2+L3−L1〈ñ3 , ñ1〉L3+L1−L2

where the log of the structure constant C123 is given by

ln C123 = ln CS3

123 + ln CEAdS3
123 + Contact
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ln CS3

123

=

∫

Muuu−−−

z(x) (dp1 + dp2 + dp3)

2πi
ln sin

(
p1 + p2 + p3

2

)

+

∫

Muuu−−+

z(x) (dp1 + dp2 − dp3)

2πi
ln sin

(
p1 + p2 − p3

2

)

+

∫

Muuu−+−

z(x) (dp1 − dp2 + dp3)

2πi
ln sin

(
p1 − p2 + p3

2

)

+

∫

Muuu
+−−

z(x) (−dp1 + dp2 + dp3)

2πi
ln sin

(−p1 + p2 + p3

2

)

− 2
3∑

j=1

∫

Γu
j−

z(x) dpj

2πi
ln sin pj
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ln CEAdS3
123

= −
∫

M̂uuu−−−

z(x) (dp̂1 + dp̂2 + dp̂3)

2πi
ln sin

(
p̂1 + p̂2 + p̂3

2

)

−
∫

M̂uuu−−+

z(x) (dp̂1 + dp̂2 − dp̂3)

2πi
ln sin

(
p̂1 + p̂2 − p̂3

2

)

−
∫

M̂uuu−+−

z(x) (dp̂1 − dp̂2 + dp̂3)

2πi
ln sin

(
p̂1 − p̂2 + p̂3

2

)

−
∫

M̂uuu
+−−

z(x) (−dp̂1 + dp̂2 + dp̂3)

2πi
ln sin

(−p̂1 + p̂2 + p̂3

2

)

+ 2
3∑

j=1

∫

Γ̂u
j−

z(x) dp̂j

2πi
ln sin p̂j + Contact
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Remark:

¨ The structure that we obtained above for the strong coupling is remarkably

similar to the weak coupling counterpart. (They need not be.)

In fact it is not difficult to show that the integral over the Li2 function that

appeared at weak coupling is related to the characteristic integral for the

strong coupling as
∮

dz

2πi
Li2(e

2ip) = 2i

∮
dz

2πi
z
dp

dz
ln sin p

+

∮
dz

2πi

(
p2(z) − 2i ln(−2i)p(z)

)
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4 New weak coupling technology for more general 3-

point functions: Wick-contraction as singlet projection

Note:

¨ At weak coupling, the 3-point function obtained by the tailoring was of quite

special type.

¨ At strong coupling, we could compute 3-point functions for fairly general

vertex operators characterized by the polarization spinors n and ñ

transforming under SU(2)L × SU(2)R.

? We wish to treat the more general 3-point functions at weak cou-

pling in a parallel manner.

There are two observations which make it possible and will be ex-

tremely useful.
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4.1 Double-spin-chain formalism and Wick contraction

To make the weak coupling treatment more parallel to the strong coupling case,

it is convenient to recall

? Symmetry of the “SU(2)” sector is actually SO(4) = SU(2)L⊗
SU(2)R. ⇒ These fundamental fields can be naturally mapped to the

¨ double-spin-chain states

Usual spin chain = tensor product of two spin chains.

For the fundamental fields,

Z 7→ |↑〉L ⊗ |↑〉R , X 7→ |↑〉L ⊗ |↓〉R ,

Z̄ 7→ |↓〉L ⊗ |↓〉R , −X̄ 7→ |↓〉L ⊗ |↑〉R ,

⇒ All the quantities get factorized into L and R parts

¨ In this point of view, More general spin-chain states built on ro-

tated vacuum can be defined and characterized by two polarization spinors
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n = (n1, n2)t and ñ = (ñ1, ñ2)t, just as in the strong coupling case.

|ψ〉 = |n〉L ⊗ |n〉R

|n〉L ≡ n1|↑〉L + n2|↓〉L = na|a〉L , |1〉 ≡ | ↑〉 , |2〉 ≡ | ↓〉
|ñ〉R ≡ ñ1|↑〉R + ñ2|↓〉R = ñã|ã〉R

¨ Wick contraction can be interpreted as group singlet projection

The basic contractions are (omitting coordinate dependence)

Z Z = 0 , Z X = 0 , Z X̄ = 0 , Z Z̄ = 1 , etc .

For general operators Fi 7→ |ni〉L ⊗ |ñi〉R, the contraction rules above lead to

(?) F1 F2 = (na
1εabn

b
2)(ñ

c̃
1εc̃d̃ñ

d̃
2) = 〈1| (|n1〉L ⊗ |n2〉L) 〈1| (|ñ1〉R ⊗ |ñ2〉R)

where〈1| is the singlet projector8 〈1| ≡ εab〈a| ⊗ 〈b|

8Singlet projector for the entire psu(2,2|4) sector can also be constructed (Jiang, Kostov,

Petrovskii and Servan; KKN )
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The contraction (?) can be dipicted by

This can be easily generalized for the contraction of two and three composite

operators

We will denote the Wick-contraction as

〈|O1〉L, |O2〉L〉 ≡ 〈1|(|O1〉L ⊗ |O2〉L)

The contractions of two and three spin chain states can be dipicted as
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5 Monodromy relation for weak coupling: Expression of

“integrability” for correlation functions

Recall that for the strong coupling computation, the trivality of the product

of local monodromies

Ω1Ω2Ω3 = 1

played a crucial role, giving the precious global information of the 3-point

function.

¨ This should represents an important part of the “integrability” of

the 3-point function.

What is the counterpart in the weak coupling SYM theory ?
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5.1 Monodromy relation for 2-point function

First consider the case of the 2-point function.

Key is the two basic properties of the Lax matrix

L(u)=

(
u + iS3 iS−

iS+ u − iS3

)

(1) Unitarity (or inversion) relation

L(−u + i/2)L(u − i/2) = f(u) · 1 (unit matrix)

f(u) = −(u2 + 1)

(2) Crossing relation

〈1|(L(u)|ψ1〉 ⊗ |ψ2〉) = 〈1|(|ψ1〉 ⊗ C ◦ L(u)|ψ2〉)
where C ◦ L(u) = −L(−u)

Apply unitarity relation to the monodromy matrix: Ω(u) = L1(u)L2(u) · · · L`(u)

weak-strong-66



⇒ “Unitarity” relation for the monodromy matrices

⇒ Relate 2-point functions with and without monodromy matrix in-

sertions

(?)
〈|O1〉L ,

(←−
Ω 2(−u + i/2)

)
ij

(
Ω2(u + i/2)

)
jk

|O2〉L

〉

= δik(−1)`f12(u)
〈|O1〉L , |O2〉L

〉

This is illustrated in the following figures

=
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¨ Make use of the crossing relation for the Lax operator constituting
←−
Ω 2

repeatedly, the LHS of (?) can be rewritten as

(−1)`
〈(

Ω−
1 (u)

)
ij

|O1〉L ,
(
Ω+

2 (u)
)

jk
|O2〉L

〉
.

Combining, we get the monodromy relation for the 2-point function

〈(
Ω−

1 (u)
)

ij
|O1〉L ,

(
Ω+

2 (u)
)

jk
|O2〉L

〉
= δik f12(u)

〈|O1〉L , |O2〉L

〉

where Ω±(u) ≡ Ω(u ± i
2
) .

5.2 Monodromy relation for 3-point function

Similar relation can be derived for the 3-point function (only left part is shown)
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〈(
Ω−

1 (u)
)

ij
|O1〉L ,

(
Ω

+|−
2 (u)

)
jk

|O2〉L ,
(
Ω+

3 (u)
)

kl
|O3〉L

〉

= δilf123(u)
〈|O1〉L , |O2〉L , |O3〉L

〉

¨ This shows that certain combination of 3-point functions with mon-

odromy matrices inserted equals the one without any insertions. This

is pictorially represented as

¨ This should be interpreted as the collection of Ward identities of all

the (higher) conserved charges. Hence it represents the “integra-

bility” of the entire 3-point function.
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¨ In the semi-classical limit of the spin-chain,

i.e. u = `u′, ` → ∞ with u′ fixed (` =length of the spin chain),

the shifts ±i/2 can be ignored and

the relation reduces precisely to Ω1Ω2Ω3 = 1 ,

which is identical in form to the one in string theory.
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6 New computation of semiclassical three-point func-

tions at weak coupling using the Landau-Lifshitz for-

mulation by strong coupling technology

— Monodromy relation as the key structure —

Sketch of the basic logic

1. Take the semiclassical limit of the quantum integrable XXX1/2 spin

chain FIRST, using the coherent state representation of SU(2) parametrized

by a vector ~n on a unit sphere S2

|~n〉 = exp

(
iθ

~n0 × ~n

|~n0 × ~n| · ~S

)
|↑〉 = cos

θ

2
|↑〉 − eiφ sin

θ

2
| ↓〉

~n0

~n
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XXX1/2 spin chain

⇒ Classically integrable Landau Lifshitz model in the interval [0, L]

SLL = Snearest neighbor + SWess−Zumino

Snearest neibor = − λ

32π2

∫
dτ

∫ L

0

dσ∂σ~n∂σ~n

SWess−Zumino =
1

2

∫
dτ

∫ L

0

dσ

∫ 1

0

ds~n · (∂τ~n × ∂s~n)

2. 3-point structure constant C123 can be obtained by Wick contractions

C123 =

√
`1`2`3

Nc

CL
123 × CR

123

CL
123=

∑

a,b,c

〈|Or
1a〉L, |Ol

2b〉L〉〈|Or
2b〉L, |Ol

3c〉L〉〈|Or
3c〉L, |Ol

1a〉L〉

similarly for CR
123

weak-strong-72



It can be expressed as a path-integral over the coherent state variables

CL
123 =

∫
D~n1D~n2D~n3ψ

L
1 [~n1]ψ

L
2 [~n2]ψ

L
3 [~n3]

× 〈|~nr
1〉, |~nl

2〉〉〈|~nr
2〉, |~nl

3〉〉〈|~nr
3〉, |~nl

1〉〉
where D~n1 ≡ D~nr

1D~nl
1 , etc.

ψi[~ni] ≡ 〈~ni|Oi〉 = coherent state wave function of the state |Oi〉
¨ In the semiclassical limit we can make the saddle point approxima-

tion.

CL
123 ' ψL

1 [~n∗
1]ψ

L
2 [~n∗

2]ψ
L
3 [~n∗

3]

× 〈|~n∗,r
1 〉, |~n∗,l

2 〉〉〈|~n∗,r
2 〉, |~n∗,l

3 〉〉〈|~n∗,r
3 〉, |~n∗,l

1 〉〉
~n∗

i = saddle point configuration

3. To compute C123,

study how it changes when we infinitesimally increase the

filling fraction (action variable) S
(n)
i for the operator On by

adding a small number of Bethe roots.
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One can show that this consideration gives one of the key relations

∂ ln C123

∂S
(n)
i

= iφ
(n)
i

where φ
(n)
i is the angle variable conjugate to S

(n)
i .

⇔ ln C123 plays the role of the generating function.

4. In the semiclassical limit, the quantum monodromy relation for the XXX1/2

system reduces to

(?) Ω1Ω2Ω3 = 1
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At this point, the situation is almost identical to the

one at strong coupling and we can use the same logic

as in that case.

5. Express angle variables (relative to the 2-point function case) in terms of the

“Wronskians”

6. The monodromy relation (?) allows us to express the product of Wronskians

in terms of the quasimomenta.

7. Use the Wiener-Hopf method to obtain individual Wronskian by specifying

the analytic structure (i.e. poles and zeros) for the spectral parameter x on

the spectral curve.

One difference:

¨ In contrast to the string case, we do not have the worldsheet

and hence cannot use the smoothness of the worldsheet to infer

the analytic structure
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8. We therefore develop a new more general method, valid for both weak

and strong couplings, to determine the analyticity structure.

The logic consists of

the requirement of continuity and consistency between

• the exact quantum property

and

• the semiclassical property

under the addition of a small number of Bethe roots at the

end of a cut: |ψ〉 → |ψ + δψ〉

¨ Exact quantum treatment:

(??) 〈ψ|ψ + δψ〉 = 0

if both ψ and ψ + δψ are eigenstates of H (i.e. on-shell)

¨ Semiclassical treatment: One can show that at the saddle point x∗,
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the angle variable corresponding to the added Bethe root is given by

∂ ln〈ψ|ψ + δψ〉
∂Sx∗

∣∣∣∣∣
δψ→0

= iφx∗

Now we impose (??) also for this semiclassical treatment.

Then this constrains the positions of the angle variables corresponding to the

added Bethe roots (i.e. additional degrees of freedom) to be on the first

sheet of the Riemann surface, giving an important analyticity in-

formation.

9. These natural requirements determine the ananlyticity properties

and fix the appropriate contours of the convolution integration as

we use the Wiener-Hopf decomposition formula to separate out the individual

Wronskians from their product.

10.

These procedures directly give the correct compact semiclassical

formulas for the 3-point functions (i.e. without going through the

determinant formula ) at weak coupling.
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ln C
(0)
123

'
∮

Au∪Av

du

2π
Li2(e

ipu+ipv+iL3/(2u))+

∮

Aw

du

2π
Li2(e

ipw+i(L3−L1)/(2u))

−1

2

∮

Au

du

2π
Li2(e

2ipu) − 1

2

∮

Av

du

2π
Li2(e

2ipv)−1

2

∮

Aw

du

2π
Li2(e

2ipw)
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7 Summary and future problems

Summary

1. Introduction and motivation

2. A “lightening” review of the weak coupling computation of the

3-point functions in the SU(2) sector

3. A “short” review of the essential ingredients for strong coupling

computation using string theory in AdS space

4. New weak coupling technology for more general 3-point functions

in SYM: Wick-contraction as singlet projection

5. Monodromy relation: A cognate integrability structure at weak

and strong coupling

6. New computation of semiclassical three-point functions at weak

coupling using Landau-Lifshitz formulation by strong coupling

technology
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Future problems

Among many possible directions for research, let us list a few important ones:

¨ Derivation of monodromy relations at higher loop level in SYM

¨ Unify the different “pictures” behind monodromy relations

– Worldsheet picture, at strong coupling

– “Unitarity” and “crossing” for Lax matrix, at weak coupling

¨ Draw more refined consequences of the monodromy relations

=Ward identities for higher charges

¨ Can we derive the first quantum corrections to the monodromy rela-

tions on the string theory side ?

¨ Relation to the hexagon approach for connecting weak and strong

coupling ?
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Thank you for your kind attention !
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