The Vision of CEPC-SppC

Yifang Wang Institute of High Energy Physics, Beijing NCTS, Dec. 11, 2015

Where Are We Going ?

- After the Higgs, game is over ?
- Shall we wait for results from LHC/HL-LHC ?
- ILC ?
 - If yes, enough ? Next ?
 - If no, then ?

• What is the future of our field ?

Standard Model Is not Complete

- From neutrinos to top quark, masses differs by a factor 10¹³, why ?
- Fine tuning of Higgs mass(naturalness):

$$m_H^2 - m_{H,0}^2 \sim -\frac{3}{8\pi^2} y_t^2 \Lambda^2$$

A coincidence of 10⁻³⁴? Never before even at 10⁻⁴

For Λ (new physics) at the Planck scale ~ 10¹⁶ TeV:

 $m_{H}^{2} = 36,127,890,984,789,307,394,520,932,878,928,933,023$ -36,127,890,984,789,307,394,520,932,878,928,917,398 = $(125 \text{ GeV})^{2}$! ?

- Masses of Higgs and top quark are in the meta-stable region, why ? Fundamental reason ?
- Many of the free parameters in the SM are related to Higgs. A deeper theory ?

Fundamental reason(s) beyond SM ?!

Evidence Beyond the Standard Model

• Unification at a high energy ?

- No dark matter particles in the SM, Needed ? Where ?
- No CP in the SM to explain Matter-antimatter asymmetry, why ?
- How to describe neutrinos in the SM ?
- SUSY can provide solutions to many of these problems, incident ?

New Tasks after the Higgs Discovery

Open questions about Higgs

- Consistent with SM ?
- Composite or elementary ?
- Other Higgs ?
- New properties ?
- Responsible for CP violation?
- What type of potential ?

Higgs is the only elementary particle with spin 0 ! Never seen point-like scalars !

- New type of interactions concerning only the Higgs:
 - Yukawa coupling through Higgs with spin 0:

 $-h\tau\tau$, hbb, htt coupling constant, ~10% @ LHC

- Self-coupling h³ & h⁴:
 - ~ 50% @ LHC

Need a factor of ~10 improvement over LHC !

- Yes, there are new physics, and also "standard" physics to be learned
- ILC is not enough, even if it can be built soon
- High energy frontier is still the center of particle physics

What to do ?

Our Proposal: CEPC+SppC

- Thanks to the low mass Higgs, we can build a Circular Higgs Factory(CEPC), followed by a proton collider(SppC) in the same tunnel
- A natural continuation of BEPC→BEPCII→CEPC→SppC

Science

- Electron-positron collider(90, 250, 350 GeV)
 - Higgs Factory: Precision study of Higgs(m_H, J^{PC}, couplings)
 - Similar & complementary to ILC
 - Looking for hints of new physics
 - Z & W factory: precision test of SM
 - Deviation from SM ? Rare decays ?
 - Flavor factory: b, c, τ and QCD studies
- Proton-proton collider(~100 TeV)
 - Directly search for new physics beyond SM
 - Precision test of SM
 - e.g., h³ & h⁴ couplings

Precision measurement + searches: Complementary with each other !

Design Goal of CEPC/FCC-ee

- Limit SR power to 50 MW per beam
- CEPC: single ring, head-on collision, up to 250 GeV
- FCC-ee: double ring, large crossing angle, up to 350 GeV

Design Goal of SPPC/FCC-pp

- Technology to bend the proton beam is limited by the field strength of the dipole magnet. Currently we can only imagine up to 20 T.
- Hence, ~ 100 km ring and ~ 100 TeV is a generic desire

Why in China ?

Physics wise, CEPC+SPPC is ideal

- Timing (after BEPCII)
- Technological feasibility (experience at BEPC/BEPCII)
- Economy → new funding to the community
- Large & young population → new blood to the community
- Affordable tunnel & infrastructure → still cheap in China now
- Money will be taken by somebody anyway
 It is a pity if we miss it
- Too expensive ?
 - BEPC cost/4 y/GDP of China in 1984 ≈ 0.0001
 - SSC cost/10y/GDP of US in 1992 ≈ 0.0001
 - LEP cost/8y/GDP of EU in 1984 ≈ 0.0002
 - LHC cost/10y/GDP of EU in 2004 ≈ 0.0003
 - ILC cost/8y/GDP of Japan in 2018 ≈ 0.0002
 - CEPC cost/6y/GDP of China in 2020 ≈ 0.0001
 - SPPC cost/10y/GDP of China in 2036 ≈ 0.0001- 0.0002

Current Status

- Initiated a global effort for the Conceptual design
- Pre-CDR completed
 - No show-stoppers
 - − Technical challenges identified → R&D issues
 - Preliminary cost estimate
- R&D issues identified and funding request underway
 - Seed money from IHEP available: 12 M RMB/3 years
 - MOST: ~ 100 M / 5yr, hopefully next year
 - NCDR: ~1 B RMB / 5 yr, maybe 2017
- Working towards CDR by 2016
 - A working machine on paper
- Site selection
- Internationalization & organization

Timeline (dream)

• CPEC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-15
 - Pre-CDR for R&D funding request
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
- Construction: 2021-2027
- Data taking: 2028-2035

• SppC

- Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
- Construction: 2035-2042
- Data taking: 2042 -

IHEP-CEPC-DR-2015-01 IHEP-EP-2015-01 IHEP-TH-2015-01

Can be downloaded from

http://cepc.ihep.ac.cn/preCDR/volume.html

CEPC-SPPC

Preliminary Conceptual Design Report

Volume I - Physics & Detector

IHEP-CEPC-DR-2015-01

IHEP-AC-2015-01

CEPC-SPPC

Preliminary Conceptual Design Report

Volume II - Accelerator

403 pages, 480 authors

328 pages, 300 authors

The CEPC-SPPC Study Group

March 2015

March 2015

The CEPC-SPPC Study Group

0, 2015

International Review of Pre-CDR

CEPC Accelerator

Compatibility: a Complicated Issue

- CEPC InjectorSPPC injector
- > Beam pipe detour for detectors
 - CEPC booster avoid storage ring
 - CEPC avoid SPPC detectors
 - SPPC avoid CEPC detectors
- SR beamlines

- Predict what SPPC needs
 - Collimators
 - Straight sections
 - Tunnel dimensions
 - Access tunnel

To be fully understood in the next 5 years

CEPC Design

- Critical parameters:
 - SR power: 51.7 MW/beam
 - 8*arcs, 2*IPs
 - 8 RF cavity sections (distributed)
 - RF Frequency: 650 MHz
 - Filling factor of the ring: ~70%

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	m	54752
Number of IP[N _{IP}]		2	SR loss/turn [U ₀]	GeV	3.11
Bunch number/beam[n _B]		50	Energy acceptance RF [h]	%	5.99
SR power/beam [P]	MW	51.7	Beam current [I]	mA	16.6
emittance (x/y)	nm	6.12/0.018	β _{IP} (x/y)	mm	800/1.2
Transverse size (x/y)	μm	69.97/0.15	Luminosity /IP[L]	cm ⁻² s ⁻¹	2.04E+34

Main Challenges

- Beam physics: dynamic aperture, momentum acceptance, electron cloud, pretzel scheme, ...
- Superconducting cavity: High-Q cavity, HOM dumping, mass production, power consumption,...
- Total power consumption: ~ 500 MW ! → need a green machine
 - Reuse the thermal power, ~ 200 MW
 - Heating of houses → close to a big city, summer ?
 - Gasifying liquified natural gas → close to a harbor
 - Agricultural greenhouse → summer ?
 - Increase the efficiency of the RF power supply to more than 70%, even 80%
 - ICFA established a panel this summer for this issue
 - Partial double ring for reduced power and higher luminosity ?

Partial Double-Ring Machine ?

- ~ 10% double-ring
- Large crossing angle & Crab waist & small β_v
- O(1000) bunches
- Luminosity close to double-ring machine ?
- Issues
 - Electrostatic separators
 - RF systems
 - Electron Cloud
 Issues

M. Koratzinos, talk given at HF2014, Beijing M. Koratzinos & F. Zimmermann, this Conf. J. Gao, IHEP-AC-LC-Note2013-012

SppC Design

Proton-proton collider luminosity

$$L_{0} = \frac{N_{p}^{2}N_{b}f_{rep}\gamma}{4\pi\varepsilon_{n}\beta_{IP}}F \qquad (F = \sqrt{1 + \left(\frac{\theta_{c}\sigma_{z}}{2\sigma_{x,IP}}\right)^{2}}) \qquad \qquad X = \frac{N_{p}r_{p}}{4\rho\epsilon_{n}} \pounds 0.004$$

- Main constraint: high-field superconducting dipole magnets
 - 50 km: $B_{\text{max}} = 12 \text{ T}, E = 50 \text{ TeV}$ - 50 km: $B_{\text{max}} = 20 \text{ T}, E = 70 \text{ TeV}$ - 70 km: $B_{\text{max}} = 20 \text{ T}, E = 90 \text{ TeV}$ $B_{\text{max}} = 20 \text{ T}, E = 90 \text{ TeV}$

SppC General design

 8 arcs (5.9 km) and long straight sections (850m*4+1038.4m*4) 22

Parameter	Value	
Circumference	54.36 km	
Beam energy	35.3 TeV	
Dipole field	20 T	
Injection energy	2.1 TeV	
Number of IPs	2 (4)	
Peak luminosity per IP	1.2E+35 cm ⁻² s ⁻¹	
Beta function at collision	0.75 m	
Circulating beam current	1.0 A	
Max beam-beam tune	0.006	
shift per IP		
Bunch separation	25 ns	
Bunch population	2.0E+11	
SR heat load @arc dipole (per aperture)	56.9 W/m	

Challenges

- High field magnets: both dipoles (20 T) and quadrupoles (pole tip field: 14-20 T).
- Beam screen and vacuum: very high synchrotron radiation power inside the cold vacuum:
- Collimation system: high efficiency collimators in cold sections: new method and structure ?

A R&D plan is developed. Main focus is the magnet

A Conceptual design of 20-T Nb₃Sn + HTS common coil dipole magnet from²fHEP

CEPC Detector

- Similar performance requirements to ILC detectors
 - Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1} \leftarrow \text{recoiled Higgs mass}$
 - Impact parameter: $\sigma_{r\phi} = 5 \oplus 10/(p \cdot \sin^{\frac{1}{2}}\theta) \,\mu m \leftarrow \text{flavor tagging, BR}$
 - Jet energy: $\frac{\sigma_E}{E} \approx 3-4\% \qquad \leftarrow W/Z$ di-jet mass separation

Beneficial from 20 years of ILC study

ILD-like detector but (*incomplete*):

- Shorter L* (1.5m) → constraints on space for the Si/TPC tracker
- No power-pulsing \rightarrow cooling issues Limited CoM (up to 250 GeV) \rightarrow calorimeters of reduced size
- Lower radiation background → vertex detector closer to IP

Simulation and Physics

	di-muon	di-electron	di-neutrino	di-jets
σ(ZH)			-	
Мн				
σ(ZH)*Br(H→bb)				
σ(ZH)*Br(H→cc)				
σ(ZH)*Br(H→gg)				
σ(ZH)*Br(H→WW)				
σ(ZH)*Br(H→ZZ)				
σ(ZH)*Br(H→ττ)				
$\sigma(ZH)^*Br(H\rightarrow\gamma\gamma)$				
σ(ZH)*Br(H→μμ)				
σ(vvH)*Br(H→bb)	-	-		
Br(H→invisible)				
Br(H→exotic)				
Signal with Cl	EPC Full Simula	tion. Bkord with Fa	st Simulation	
	CEPC Fa	st Simulation		

Extrapolated from ILC/FCC-ee results

A Candidate Site

Civil Construction

- A credible design with cost estimate
- The key to keep the cost low
 - Find a site geologically the best(granite)
 - Optimize of the design
 - Choose the right designer & construction contractor
 - Management

Organization and Activities

- International workshops
 - ICFA Higgs factory workshop, Oct. 2014
 - Workshop on CEPC organized by IAS HKUST, Jan. 2015
 - ICFA workshop on SC Magnet, June 2015
 - IHEP-DOE CEPC physics workshop in Aug. 10-12, 2015
 - Beijing-Chicago workshop on CEPC in Sep. 2015
- Training & professional development
- Communication, education
 & Outreach
- An international advisory Board establishe

Summary

- It is difficult but very exciting
- Tremendous efforts up to now with real progress in all fronts
- A promising future: please be optimistic !
- Let work together to make it happen

Even if it is not in China, it is still very beneficial to our field and to the Chinese HEP & Science community. We fully support a global effort