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General settings and context – Motivation

Construction, integrability and exact results of deformed CFTs.

Deformations of Integrable models in gauge theories and AdS/CFT

I N = 4 SU(N) SYM for N � 1 exhibits integrability
[Minahan-Zarembo 02]. Maximally supersymmetric and
conformal. The AdS5 × S5 dual backgrounds is also integrable
[Bena-Polchinski-Roiban 03].

I Certain (marginal) deformations retain integrability and reduce
susy, e.g. (γ-deformations) reduce to N = 1 [Leigh-Strassler 95].
The gravity dual [Lunin-Maldacena 05] is integrable [Frolov 05].

I There are N = 1 theories which have non-integrable
supergravity duals,
e.g. in AdS5 × T1,1 motion of strings is even chaotic
[Basu-Zayas 11]

Hence, susy does not imply integrability.



I will show that is it possible to have deformations which:

I Break supersymmetry completely.

I Preserve integrability.
Recall even QCD exhibits some integrability in certain
limits/high energy [Libatov 93].



Exact β-functions, anomalous dimensions, correlators

I The quantum behaviour of a �eld theory is encoded in the
β-function eqs. and the anomalous dimensions of the
operators.
Traditionally these are determined perturbatively.

I Is it possible to compute the β-function and the anomalous
dimensions exactly, i.e. all orders?
One could discover new �xed point theories towards the IR.

I Exact correlation functions?

I Typically, these are very di�cult tasks. In some cases if there
is enough supersymmetry the 1-loop could be enough and the
higher ones vanish, i.e. N = 2 SYM in 4-dims.

I When these computations can be performed to all loops are
rare and this is then very exciting.

I will show that these are possible.



The bosonized non-Abelian Thirring model

Uncover classical & quantum aspects of the action

Sk,λ(g) = SWZW,k (g) +
kλ

π

∫
Ja+J

a
− ,

where SWZW,k(g) is the WZW action [Witten 83]

SWZW,k(g) = −
k

2π

∫
Tr(g−1∂+gg

−1∂−g) +
ik

6π

∫
B

Tr(g−1dg)3 , g ∈ G .

I Related via bosonization to an action in 1+1 dims with
fermions ψ and ψa in the quark rep of SU(N),
a = 1, 2, . . .N2 − 1 [Dashen-Frishman 73 & 75].



I When λ = 0 this action is Invariant under

g → Ω−(σ+) g Ω+(σ−) .

There are two copies of a current algebra at level k ∈ Z+ It is
realized by

Ja+ = −iTr(ta∂+gg
−1) , Ja− = −iTr(tag−1∂−g) .

The theory is a CFT.

I The extra term Ja+J
a
− breaks the symmetry to a global

diagonal one
g → Λ−1gΛ , Λ ∈ G .

I Relevant perturbation [Kadano�-Brown 79, Chaudhuri-Schwartz 89].
The parameter λ should run under the RG �ow.



Derivation of the models [KS 13]

The starting point is the action

S(g , g̃) = SWZW ,k (g) + SPCM(g̃) .

I SWZW,k(g) is the WZW action for g ∈ G

SWZW(g) = − k

2π

∫
Tr(g−1∂+gg

−1∂−g) +
ik

6π

∫
B

Tr(g−1dg)3 ,

This is a CFT; has a GL,cur × GR,cur current algebra symmetry.

I SPCM(g̃) is the PCM action for (g̃ ∈ G ) with coupling κ2

SPCM(g̃) = −κ2

π

∫
Tr(g̃−1∂+g̃ g̃

−1∂−g̃) .

It is integrable with global GL × GR symmetry.



Derivation by gauging
We will gauge the group acting as

g → Λ−1gΛ , g̃ → Λ−1g̃ , Λ ∈ G .

Hence we consider the action

Sk,κ2(g , g̃) = SgWZW ,k (g ,A±) + SgPCM (g̃ ,A±) ,

where

SgWZW,k (g ,A±) = SWZW ,k (g)

+
k

π

∫
Tr
(
A−∂+gg

−1 − A+g
−1∂−g + A−gA+g

−1 − A−A+

)
,

and

SgPCM (g̃ ,A±) = −
1

π

∫
Tr(g̃−1D̃+g̃ g̃

−1D̃−g̃) ,

with the covariant derivatives being D̃±g̃ = ∂±g̃ − A±g̃ .



I We choose the gauge �xing

g̃ = 1 .

I Hence the gauged �xed action becomes

Sk,κ2(g , 1) = SgWZW ,k (g ,A±)−
κ2

π

∫
Tr(A+A−) .

I Integrating out the gauge �elds we obtain the action

Sk,λ(g) = SWZW,k (g) +
k

π

∫
Ja+(λ

−1I−DT )−1ab Jb− ,

where
Dab = Tr(tagtbg−1)

and

λ =
k

k + κ2
.

is the deformation parameter.

I Generalization to a general matrix λδab → λab straightforward.



Basic properties

I For small λ it becomes the non-Abelian anisotropic
(bosonised) Thirring model action

Sk,λ(g) = SWZW,k (g) +
kλ

π

∫
Ja+J

a
− + · · · .

They share the same symmetries.

I The theory is driven away from the conformal point.

I Marginally relevant perturbation [Kadano�-Brown 79,

Chaudhuri-Schwartz 89]. The RG �ow equation

dλ

dt
= · · · .

to all-loops in λ, but to leading order in 1/k .
I The model is integrable [KS 13].

I It has a Yangian symmetry [Itsios-KS-Siampos-Torrielli, 14].



A remarkable symmetry
The e�ective action has the symmetry [Itsios-KS-Siampos 14]

S−k,λ−1(g
−1) = Sk,λ(g) .

I A duality-type symmetry.

I It should be re�ected as a symmetry in physical quantities and
correlators.

I The renormalized currents Ja± are invariant under this
transformation.



Example with SU(2)

Consider the case with
λab = λδab ,

let G = SU(2). and parametrize

g = e iαn̂iσi , n̂ = (− sin β sinγ, sin β cosγ, cos β) ,

The corresponding σ-model has metric

ds2 = k

(
1+ λ

1− λ
dα2 +

1− λ2

∆(α)
sin2 α ds2(S2)

)
,

and antisymmetric tensor

B = k

(
−α +

(1− λ)2

∆(α)
cos α sin α

)
Vol(S2) ,

where
∆(α) = (1− λ)2 cos2 α + (1+ λ)2 sin2 α .



Integrability and algebraic structure

Equations of motion

I Varying with respect to g we obtain that

D−(D+gg
−1) = F+− , D+(g

−1D−g) = F+− ,

which due to [D+,D−]g = [g ,F+−], are equivalent
I Varying with respect to A±'s

D+gg
−1 = (λ−1 − 1)A+ , g−1D−g = −(λ−1 − 1)A− ,

I The above can be cast as

λ∂+A− − ∂−A+ = [A+,A−] ,

∂+A− − λ∂−A+ = [A+,A−] .

from which

∂±A∓ = ± 1

1+ λ
[A+,A−] .



Integrability

I Assume the classical equations can be written as a Lax eq.

dL = L∧ L or ∂+L− − ∂−L+ = [L+, L−] ,

where L± = L±(τ, σ, µ) and µ ∈ C is the spectral parameter.

I Then, the classical monodromy matrix

M = P exp

∫ +∞

−∞
dσ L1 , ∂0M = 0 .

gives rise to in�nitely many conserved changes.

I In our case

L± =
2

1+ λ

µ

µ∓ 1
A± .

I Some integrable cases λab 6= λδab [Thompson-Siampos-KS,15].

Extendable to semi-symmetric spaces (Z4 grading),
i.e. PSU(2, 2|4)/SO(1, 4)× SO(5), very important in AdS/CFT
[Hollowood-Miramontes-Schmidtt 14].



Algebraic properties
The Poisson brackets for I± ∼ A±

{I a±, I b±} = e2 fabc (I
c
∓ − (1+ 2x)I c±) δ12 ± 2e2δabδ′12 ,

{I a+, I b−} = −e2 fabc (I c+ + I c−) δ12 ,

where

e =
2λ√

k(1− λ2)(1+ λ)
, x =

1+ λ2

2λ
> 1 .

I Algebra constructed in [Rajeev 89, Balog-Forgacs-Horvath-Palla 94]

I A deformation of the PCM algebra (for x = 1).

I There is a Yangian symmetry and provide non-trivial solutions
to the Yang-Baxter equation via the Maillet brackets
[Itsios-KS-Siampos-Torrielli, 14]. (Maillet brackets: Poisson
brackets of the monodromy matrix; Jacobi identities implies
the Yang�Baxter eq)



β-function and anomalous dimensions
Perturbative computations
The currents obey the OPEs

Ja(z)Jb(w) =
δab

(z − w)2
+

fabc√
k

Jc (w)

z − w
+ · · · .

I Using these we may compute the 2-point functions

〈Ja(x1)Jb(x2)〉λ = 〈Ja(x1)Jb(x2)e−
λ
π

∫
d2zJa(z)J̄a(z̄)〉

〈Ja(x1)J̄b(x2)〉λ = 〈Ja(x1)J̄b(x2)e−
λ
π

∫
d2zJa(z)J̄a(z̄)〉

perturbatively in λ by expanding the exponential.

I The basic correlators are

〈Ja(x1)Jb(x2)〉 =
δab
x212

, 〈Ja(x1)Jb(x2)Jc (x3)〉 =
1√
k

fabc
x12x13x23

.

and similarly for the J̄a's. Mixed JJ̄ correlators vanish.

I For higher correlators use Ward dentities



Perturbative results; Renormalization
Relations between the bare and renormalized quantities

Ja0 = Z 1/2Ja , J̄a0 = Z 1/2J̄a , λ0 = Z1λ ,

I The renormalized n-point functions are cuto� independent

〈Ja(x1)Jb(x)〉λ = Z−1〈Ja0(x1)Jb0 (x)〉Z1λ

I Up to three-loops this requires that

Z−1 = 1+ 2cGλ3 − cG
k

(
λ2 − 2λ3 +O(λ4)

)
ln(ε2µ2) ,

Z1 = 1+
cG
k

(
1

2
λ− λ2 +O(λ3)

)
ln(ε2µ2) ,

I Depends on the energy scale µ and a small distance cut-o�.
I cG is the quadratic Casimir in the adjoint rep.,

i.e. facd fbcd = −cG δab.



The perturbative β-function and anomalous dimensions

I The β-function is by de�nition

β =
1

2
µ
dλ

dµ
= −cG

2k

(
λ2 − 2λ3 +O(λ4)

)
,

where the bare coupling λ0 is kept �xed.

I The anomalous dimension of the currents is

γ(J) = µ
d lnZ 1/2

dµ
=

cG
k

(
λ2 − 2λ3 +O(λ4)

)
.

Is it possible to compute these exactly in λ?



Analyticity: λ-dependence of physical quantities

I Expand the action for g = e ix
ata around the identity

Sk,λ =
k

4π

1+ λ

1− λ

∫
∂+x

a∂−x
a + · · ·

I The β-function & anomalous dims may have poles at λ = ±1.
I The e�ective action has two well de�ned limits:

I The non-Abelian T-duality limit

λ = 1− κ2

k
, k → ∞ .

I The pseudochiral model limit

λ = −1+ 1

b2/3k1/3 . k → ∞ .

The β-function & anomalous dims should have good limits.



I The β-function & anomalous dims should be invariant under

k → −k , λ→ 1

λ
,

for k � 1.

I Some perturbative information and the above symmetry are
enough to determine the β-function and the anomalous
dimensions exactly in λ and to leading order in k .



The exact β-function and anomalous dimensions
The exact β-function and anomalous dimensions are of the form

βλ = −cG
2k

f (λ)

(1+ λ)2
, γ(J) =

cG
k

g(λ)

(1− λ)(1+ λ)3
,

where f (λ) and g(λ) are analytic in λ.

I They have a well de�ned non-Abelian and pseudodual limits.

I Due to the symmetry (k,λ) 7→ (−k ,λ−1) we have that

λ4f (1/λ) = f (λ) , λ4g(1/λ) = g(λ) .

f (λ) and f (λ) are polynomials of, at most, degree four.
They are �xed by the above symemtry and by the up to
two-loops perturbative reult.



I The �nal result is

βλ = −cG
2k

λ2

(1+ λ)2
6 0

and

γ(J) =
cG
k

λ2

(1− λ)(1+ λ)3
> 0.

Agree with perturbation theory to order checked, i.e. O(λ)3.



3-point functions of currents
With similar computations and arguments we compute:

〈Ja(x1)Jb(x2)Jc (x3)〉 =
1+ λ + λ2√

k(1− λ)(1+ λ)3
fabc

x12x13x23
.

and

〈Ja(x1)Jb(x2)J̄c (x̄3)〉 =
λ√

k(1− λ)(1+ λ)3
fabc x̄12

x212x̄13x̄23
.

I These are leading order for k � 1 and respect the symmetry

k → −k , λ→ 1

λ
.

I The other correlators follow from parity.
Similarly one computes correlators involving primary �elds.



A digression; Left-right assymetric deformations
Note: there is no new �xed point towards the IR.
This changes when two di�erent levels kL and kR .

I Beta-function

dλ

dt
= − cG

2
√
kLkR

λ2(λ− λ0)(λ− λ−10 )

(1− λ2)2
.

A new �xed point in the IR at λ = λ0 =
√

kL
kR
.

I Anomalous dimensions

γL =
cG
kR

λ2(λ− λ−10 )2

(1− λ2)3
, γ̄R =

cG
kL

λ2(λ− λ0)
2

(1− λ2)3
.

I Evidence of the RG �ow to a di�enent CFT in the IR

GkL × GkR
IR
=⇒ GkL × GkR−kL

GkR

× GkR−kL .

For G = SU(2) argued to describe a fermi liquid as the IR
�xed point of interacting chiral fermions [Andrei-Douglas-Jerez 99]



Gravitational approach
Using the e�ective action

Sk,λ(g) = SWZW,k (g) +
k

π

∫
Ja+(λ

−1I−DT )−1ab Jb−

and the one-loop β-functions in 1/k [Ecker-Honerkamp 71, Friedan 80,

Braaten-Curtright-Zachos 85, Fridling-van de Ven 86]

dGµν

dt
+

dBµν

dt
= R−µν ,

same result for the beta-function [Itsios-KS-Siampos 14].

βλ = −cG
2k

λ2

(1+ λ)2
.

By extracting the wave function renormalization it is possible to
compute the exact anomalous dim from the e�.action
[Georgiou-KS-Siampos 15].



Spacetimes - type-II Supergravity

We aim at using these σ-models as building blocks for constructing
solutions of type-II Supergravity.

Need to:

I Decide which part of a 10-dim space to deform.

I Use for the NS-sector the σ-models �eld and for the dilaton

Φ = −1

2
det(λ−1 −DT ) .

I Support these NS-sector with RR-�uxes.

I Find rules, if possible, for determining these RR �elds, or
compute them by brute force.



Several examples of λ-deformations [KS-Thompson 14,

Demulder-KS-Thompson 15]. The RR-�eld rules are essentially the
same as those for non-Abelian T-duality [KS-Thompson 10].

I AdS3 × S3 × T 4 using the SU(2)× SL(2,R) isometry.

I AdS2 × S2 × T 6 using the SU(2)× SL(2,R) isometry.

I AdS3 × S3 × T 4 using the

SU(2)× SU(2)× SL(2,R)× SL(2,R) isometry.

I AdS5 × S6 using the SO(6)× SL(2, 4) isometry.

I Supercoset embedding for AdS2 × S2 [Borsato-Tseytlin-Wul�,16].



Explicit example: A new twist to the old black hole
The NS sector:
The metric is [KS 13]

ds2 = k

(
1− λ

1+ λ
(− coth2 ρdt2 + dρ2) +

4λ

1− λ2
(cosh tdρ + sinh t coth ρdt)2

)
+ k

(
1− λ

1+ λ
(dω2 + cot2 ωdφ2) +

4λ

1− λ2
(cos φdω + sin φ cotωdφ)2

)
+

9

∑
i=4

dx2i .

1st line: A deformation of the SL(2,R)/U(1) exact CFT.
2nd line: A deformation of the SU(2)/U(1) exact CFT.

In addition:

I The dilaton is
e−2Φ = sin2 ω sinh2 ρ .

I The antisymmetric tensor vanishes.



The RR-sector
I First de�ne the frames

e0 =

√
k
1− λ

1+ λ
(sinh tdρ + cosh t coth ρdt) , e1 = · · · .

so that the metric is

ds2 = ηabe
aeb , ηab = diag(−1, 1, . . . , 1) .

I In R6 denote by

J2 : Kahler form ,

J3 : Real part of complex differential form of type (3, 0) .



Then, there are two possibilities [KS-Thompson 14]:

I Type-IIB

F5 = (1+ ?)f5 ,

f5 =
1√
k

√
4λ

1− λ2
sinω sinh ρ e0 ∧ e3 ∧ J3 .

I Type�IIA

F2 =
1√
k

√
4λ

1− λ2
sinω sinh ρ e0 ∧ e3 ,

F4 =
1√
k

√
4λ

1− λ2
sinω sinh ρ e1 ∧ e2 ∧ J2 .

Deformation of the black hole found in [Witten 91] .



Concluding remarks

I New integrable theories, as deformations of exact CFT WZW
models

I The action can be thought of as the e�ective all-loop action
for the non-Abelian (bosonized) Thirring model.

I It is possible to compute the exact β-function and anomalous
dimensions and correlation functions of primary �elds using the
leading order perturbative result and symmetry and analyticity
arguments.

I Coset versions G/H of these models can be embedded in
type-II supergravity and represent deformations of SYM within
the AdS/CFT correspondence.

I Intresting continuations:
I Exact in both k and λ β-function and anomalous dims. First

step large-N limit
I Cases with anisotropy i.e. λab 6= λδab; some are integrable.
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