Painlevé equations and four dimensional $\mathcal{N}=2$ theories

Antonio Sciarappa

KIAS

with G. Bonelli, O. Lisovyy, K. Maruyoshi, A. Tanzini

Part 1: existence of a precise correspondence

class ${\mathcal S}$ theories \iff Painlevé equations

Class S theories: 4d $\mathcal{N} = 2$ theories constructed from 6d $\mathcal{N} = (2,0)$

Painlevé: special 2° order non-linear Ordinary Differential Equations

Part 1: existence of a precise correspondence

class ${\mathcal S}$ theories \iff Painlevé equations

Class S theories: 4d $\mathcal{N} = 2$ theories constructed from 6d $\mathcal{N} = (2,0)$

Painlevé: special 2° order non-linear Ordinary Differential Equations

Part 2: correspondence implies equivalence

solution Painlevé equations \iff magnetic, dyonic Z_{Nek}

and can be used to compute Z_{Nek} at strong coupling

Class ${\mathcal S}$ theories and Hitchin systems

Class S theories [Gaiotto]: class of four dimensional $\mathcal{N} = 2$ theories, constructed from 6d $\mathcal{N} = (2,0)$ theory via twisted compactification on $\mathcal{C}_{g,n}$

6d
$$\mathcal{N} = (2,0)$$
 theory of type A_1 on $\mathbb{R}^3 \times S_R^1 \times C_{g,n}$
$$\bigcup C_{g,n}$$
4d $\mathcal{N} = 2$ theory of class \mathcal{S}

Class S theories [Gaiotto]: class of four dimensional $\mathcal{N} = 2$ theories, constructed from 6d $\mathcal{N} = (2,0)$ theory via twisted compactification on $\mathcal{C}_{g,n}$

6d
$$\mathcal{N} = (2,0)$$
 theory of type A_1 on $\mathbb{R}^3 \times S_R^1 \times C_{g,n}$
$$\bigcup C_{g,n}$$
4d $\mathcal{N} = 2$ theory of class \mathcal{S}

Class S theories are naturally associated to Hitchin system [GMN]:

4d
$$\mathcal{N} = 2$$
 theory of class \mathcal{S}
$$\bigcup S_R^1$$

3d $\mathcal{N} = 4$ theory on \mathbb{R}^3 ; σ -model with hyperkähler target \mathcal{M}_H

The target \mathcal{M}_H coincides with the moduli space of a Hitchin system associated to the punctured Riemann surface $C_{g,n}$ More in detail, \mathcal{M}_H is the moduli space of solutions of the equations

$$\begin{aligned} F_{z\bar{z}} + R^2[\varphi_z,\bar{\varphi}_{\bar{z}}] &= 0\\ D_{\bar{z}}\varphi_z &= 0 \mod G\\ D_z\bar{\varphi}_{\bar{z}} &= 0 \end{aligned}$$

with prescribed singular behaviour at the punctures of $C_{g,n}$

More in detail, \mathcal{M}_H is the moduli space of solutions of the equations

$$\begin{split} F_{z\bar{z}} + R^2[\varphi_z,\bar{\varphi}_{\bar{z}}] &= 0\\ D_{\bar{z}}\varphi_z &= 0 \mod G\\ D_z\bar{\varphi}_{\bar{z}} &= 0 \end{split}$$

with prescribed singular behaviour at the punctures of $C_{g,n}$

- z: complex coordinate on $C_{g,n}$
- A_z : gauge connection on $C_{g,n}$ ($F_{z\bar{z}}$ field strength);
- φ_z : complex adjoint scalar ((1,0)-form after twist);
- two types of singular behaviour at the puncture $z = z_*$:

$$\varphi_z \sim \frac{1}{z - z_*}$$
, regular singularity (simple pole)
 $\varphi_z \sim \frac{1}{(z - z_*)^{1+r}}$, irregular singularity (higher order pole, $r \ge 1$)

Different $C_{g,n} \iff$ different Hitchin system, different 4d theories; focus on rank 1 theories with genus 0 Riemann surface:

- SU(2) SQCD with flavor $N_F = 0, 1, 2, 3, 4$
- Argyres-Douglas theories H_0, H_1, H_2

Example: SU(2) $N_F = 4$ SQCD from $C_{0,4}$ with four regular punctures

Different $C_{g,n} \iff$ different Hitchin system, different 4d theories; focus on rank 1 theories with genus 0 Riemann surface:

- SU(2) SQCD with flavor $N_F = 0, 1, 2, 3, 4$
- Argyres-Douglas theories H_0, H_1, H_2

Example: SU(2) $N_F = 4$ SQCD from $C_{0,4}$ with four regular punctures

Theories related by coalescence diagram (collision of punctures):

Structure of \mathcal{M}_H : hyperkähler space \Rightarrow many complex structures $\zeta \in \mathbb{CP}^1$

Structure of \mathcal{M}_H : hyperkähler space \Rightarrow many complex structures $\zeta \in \mathbb{CP}^1$

 $\zeta = 0$: reduction $\mathcal{M}_H \longrightarrow \mathcal{M}_{Higgs}$, moduli space pairs $(D_{\bar{z}}, \varphi_z)$ such that

$$D_{\bar{z}}\varphi_z = 0$$

- equivalent to torus fibration over Coulomb branch \mathcal{B}_{4d} ;
- associated to complex algebraic integrable system [Donagi-Witten]: Hamiltonian $\Leftrightarrow u$, spectral curve \Leftrightarrow Seiberg-Witten curve

$$\det(y - \varphi_z) = 0 \quad \Longrightarrow \quad y^2 = \frac{1}{2} \operatorname{Tr} \varphi_z^2$$

Structure of \mathcal{M}_H : hyperkähler space \Rightarrow many complex structures $\zeta \in \mathbb{CP}^1$

 $\zeta = 0$: reduction $\mathcal{M}_H \longrightarrow \mathcal{M}_{Higgs}$, moduli space pairs $(D_{\bar{z}}, \varphi_z)$ such that

$$D_{\bar{z}}\varphi_z = 0$$

- equivalent to torus fibration over Coulomb branch \mathcal{B}_{4d} ;
- associated to complex algebraic integrable system [Donagi-Witten]: Hamiltonian $\Leftrightarrow u$, spectral curve \Leftrightarrow Seiberg-Witten curve

$$\det(y - \varphi_z) = 0 \quad \Longrightarrow \quad y^2 = \frac{1}{2} \operatorname{Tr} \varphi_z^2$$

 $\zeta \in \mathbb{C}^{\times}$: reduction $\mathcal{M}_H \longrightarrow \mathcal{M}_{flat}$, flat connections $\nabla = \frac{R}{\zeta} \varphi + D + R \zeta \bar{\varphi}$

• important limit: $R \to 0$, $\zeta \to 0$ with $\zeta/R = \hbar$ fixed (oper limit)

$$\nabla \quad \xrightarrow[oper]{} \quad \hbar \partial_z - \varphi_z$$

• opers of rank 1 theories are naturally associated to Painlevé equations

Painlevé equations

Painlevé (~ 1900): classify all non-linear 2° order, degree 1 ODE

$$\ddot{q} = F(q, \dot{q}; t)$$

such that

- F rational in q, \dot{q} , meromorphic in t;
- Painlevé property: the only movable singularities of q are poles (i.e. the positions of branch points and essential singularities do not depend on the initial data / integration constants)

Painlevé (~ 1900): classify all non-linear 2° order, degree 1 ODE

$$\ddot{q} = F(q, \dot{q}; t)$$

such that

- F rational in q, \dot{q} , meromorphic in t;
- Painlevé property: the only movable singularities of q are poles (i.e. the positions of branch points and essential singularities do not depend on the initial data / integration constants)

Final result: six non-trivial equations

	PVI	\mathbf{PV}	PIV	PIII	PII	\mathbf{PI}
# parameters	4	3	2	2	1	0

Examples: $\ddot{q} = 6q^2 + t$ (PI), $\ddot{q} = 2q^3 + tq + \alpha$ (PII)

Later developments (Lax pair formulation, analysis space initial conditions) led to a refinement of the classification; equations related by *confluence*:

Later developments (Lax pair formulation, analysis space initial conditions) led to a refinement of the classification; equations related by *confluence*:

Diagram analogue to the gauge theory one:

First hint towards the existence of a Painlevé/gauge theory correspondence

I) Painlevé arise as equations of motion classical Hamiltonian systems

$$\frac{dq}{dt} = \frac{\partial \mathcal{H}_a(q, p; t)}{\partial p} \quad , \quad \frac{dp}{dt} = -\frac{\partial \mathcal{H}_a(q, p; t)}{\partial q}$$

with time-dependent Hamiltonian $\mathcal{H}_a(q, p; t)$ $(a = I, \ldots, VI)$

I) Painlevé arise as equations of motion classical Hamiltonian systems

$$\frac{dq}{dt} = \frac{\partial \mathcal{H}_a(q, p; t)}{\partial p} \quad , \quad \frac{dp}{dt} = -\frac{\partial \mathcal{H}_a(q, p; t)}{\partial q}$$

with time-dependent Hamiltonian $\mathcal{H}_a(q, p; t)$ (a = I, ..., VI)

We can study time evolution of $\mathcal{H}_a(t) \Longrightarrow$ new 2° order, degree 2 ODE:

• σ -Painlevé equations: ODEs satisfied by

$$\sigma_a(t) \propto \mathcal{H}_a(q(t), p(t); t)$$

• τ -Painlevé equations: ODEs satisfied by $\tau_a(t)$

$$\sigma_a(t) \propto \frac{d}{dt} \ln \tau_a(t)$$

The $\tau_a(t)$ function is the one which usually enters in physical problems

II) Painlevé equations also arise from isomonodromic deformations of systems of first order *linear* ODE with rational coefficients

II) Painlevé equations also arise from isomonodromic deformations of systems of first order *linear* ODE with rational coefficients

Consider a 2×2 system of linear ODE on a punctured Riemann sphere $C_{0,n}$

$$\frac{d}{dz}\Psi(z)=A(z)\Psi(z)$$

where $z \in C_{0,n}$ and the matrices $A(z) \in sl(2,\mathbb{C}), \Psi(z) \in GL(2,\mathbb{C})$

$$A(z) = \sum_{\nu=1}^{n} \frac{A^{(\nu)}(z)}{(z-z_{\nu})^{r_{\nu}+1}} \quad \text{with} \quad A^{(\nu)}(z) = \sum_{i=0}^{r_{\nu}} A_{i}^{(\nu)} (z-z_{\nu})^{r_{\nu}-i}$$

II) Painlevé equations also arise from isomonodromic deformations of systems of first order *linear* ODE with rational coefficients

Consider a 2×2 system of linear ODE on a punctured Riemann sphere $C_{0,n}$

$$\frac{d}{dz}\Psi(z) = A(z)\Psi(z)$$

where $z \in C_{0,n}$ and the matrices $A(z) \in sl(2,\mathbb{C}), \Psi(z) \in GL(2,\mathbb{C})$

$$A(z) = \sum_{\nu=1}^{n} \frac{A^{(\nu)}(z)}{(z-z_{\nu})^{r_{\nu}+1}} \quad \text{with} \quad A^{(\nu)}(z) = \sum_{i=0}^{r_{\nu}} A_{i}^{(\nu)} (z-z_{\nu})^{r_{\nu}-i}$$

As for φ_z in the Hitchin system, a singularity $z = z_{\nu}$ can be

- regular $(r_{\nu} = 0) \Longrightarrow \Psi$ has branch point, monodromy matrices M_{ν}
- irregular $(r_{\nu} \ge 1) \Longrightarrow \Psi$ has essential singularity, Stokes matrices $S_k^{(\nu)}$

How do Painlevé equations arise in this setting?

- Choice of $A(z) \Longrightarrow$ fixed $M_{\nu} / S_k^{(\nu)}$ matrices
- Choice of $M_{\nu} / S_k^{(\nu)} \Longrightarrow$ many-parameters family of $A(z; \vec{t})$

Isomonodromic deformations of $A(z; \vec{t})$: deformations \vec{t} preserving $M_{\nu}/S_k^{(\nu)}$

How do Painlevé equations arise in this setting?

- Choice of $A(z) \Longrightarrow$ fixed $M_{\nu} / S_k^{(\nu)}$ matrices
- Choice of $M_{\nu} / S_k^{(\nu)} \Longrightarrow$ many-parameters family of $A(z; \vec{t})$

Isomonodromic deformations of $A(z; \vec{t})$: deformations \vec{t} preserving $M_{\nu}/S_k^{(\nu)}$

Example: A(z;t) with 4 regular singularities at $0, 1, t, \infty$

Isomonodromic deformation: variations of t which do not change M_{ν}

1-parameter case: deformation of A(z;t) by t is isomonodromic if

$$\frac{d}{dt}\Psi(z;t)=B(z;t)\Psi(z;t)$$

for some matrix $B(z;t) \in sl(2,\mathbb{C})$

1-parameter case: deformation of A(z;t) by t is isomonodromic if

$$\frac{d}{dt}\Psi(z;t)=B(z;t)\Psi(z;t)$$

for some matrix $B(z;t) \in sl(2,\mathbb{C})$

Matrix B(z;t) constrained: we have an overdetermined system

$$\begin{cases} \partial_z \Psi(z;t) = A(z;t)\Psi(z;t) \\ \partial_t \Psi(z;t) = B(z;t)\Psi(z;t) \end{cases} \qquad A(z;t), B(z;t) \text{ Lax pair}$$

 \implies need compatibility condition $\Psi_{zt} = \Psi_{tz}$ equivalent to

$$\partial_t A(z;t) = \partial_z B(z;t) + [B(z;t), A(z;t)]$$

1-parameter case: deformation of A(z;t) by t is isomonodromic if

$$\frac{d}{dt}\Psi(z;t)=B(z;t)\Psi(z;t)$$

for some matrix $B(z;t) \in sl(2,\mathbb{C})$

Matrix B(z;t) constrained: we have an overdetermined system

$$\begin{cases} \partial_z \Psi(z;t) = A(z;t)\Psi(z;t) \\ \partial_t \Psi(z;t) = B(z;t)\Psi(z;t) \end{cases} \qquad A(z;t), B(z;t) \text{ Lax pair}$$

 \implies need compatibility condition $\Psi_{zt} = \Psi_{tz}$ equivalent to

$$\partial_t A(z;t) = \partial_z B(z;t) + [B(z;t), A(z;t)]$$

This condition gives a set of equations which reduce to a Painlevé equation; choice of singularities in $C_{0,n} \iff$ choice of Painlevé equation Introduce an overall scale κ by rescaling parameters:

$$(\kappa \partial_z - A(z;t)) \Psi(z;t) = 0$$

Equivalence Painlevé $\kappa \partial_z - A(z;t) \iff$ Hitchin oper $\hbar \partial_z - \varphi_z$

Introduce an overall scale κ by rescaling parameters:

$$(\kappa \partial_z - A(z;t)) \Psi(z;t) = 0$$

Equivalence Painlevé $\kappa \partial_z - A(z;t) \iff$ Hitchin oper $\hbar \partial_z - \varphi_z$

Painlevé isomonodromic problem	$\mathcal{N} = 2$ theory Hitchin system		
Riemann surface $C_{0,n}$	compactification surface $C_{0,n}$		
Painlevé connection $\kappa \partial_z - A$	oper $\hbar \partial_z - \varphi_z$		
Painlevé time t	gauge coupling Λ		
Painlevé σ -function (Hamiltonian)	Coulomb branch parameter u		
Painlevé free parameters	masses $\mathcal{N} = 2$ theory		
curve $y^2 = \frac{1}{2} \text{Tr}A^2$	Seiberg-Witten curve $y^2 = \frac{1}{2} \text{Tr} \varphi_z^2$		

Introduce an overall scale κ by rescaling parameters:

$$(\kappa \partial_z - A(z;t)) \Psi(z;t) = 0$$

Equivalence Painlevé $\kappa \partial_z - A(z;t) \iff$ Hitchin oper $\hbar \partial_z - \varphi_z$

Painlevé isomonodromic problem	$\mathcal{N} = 2$ theory Hitchin system		
Riemann surface $C_{0,n}$	compactification surface $C_{0,n}$		
Painlevé connection $\kappa \partial_z - A$	oper $\hbar \partial_z - \varphi_z$		
Painlevé time t	gauge coupling Λ		
Painlevé σ -function (Hamiltonian)	Coulomb branch parameter u		
Painlevé free parameters	masses $\mathcal{N} = 2$ theory		
curve $y^2 = \frac{1}{2} \text{Tr}A^2$	Seiberg-Witten curve $y^2 = \frac{1}{2} \text{Tr} \varphi_z^2$		
Painlevé τ -function	(dual) Nekrasov partition function		

Painlevé $\tau\text{-functions}$ and CFT

Consider PVI $(C_{0,4})$; the solution to the associated system of linear ODE

$$\frac{d\Psi}{dz} = A(z;t)\Psi$$

can be expressed in terms of a c = 1 free fermion CFT [Jimbo-Miwa-Sato]:

$$\Psi_{\alpha\beta}(z_0;z) = (z-z_0) \frac{\langle \overline{\psi}_{\beta}(z_0)\psi_{\alpha}(z)\mathcal{O}_0\mathcal{O}_t\mathcal{O}_1\mathcal{O}_{\infty} \rangle}{\langle \mathcal{O}_0\mathcal{O}_t\mathcal{O}_1\mathcal{O}_{\infty} \rangle}$$

with free fermions $\psi_{\alpha}, \overline{\psi}_{\beta}$ ($\alpha, \beta = 1, 2$) and "twist" fields $\mathcal{O}_{z_{\nu}}$

Consider PVI $(C_{0,4})$; the solution to the associated system of linear ODE

$$\frac{d\Psi}{dz} = A(z;t)\Psi$$

can be expressed in terms of a c = 1 free fermion CFT [Jimbo-Miwa-Sato]:

$$\Psi_{\alpha\beta}(z_0;z) = (z-z_0) \frac{\langle \overline{\psi}_{\beta}(z_0)\psi_{\alpha}(z)\mathcal{O}_0\mathcal{O}_t\mathcal{O}_1\mathcal{O}_{\infty} \rangle}{\langle \mathcal{O}_0\mathcal{O}_t\mathcal{O}_1\mathcal{O}_{\infty} \rangle}$$

with free fermions $\psi_{\alpha}, \overline{\psi}_{\beta}$ ($\alpha, \beta = 1, 2$) and "twist" fields $\mathcal{O}_{z_{\nu}}$

Idea: matrix A(z;t) determines monodromies M_{ν} of Ψ

$$\Psi \to \Psi M_{\nu}$$
 when $z - z_{\nu} \to e^{2\pi i} (z - z_{\nu})$

Having a correlator with such M_{ν} requires the Operator Product Expansion

OPE:
$$\overline{\psi}_{\beta}(z_0)\psi(z) \sim \frac{\delta_{\alpha\beta}}{z-z_0}$$
, $\psi_{\alpha}(z)\mathcal{O}_{z_{\nu}} \sim \mathcal{O}_{z_{\nu},\alpha}^{(0)}(z-z_{\nu})^{A_0^{(\nu)}}$

Do fields $\mathcal{O}_{z_{\nu}}$ with such properties exist?

Yes: twist fields can be realized in terms of fermion bilinears

$$\mathcal{O}_{z_{\nu}} = \exp\left(\int_{\mathcal{C}_{\nu}} \operatorname{Tr}[A_0^{(\nu)} J(y)] dy\right), \quad J_{\beta\alpha} = \overline{\psi}_{\beta} \psi_{\alpha} \ \widehat{sl}(2)_1 \text{ current}$$

with conformal dimension $\Delta_{\nu} = \theta_{\nu}^2 = \frac{1}{2} \text{Tr}(A_0^{(\nu)})^2, \pm \theta_{\nu}$ eigenvalues $A_0^{(\nu)}$

Yes: twist fields can be realized in terms of fermion bilinears

$$\mathcal{O}_{z_{\nu}} = \exp\left(\int_{\mathcal{C}_{\nu}} \operatorname{Tr}[A_0^{(\nu)} J(y)] dy\right), \quad J_{\beta\alpha} = \overline{\psi}_{\beta} \psi_{\alpha} \ \widehat{sl}(2)_1 \text{ current}$$

with conformal dimension $\Delta_{\nu} = \theta_{\nu}^2 = \frac{1}{2} \text{Tr}(A_0^{(\nu)})^2, \pm \theta_{\nu}$ eigenvalues $A_0^{(\nu)}$

Bonus: from this construction the PVI τ -function can be realized as

 $\tau_{\rm VI}(t) = \langle \mathcal{O}_0 \mathcal{O}_t \mathcal{O}_1 \mathcal{O}_\infty \rangle$

Need to consider the c = 1 four-point conformal block

Remark: subtlety with dimension $\Delta_{\sigma_{0t}}$

- $\psi_{\alpha}(z)$: monodromy $M_t M_0$ around fields in the OPE $\mathcal{O}_0 \mathcal{O}_t$
- Let $e^{\pm 2\pi i \sigma_{0t}}$ be eigenvalues of $M_t M_0$: σ_{0t} defined up to $n \in \mathbb{Z}$
- Expect infinitely many primaries in OPE $\mathcal{O}_0 \mathcal{O}_t$ with $\Delta_{\sigma_{0t}} = (\sigma_{0t} + n)^2$

 $\tau_{\rm VI}(t)$ will involve linear combination of conformal blocks

Remark: subtlety with dimension $\Delta_{\sigma_{0t}}$

- $\psi_{\alpha}(z)$: monodromy $M_t M_0$ around fields in the OPE $\mathcal{O}_0 \mathcal{O}_t$
- Let $e^{\pm 2\pi i \sigma_{0t}}$ be eigenvalues of $M_t M_0$: σ_{0t} defined up to $n \in \mathbb{Z}$
- Expect infinitely many primaries in OPE $\mathcal{O}_0 \mathcal{O}_t$ with $\Delta_{\sigma_{0t}} = (\sigma_{0t} + n)^2$

 $\tau_{\rm VI}(t)$ will involve linear combination of conformal blocks

We can now use AGT (instanton) representation of the 4-point correlators

 \implies express $\tau_{\rm VI}(t)$ in terms of SU(2) $N_F = 4$ instantons

Explicitly, obtain $\tau_{\rm VI}(t)$ as a $t \sim 0$ series expansion [Gamayun-Iorgov-Lisovyy]

$$\tau_{\mathrm{VI}}(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta_{0t}} Z_{\mathrm{Nek}}^{N_F = 4}(\vec{\theta}, \sigma_{0t} + n; t)$$

$$\tau_{\mathrm{VI}}(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta_{0t}} Z_{\mathrm{Nek}}^{N_F = 4}(\vec{\theta}, \sigma_{0t} + n; t)$$

Dictionary with $\mathcal{N} = 2 SU(2) N_F = 4$ theory:

- $c = 1 \Longrightarrow \epsilon_1 = -\epsilon_2 = \epsilon$ (overall scale, analogue of $\kappa/\hbar \in \mathbb{C}^{\times}$)
- conformal dimensions $\theta_{\nu}^2 \longleftrightarrow$ masses m_{ν}^2/ϵ^2
- first Painlevé integration constant $\sigma_{0t} \leftrightarrow$ Coulomb parameter a/ϵ
- second Painlevé integration constant $\eta_{0t} \longleftrightarrow$ dual parameter a_D/ϵ
- time variable $t \sim 0 \iff$ instanton parameter Λ/ϵ (weak coupling)

$$\tau_{\mathrm{VI}}(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta_{0t}} Z_{\mathrm{Nek}}^{N_F = 4}(\vec{\theta}, \sigma_{0t} + n; t)$$

Dictionary with $\mathcal{N} = 2 SU(2) N_F = 4$ theory:

- $c = 1 \Longrightarrow \epsilon_1 = -\epsilon_2 = \epsilon$ (overall scale, analogue of $\kappa/\hbar \in \mathbb{C}^{\times}$)
- conformal dimensions $\theta_{\nu}^2 \longleftrightarrow$ masses m_{ν}^2/ϵ^2
- first Painlevé integration constant $\sigma_{0t} \leftrightarrow$ Coulomb parameter a/ϵ
- second Painlevé integration constant $\eta_{0t} \longleftrightarrow$ dual parameter a_D/ϵ
- time variable $t \sim 0 \iff$ instanton parameter Λ/ϵ (weak coupling)

Following coalescence diagram, obtain small t series for $\tau_{\rm V}$, $\tau_{\rm III_1}$, $\tau_{\rm III_2}$, $\tau_{\rm III_3}$:

$$\tau_{\rm V}, \tau_{\rm III_1}, \tau_{\rm III_2}, \tau_{\rm III_3} \ (t \sim 0) \quad \Longleftrightarrow \quad SU(2) \ N_F = 3, 2, 1, 0 \ (\Lambda \sim 0)$$

We can analyse τ -functions at $t \to \infty$ (in a fixed Stokes sector)

• Use τ -functions $t \to \infty$ asymptotic behaviour [Jimbo] + make ansatz

$$\tau(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta} \, "Z_{\text{Nek}}(\vec{\theta}, \sigma + n; t)"$$

• Plug ansatz into τ -Painlevé equation and determine $t \to \infty$ expansion

We can analyse τ -functions at $t \to \infty$ (in a fixed Stokes sector)

• Use τ -functions $t \to \infty$ asymptotic behaviour [Jimbo] + make ansatz

$$\tau(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta} \, "Z_{\text{Nek}}(\vec{\theta}, \sigma + n; t)"$$

- Plug ansatz into τ -Painlevé equation and determine $t \to \infty$ expansion
- \implies extract " Z_{Nek} " at strong coupling $(\Lambda \rightarrow \infty)$ and $\epsilon_1 + \epsilon_2 = 0$:

$$\tau_{\text{IV}}, \tau_{\text{II}}, \tau_{\text{I}} (t \to \infty) \iff \text{Argyres-Douglas } H_2, H_1, H_0 (\Lambda \to \infty)$$

Correspondence Stokes sectors \iff strong coupling points

We can analyse τ -functions at $t \to \infty$ (in a fixed Stokes sector)

• Use τ -functions $t \to \infty$ asymptotic behaviour [Jimbo] + make ansatz

$$\tau(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta} \, "Z_{\text{Nek}}(\vec{\theta}, \sigma + n; t)"$$

- Plug ansatz into τ -Painlevé equation and determine $t \to \infty$ expansion
- \implies extract "Z_{Nek}" at strong coupling $(\Lambda \rightarrow \infty)$ and $\epsilon_1 + \epsilon_2 = 0$:

$$\tau_{\text{IV}}, \tau_{\text{II}}, \tau_{\text{I}} \ (t \to \infty) \quad \Longleftrightarrow \quad \text{Argyres-Douglas} \ H_2, H_1, H_0 \ (\Lambda \to \infty)$$

Correspondence Stokes sectors \iff strong coupling points

Proceed in the same way for $\tau_{\rm V}, \tau_{\rm III_1}, \tau_{\rm III_2}, \tau_{\rm III_3}$

$$\tau_{\rm V}, \tau_{\rm III_1}, \tau_{\rm III_2}, \tau_{\rm III_3} \ (t \to \infty) \quad \Longleftrightarrow \quad SU(2) \ N_F = 3, 2, 1, 0 \ (\Lambda \to \infty)$$

Example: τ -function for PII / Argyres-Douglas H_1

Expansion 1: $\arg t = \pi, \pm \frac{\pi}{3}$ $\tau_{II}(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta} \mathcal{G}(\sigma + n, s), \quad 4t^3 = 9s^2$ $\mathcal{G}(\sigma, s) = e^{-\frac{3s^2}{32} + \sigma s} s^{-\frac{1}{12} - \frac{\sigma^2}{2} + \frac{\theta^2}{3}} 12^{-\frac{\sigma^2}{2}} G(1 + \sigma) \left[1 + \sum_{k=1}^{\infty} \frac{D_k(\sigma)}{s^k} \right]$ $D_1(\sigma) = \frac{\sigma(34\sigma^2 - 96\theta^2 + 31)}{72}, \quad D_2(\sigma) = \dots$

Expansion 2:
$$\arg t = 0, \pm \frac{2\pi}{3}$$

 $\tau_{II}(t) = \sum_{n \in \mathbb{Z}} e^{2\pi i n \eta} \mathcal{G}(\sigma + n, s), \qquad 8t^3 = 9s^2$
 $\mathcal{G}(\sigma, s) = e^{i\sigma s + \frac{i\pi\sigma^2}{2}} s^{-\sigma^2 + \frac{\theta^2}{12}} 6^{-\sigma^2} \mathcal{G}(1 + \sigma + \frac{\theta}{2}) \mathcal{G}(1 + \sigma - \frac{\theta}{2}) \left[1 + \sum_{k=1}^{\infty} \frac{D_k(\sigma)}{s^k} \right]$
 $D_1(\sigma) = -\frac{i\sigma(68\sigma^2 - 9\theta^2 + 2)}{36}, \quad D_2(\sigma) = \dots$

Perspectives

Differential Painlevé equations are part of a more general story [Sakai]

0) A₀⁽¹⁾ is a boss of Painlevé equations (elliptic Painlevé)
1) The A-series give q-difference Painlevé equations
2) A₀^{(1)**}, A₁^{(1)*}, A₂^{(1)*}: difference Painlevé (Boalch) corresponding to [(111111, 222, 33)], [(1111), (1111), (22)], [(1111), (111)].

3) Eight in the box are Painlevé differential equations.

0),1) rank 1 6d $\mathcal{N} = (1,0)$ and 5d $\mathcal{N} = 1$ SU(2) $N_F = 0, \ldots, 7$

2) rank 1 4d Minahan-Nemeschansky (from a talk by [Ohyama])

Conclusions

Hitchin systems 4d $\mathcal{N} = 2 \iff$ Painlevé isomonodromic problems:

- oper connection $\hbar \partial_z \varphi_z \iff$ Painlevé connection $\kappa \partial_z A$
- "dual" instanton partition function \iff Painlevé τ -function

Time evolution $\tau(t)$ determined by isomonodromic deformation condition; used to extract strongly-coupled " $Z_{\text{Nek}}^{c=1}$ " of Argyres-Douglas and SQCD Hitchin systems 4d $\mathcal{N} = 2 \iff$ Painlevé isomonodromic problems:

- oper connection $\hbar \partial_z \varphi_z \iff$ Painlevé connection $\kappa \partial_z A$
- "dual" instanton partition function \Longleftrightarrow Painlevé $\tau\text{-function}$

Time evolution $\tau(t)$ determined by isomonodromic deformation condition; used to extract strongly-coupled " $Z_{\text{Nek}}^{c=1}$ " of Argyres-Douglas and SQCD

Future directions:

- Argyres-Douglas at superconformal point?
- flat sections: "dual" ramified partition function?
- $c \neq 1$: quantization of Painlevé Hamiltonian?
- q-difference Painlevé: relation to non-perturbative topological strings?

Thanks!