New Results from CMS

Stathes Paganis (National Taiwan University) on behalf of the CMS collaboration NCTS Annual Meeting, Hsinchu, Taiwan, 8-12-2016

Taiwanese-Secrets.com

Outline

- Introduction to CMS
- Standard Model and Higgs
- Supersymmetry
- Exotics / BSM
 - Resonances: Dijet, dilepton, tau-tau, diphoton
- Dark Matter searches / Invisible Higgs

Data Collected in 2016

CMS Integrated Luminosity, pp, 2016, $\sqrt{s} =$ 13 TeV

At 13TeV collected **38.27** fb⁻¹ (2016) and 3.8 fb⁻¹ (2015). Thanks to the amazing machine performance.

SM W and Z production

CMS-PAS-SMP-15-004

Measured inclusive Z/W cross sections and differential W+jets cross sections.

SM Inclusive cross sections

A wealth of SM measurements in 7, 8 and 13 TeV.

SM Inclusive cross sections (2)

Diboson SM production cross sections.

Top-pair production

Top-pair production (2)

ttH shows a mild excess wrt SM in both run1 and run2.

tt+W/Z production

CMS-PAS-TOP-16-017

 $\sigma(\text{pp} \rightarrow \text{t\bar{t}Z}) = 0.70^{+0.16}_{-0.15}(\text{stat.}) \stackrel{+0.14}{_{-0.12}}(\text{sys.}) \text{ pb}$

 $\sigma(pp \rightarrow t\bar{t}W) = 0.98 \, {}^{+0.23}_{-0.22}(stat.) \, {}^{+0.22}_{-0.18}(sys.) \, \, pb$

- ttW: 2 same-sign leptons.
- ttZ: 3 or 4 leptons.

8-Dec-2016

$H \rightarrow \gamma \gamma$ production at 13TeV

- Higgs rediscovery in run2.
- MVA photon ID & vertex selection.
- Fit signal + bkg in 8 categories.
- Observed (exp) sig: 5.6σ (6.2σ).

$H \rightarrow ZZ \rightarrow 4I$ production at 13TeV

- Narrow peak with high S/B.
- 2D fit of m4l & matrix element discriminant.
- Observed (expected) significance = 6.2σ (6.5σ).

GeV

 $m_{\rm H} = 124.50^{+0.48}_{-0.46}$

CMS-PAS-HIG-16-033

Properties: $H \rightarrow \gamma \gamma$,4I at 13TeV

0.2 0.4 0.6 0.8

р

1.2 1.4 1.6 1.8

1

2

κ_v

8-Dec-2016 CMS-PAS-HIG-16-020 & 33

ttH production: multi-lepton final state

Figure 1: Possible Feynman diagrams for ttH production at pp colliders, where the Higgs boson decays to WW^{*}, ZZ^{*}, and $\tau\tau$ (from left to right). Subsequent W, Z, and t decays are shown representing examples of final states with four leptons, three leptons, and two same-sign leptons, respectively.

- Direct probe of top Yukawa coupling.
- Modes measured: $H \rightarrow WW/ZZ/\tau\tau$.
- Irreducible background from ttV.
- Reducible background from tt+jets.
- Categories: 2 same sign leptons or \geq 3 leptons.
- Signal strength of $2^{+0.8}_{-0.7} \times \sigma_{SM}$ 2015+2016 data.

ttH production: multileptons

CMS-PAS-HIG-16-022

di-Higgs production

- Sensitivity to SM HH is low, but production enhanced by BSM.
- bbbb: high statistics; best sensitivity at high mass.
- bb $\gamma\gamma$: low statistics, cleaner FS with $\gamma\gamma$; best sensitivity at low mass.

SUSY: strong production

- Variety of CMS SUSY searches.
- R-parity conserving:
 - Squark & gluino.
 - 3rd generation squark.
 - Electroweak gaugino.
 - Compressed spectra.
- R-parity violating sparticle decays
- Gauge-mediated SUSY breaking
- Typically highest cross-section for gluino/squark pairs with decays to jets + MET.

SUSY: strong production

SUSY: multileptons

- With strong production limits saturating, searches extending to more challenging scenarios.
- Clean signature: based on jet activity can be sensitive to strong or electroweak SUSY production.

<u>Strong</u>: exclude gluino < 1250 GeV and LSP < 750 GeV. <u>EWK</u>: exclude chargino < 1 TeV.

BSM exotics limits

13 TeV

TeV

2

ġ.

CMS Preliminary

dijets, A+ LL/RR dijets, A- LL/RR dimuons. A+ LLIM dimuons, A- LLIM dielectrons, A+ LLIM dielectrons, A- LLIM single e, A HnCM single µ, Λ HnCM inclusive jets, A+ inclusive jets, Λ-

CMS Exotica Physics Group Summary – ICHEP, 2016

Dijet resonances

CMS-EXO-16-032 11-Nov-2016

Dijet resonances: new limits

Dilepton resonances

CMS-PAS-EXO-16-031

CMS-EXO-16-008 (20-Nov-2016)

tau-tau resonances

Events / GeV

10

10

10

10-2

10-3

Byg 1.5 / sq0 0.5

Events / GeV

10-1

10-2

10

1.5

0.5

Obs / Bkg

Diphoton Resonances

CMS PAS EXO-16-027

2015 + 2016 + 8 TeV data give $< 2\sigma$ significance at 750GeV.

Dark Matter searches

Summary of Dark Matter searches using 13TeV data.

DM searches

 A^{10^5} Events / B^{10^4} / B^{10^4}

 10^{2}

10

10⁻¹

10⁻²

0.5

 0^{2}

10

1

10⁻¹

10⁻²

10⁻³

З

0¹200

300

Data/SM

200

post-fit

🕀 pre-fit

Beam halo

 $W_{\nu} \rightarrow h_{\nu}$

iet→ γ MisID

Bkg. uncertainty

600

 γ +jet, W($\mu\nu$), Z(II) γ , W($\tau\nu$), tt γ

DM, M _= 200GeV, m__= 50GeV

500

400

600

700

800

800

Mono-y

900 1000

⊭_⊤ [GeV]

400

CMS Preliminary

Data / Pred.

Events/GeV

CMS Preliminary

Mono-jet

- DM masses excluded up to about 550 GeV •
- Vector mediator exclusion to 1.95 TeV •

EXO-16-037, 038, 039

Invisible Higgs decays

Summary

- We presented new results from CMS including 2016 data.
- CMS has performed a host of analyses, ranging from SM measurements, to a variety of BSM searches.
 - No significant deviations from the SM observed.
- Looking forward to results with full > 35/fb of 13 TeV data, luminosity available thanks to the exceptional performance of LHC.
- Talk focused on a small subset of CMS results; full set of CMS results can be accessed at:

http://cms-results.web.cern.ch/cmsresults/public-results/publications/

Backup

Run 1 combination JHEP 08 (2016) 045

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \to \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

 Combination of ATLAS and CMS measurements leads to a higher than 5 sigma observation of the VBF production process and the H→ττ decay channel.

Higgs Decay Channels

Decay mode	Branching fraction [%]
$H \rightarrow bb$	57.5 ± 1.9
$H \to WW$	21.6 ± 0.9
$H \rightarrow gg$	8.56 ± 0.86
$H \to \tau \tau$	6.30 ± 0.36
$H \rightarrow cc$	2.90 ± 0.35
$H \rightarrow ZZ$	2.67 ± 0.11
$H ightarrow \gamma \gamma$	0.228 ± 0.011
$H \rightarrow Z\gamma$	0.155 ± 0.014
$H \rightarrow \mu \mu$	0.022 ± 0.001

 $H \rightarrow gg$, cc, $Z\gamma$ not included in the measurement but their contribution is included in the total width.

Strengths/Couplings

Signal Strengths

for a specific process $i \rightarrow H \rightarrow f$

$$\mu_{i} = \frac{\sigma_{i}}{\left(\sigma_{i}\right)_{SM}} \quad \text{and} \quad \mu^{f} = \frac{B^{f}}{\left(B^{f}\right)_{SM}}$$
$$\mu_{i}^{f} = \mu_{i} \cdot \mu^{f}$$

Coupling Modifiers

$$\kappa_j^2 = \sigma_j / \sigma_j^{SM}$$
 or $\kappa_j^2 = \Gamma^j / \Gamma_{SM}^j$

JHEP 08 (2016) 045

Run-2 2016 μ 's

SM Higgs branching ratios

SM Higgs production modes

