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Snowmass QCD Working Group: 1310.5189

W/Z, Higgs & top @ FCChh/SPPC 
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Figure 3: Production rates of SM processes versus the pp CM energy [4].

a low production rate and large SM backgrounds. Moreover, one needs to
disentangle di↵erent contributions from di↵erent contributing diagrams. At
100 TeV, this process will however probe a SM Higgs self-coupling at the ten
percent level [5, 6, 7, 8]. The 100 TeV pp collder could also directly probe
the top Yukawa coupling, via tt̄H production, at the 1% level [9].

Experiments at 100 TeV probe the SM in a regime where the electroweak
symmetry is e↵ectively restored. A couple of new features are worth noting
(more details will be given in Section 6.2.2). First of all, in processes at the
very high energies

p
ŝ� MW , EW gauge bosons are copiously produced by

radiation. For pT ’s approaching ⇠ 10 TeV, the electroweak Sudakov factor
4↵2 log2(p2

T /m2
W ) ⇠ 0.1, and we have “electroweak radiation” in complete

analogy with electromagnetic and gluon radiation. For instance, a W or Z
gauge boson would be radiated o↵ a light quark with 10 TeV of energy with
a probability of 10% and o↵ a gauge boson with a probability of 20%. These
production rates are one-to-two orders of magnitude higher than what we typ-
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Reality in Hadronic Collisions
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(C). Hadron Colliders
LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.3
√

S ∼ 4 TeV.

Collinear splitting is 
one of the dominant phenomena.
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Formalism:

X

q

p

k

Figure 1. Schematic process involving a collinear splitting A ! B + C.

the cross section can be expressed in a factorized form

d�X,BC ' d�X,A ⇥ dPA!B+C , (2.1)

where P is the splitting function for A ! B+C. A given splitting can also act as the “hard”

process for later splittings, building up jets. The factorization of collinear splittings applies

similarly for initial-state particles, leading to the picture of parton distribution functions

(PDFs) for an initial state parton B (or C)

d�AB0!CX ' dPA!B+C ⇥ d�BB0!X , (2.2)

We will discuss this situation in the next section.

Integrating out the azimuthal orientation of the B +C system, the splitting kinemat-

ics are usually parametrized with two variables: a dimensionful scale and a dimensionless

energy-sharing variable z. The parton shower or DGLAP equations are constructed by

using the dimensionful scale as an evolution variable, though the choice is not unique.

Common choices include the transverse momentum kT of B or C relative to A’s three-

momentum vector, the virtuality of the o↵-shell leg (A for final-state showering, B or C for

initial-state showering), the energy-weighted opening angle of the split, or the renormal-

ization scale within dimensional regularization. We will mainly use kT -ordering in what

follows, though we will also discuss some results with virtuality-ordering. The energy-

sharing variable z (z̄ ⌘ 1 � z) is commonly taken to be the energy fraction of A taken

up by B (C). Alternately, z is sometimes defined as the lightcone momentum fraction,

z ⌘ (EB +~pB · p̂A)/(EA + |~pA|). Here, in practice we will use the three-momentum fraction

z ⌘ |~pB|
|~pB| + |~pC | , (2.3)

which generally spans from zero to one, even in a massive shower. In the relativistic regime,

where the collinear factorization is strictly valid, all of these definitions are equivalent.1

1There is unavoidably some frame-dependence to this setup, as there is in all parton showers that are

defined strictly using collinear approximations. A more complete treatment would exhibit manifest Lorentz-
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The splitting kinematics then become

EB ⇡ zEA, EC ⇡ z̄EA, kT ⇡ zz̄EA✓BC , (2.4)

where ✓BC is the (small) angle between B and C.

In the simplest cases, generalizing the splitting function calculations to account for

masses is straightforward:

dPA!B+C(z, k
2

T ) ' 1

16⇡2

zz̄|M(split)|2
(k2T + zm̄2 + z̄m2 � zz̄m2

A)
2

F(z, k2T ;EA) dz dk
2

T . (2.5)

Here, M(split) is the A ! B + C splitting matrix-element, which can be computed from

the corresponding amputated 1 ! 2 Feynman diagrams with on-shell polarization vectors

(modulo gauge ambiguities, which we discuss later). This may or may not be spin-averaged,

depending on how much information is to be kept in the shower. We have also employed the

shorthandm ⌘ mB for the mass of the first daughter particle (with energy/momentum frac-

tion z), and m̄ ⌘ mC for the mass of the second daughter particle (with energy/momentum

fraction z̄). The additional function F collects phase space factors that become relevant

in the nonrelativistic limit:

COMPUTE ME! (2.6)

In some cases where interference can be important, discussed below, the final identity of

a daughter might not be immediately known. In those cases, we default to choosing the

smallest possible mass value, namely zero in the case of a mixed �/Z state, or mZ in the

case of a mixed h/Z
long

state. This allows the broadest possible splitting phase space.

On dimensional grounds, |M(split)|2 goes like either k2T or some combination of the

various m2’s. The splitting functions thus typically scale like dk2T /k
2

T . There are also

mass-dependent terms like m2dk2T /k
4

T , that leads to the so-called ultra collinear behavior.

However, the integrated splitting rate at a given z becomes asymptotically finite at high

energies, proportional to dimensionless combinations of couplings and masses, with the

vast majority of the rate concentrated near the kT cuto↵. This e↵ectively acts as a kind of

threshold correction at the end of the shower. In either case, the remaining z dependence

after integrating over kT can be either dz/z or dz⇥(regular). The former yields additional

soft logarithms (again, formally regulated by the particle masses), and appears only in

splittings where B or C is a gauge boson.

2.2 Evolution equations

The splitting functions defined in the previous section are related to the perturbative

prediction for the initial state radiation (ISR) and thus the parton distribution functions

invariance and control of the low-momentum region, at the expense of more complicated book-keeping of

the global event structure, by using superpositions of di↵erent 2 ! 3 dipole splittings. Extending our

treatment in this manner is in principle straightforward, but beyond the scope of the present work.
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Figure 1: Schematic processes involving a collinear splitting A → B + C in either the

final state (left) or initial state (right).

broken phase, where we introduce the Goldstone Equivalence Gauge. Section 5 explores

some of the consequences of electroweak showering in final-state and initial-state splitting

processes, including interleaving into QCD showers. We summarize and conclude in Sec-

tion 6. Appendices give supplementary details of Goldstone Equivalence Gauge and the

corresponding Feynman rules in practical calculations.

2 Showering Preliminaries and Novel Features with EWSB

We first summarize the general formalism for the splitting functions and evolution equations

with massive particles that forms the basis for the rest of the presentation. We then lay

out some other novel features due to EWSB.

2.1 Splitting formalism

Let us consider a generic “hard” process nominally containing a particle A in the final

state, slightly off-shell and subsequently splitting to B and C, as depicted in Fig. 1. In the

limit where the daughters B and C are both approximately collinear to the parent particle

A, the cross section can be expressed in a factorized form [2]

dσX,BC ≃ dσX,A × dPA→B+C , (2.1)

where P is the splitting function for A→ B+C. A given splitting can also act as the “hard”

process for later splittings, building up jets. The factorization of collinear splittings applies

similarly for initial-state particles, leading to the picture of parton distribution functions

(PDFs) for an initial state parton B (or C)

dσAB′→CX ≃ dPA→B+C × dσBB′→X . (2.2)

We will discuss this situation in the next subsection.

Integrating out the azimuthal orientation of the B+C system, the splitting kinematics

are parametrized with two variables: a dimensionful scale (usually chosen to be approxi-

mately collinear boost-invariant) and a dimensionless energy-sharing variable z. Common

choices for the dimensionful variable are the daughter transverse momentum kT relative to
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the splitting axis, the virtuality Q of the off-shell particle in the process, and variations pro-

portional to the daughters’ energy-weighted opening angle θEA. Our descriptions here will

mainly use kT , as this makes more obvious the collinear phase space effects in the presence

of masses. For our numerical results in Section 5, we switch to virtuality, which allows for

a simpler matching onto resonances. Mapping between between any of these different scale

choices is however straightforward. The energy-sharing variable z (z̄ ≡ 1− z) is commonly

taken to be the energy fraction of A taken up by B (C). The splitting kinematics takes

the form

EB ≈ zEA, EC ≈ z̄EA, kT ≈ zz̄EAθ . (2.3)

When considering splittings involving massive or highly off-shell particles, various possible

definitions of z exist which exhibit different non-relativistic limits. Besides strict energy

fraction, a common choice is the light-cone momentum fraction, z ≡ (EB + k⃗B · k̂A)/(EA+

|⃗kA|). Our specific implementation in Section 5 uses the three-momentum fraction z ≡
|⃗kB |/(|⃗kB | + |⃗kC |), (Tao) (p⃗ to k⃗ all changed, to be consistent throughout the

paper, including Appendix D, below Eq.D2...) which makes phase space suppression

in the non-relativistic limit somewhat more obvious. However, in the relativistic regime,

where the collinear factorization is strictly valid, all of these definitions are equivalent, and

we do not presently make a further distinction.1

In the simplest cases, generalizing the collinear splitting function calculations to ac-

count for masses is straightforward. Up to the non-universal and convention-dependent

factors that come into play in the non-relativistic limit, the splitting functions can be

expressed as
dPA→B+C

dz dk2T
≃

1

16π2

zz̄ |M(split)|2

(k2T + z̄m2
B + zm2

C − zz̄m2
A)

2
. (2.4)

Here, M(split) is the A → B + C splitting matrix-element, which can be computed from

the corresponding amputated 1→ 2 Feynman diagrams with on-shell polarization vectors

(modulo gauge ambiguities, which we discuss later). This may or may not be spin-averaged,

depending on how much information is to be kept in the shower. Depending upon the

kinematics, the mass-dependent factors in the denominator act to either effectively cut

off collinear divergences at small kT or, in final-state showers, to possibly transition the

system into a resonance region. In cases where interference between different mass eigen-

states can be important, this basic framework must be further generalized. Resonance and

interference effects are introduced in Section 2.3.

On dimensional grounds, |M(split)|2 goes like either k2T or some combination of the

various m2’s. Conventional splitting functions typically scale like dk2T /k
2
T , which is exhib-

ited by all of the gauge and Yukawa splittings of the massless unbroken electroweak theory,

as to be shown in Section 3. There can also be mass-dependent splitting matrix elements

1There is unavoidably some frame-dependence to this setup, as there is in all parton showers that are

defined strictly using collinear approximations. A more complete treatment would exhibit manifest Lorentz-

invariance and control of the low-momentum region, at the expense of more complicated book-keeping of

the global event structure, by using superpositions of different 2 → 3 dipole splittings. Extending our

treatment in this manner is in principle straightforward, but beyond the scope of the present work.
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On the dimensional ground:

|Msplit|2 ⇠ k2T or m2
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Splitting Functions: QED
Most familiar example in QED: f à f γ

p�/f (z) =
1 + z̄

z
, z̄ = 1� z.

P�/f (z) =
↵

2⇡

1 + z̄

z
ln

Q2

m2
f

.

Note the infrared & collinear behavior.
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Splitting Functions: QCD
Most common in hadronic collisions:  q, g 

Pgq(z) =
1 + z̄2

z
, Pgg(z) =

(1� zz̄)2

zz̄
, Pqg(z) =

z2 + z̄2

2
.

ISR, parton distribution & (DGLAP) evolution:

FSR, parton showers:

of B and C, which are dynamically generated from a parent A. Consider a generic parton

distribution function fi(z, µ2) with a factorization scale µ, then the convolution relation is

fB(z, µ
2) =

X

A

Z
1

z

d⇠

⇠
fA(⇠)

Z µ2

m2

dPA!B+C(z/⇠, k
2

T ). (2.7)

Di↵erentiating with respect to µ2 leads to the celebrated Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) equation [? ].

@fB(z, µ2)

@µ2

=
X

A

Z
1

z

d⇠

⇠

dPA!B+C(z/⇠, µ2)

dk2T
fA(⇠, µ

2). (2.8)

Gauge theories such as QED and QCD predict that at high energies the splitting functions

dP/dk2T go like 1/k2T , and thus the PDFs evolve like ln(Q2/µ2), in accordance with the

DGLAP equation and the violation of the Bjorken scaling law [? ]. In a broken gauge

theory, the mass-dependent terms yield a result like m2/k4T . Instead of evolving loga-

rithmically to a higher physical scale Q2, it e↵ectively cuts o↵ like 1/Q2 ⇠ 1/m2and the

corresponding PDFs preserves the Bjorken scaling at the leading logarithms. ((JM) The

PDF of splitting functions with m2dk2T /k
4

T evolves like 1 � m2/Q2, approaching

to a constant very rapidly. E↵ectively it turns on itself at Q2 = m2, could be

approximated by a theta function ✓(Q2 � m2). The PDF with m2/k4T doesn’t

break Bjorken scaling, but will change the distribution of PDF around m2 and

possible as a function of z. The results could be obtained by solving DGLAP

equations.)

The splitting functions also serve as the evolution kernel for the final state radiation

(FSR). This is the well-known Sudakov form factor �A(t) characterizing the time-like

branching of parent A at a scale t

�A(t) = exp[�
X

B

Z t

t
0

Z
dzPA!BC(z)], (2.9)

fA(x, t) = �A(t)fA(x, t0) +

Z t

t
0

dt0

t0
�(t)

�(t0)

Z
dz

z
PA!BC(z) fA(x/z, t

0), (2.10)

where PA!BC is the splitting function of ...

2.3 Interference e↵ects

(BAT) Do we need to make any modifications to this formalism for ISR?

An important issue missed by the above formalism is the possibility of interference

e↵ects between di↵erent o↵-shell particle states. Traditionally in QED and QCD showers

these are treated as subleading e↵ects associated with the unmeasured spin and color of

intermediate particles [33]. However, the full electroweak theory presents us with cases

where di↵erent mass and gauge eigenstates can also interfere at O(1) level, namely the

neutral boson admixtures �/Z and h/Z
long

. Other particles that can appear in the shower

carry (approximately) conserved charge or flavor quantum numbers that can flow out into

the asymptotic state, and therefore they cannot interfere in this manner. (Interferences
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that lead to m2dk2T /k
4
T type scaling. These splittings are highly suppressed for kT ∼> m.

However, they are much more strongly power-enhanced at low kT , a behavior which we

call ultra-collinear (borrowing a phrase from [57]). Upon integration over kT , the total

rate for an ultra-collinear splitting comes out proportional to dimensionless combinations

of couplings and masses, with the vast majority of the rate concentrated near kT ∼ m.

Such processes exist in familiar contexts like QED and QCD with massive fermions, for

example the chirality-flipping splittings eL → γeR and g → bLb̄L. They are usually not

treated as distinct collinear physics with their own universal splitting functions, though

they are crucial for systematically modeling shower thresholds. We choose to treat them

on independent footing, since the threshold behaviors of the electroweak shower are highly

nontrivial.

In both the conventional collinear and ultra-collinear cases, the remaining z dependence

after integrating over kT can be either dz/z or dz×(regular). The former yields additional

soft logarithms (again, formally regulated by the particle masses), and appears only in

splittings where B or C is a gauge boson.

2.2 Evolution equations

When applied to the initial state, the splitting functions outlined in the previous section

lead to both initial state radiation (ISR) as well as the dynamical generation of B and C

parton distribution functions from a parent A. Considering a generic parton distribution

function fi(z, µ2) with a factorization scale µ in kT -space, the leading-order convolution

relation is

fB(z, µ
2) = fB(z, µ

2
0) +

∑

A

∫ 1

z

dξ

ξ
fA(ξ, µ

2
0)

∫ µ2

µ2
0

dk2T
dPA→B+C(z/ξ, k2T )

dz dk2T
, (2.5)

where µ0 is an input factorization scale. Differentiating with respect to µ2 and incorpo-

rating as well the evolution of the fA leads to the celebrated Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation [58–60].

∂fB(z, µ2)

∂µ2
=
∑

A

∫ 1

z

dξ

ξ

dPA→B+C(z/ξ, µ2)

dz dk2T
fA(ξ, µ

2) . (2.6)

Gauge theories such as QED and QCD predict that at high energies the splitting functions

dP/dk2T go like 1/k2T , and thus that the PDFs evolve like ln(Q2/µ2). This is the classic

violation of the Bjorken scaling law [61]. In the broken electroweak theory, there are also the

qualitatively different ultra-collinear splitting functions, which instead go as m2/k4T . The

PDFs arising from these splittings “live” only at the scale kT ∼ m. Instead of evolving

logarithmically, they are cut off by a strong power-law suppression at kT ∼> m. The

corresponding PDFs preserve Bjorken scaling, up to contributions beyond leading order.

In particular, longitudinal weak boson PDFs are practically entirely determined at splitting

scales of O(mW ), even when used as inputs into processes at energies E ≫ mW .2

2This observation persists even in the presence of QCD corrections. We can imagine that a quark is

first evolved to large kT (and hence large spacelike virtuality Q) from multiple gluon emissions, and then

– 7 –

Very important formulation for LHC physics!

Hard QCD: Jets

�

New 13 TeV results!
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Motivations:
• We have marched into the territory where E >> MW 

where EW symmetry can be restored.

• Conceptually different from QCD: ΛQCD vs vev:
EW sector remains perturbative.

• New degrees of freedom: 
the Higgs sector / Longitudinal vector bosons

• Clear understanding of the “Equivalence theorem”.

• Most sensitive to new physics above the EW scale.

EW Splitting Functions
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Splitting Functions: EW

Fermion splitting:

Start from the unbroken phase – all massless.

Infrared & collinear 
singularities (Pgq)

Collinear singularity,
helicity flip, Yukawa coupling 
(new)

⇐ ⇐ ⇐ ⇒

1

8π2

1

k2T

(

1 + z̄2

z

)

1

8π2

1

k2T

(z

2

)

→ VT f (′)
s [BW ]0T fs H0(∗) f-s or φ± f ′

-s

fs=L,R g2V (Q
V
fs)

2 g1g2YfsT
3
fs y2

f
(′)
R

Table 1: Chiral fermion splitting functions dP/dz dk2T in the massless limit, with z (z̄ ≡
1 − z) labeling the energy fraction of the first (second) produced particle. The fermion

helicity is labelled by s. Double-arrows in Feynman diagrams indicate example fermion

helicity flows. Prime indicates isospin partner (u′s = ds, etc, independent of s). Yukawa

couplings are labelled by the participating RH-helicity fermion. The state H0∗ is the “anti-

H0”, produced when the RH fermion is down-type and in the initial-state, or up-type in

the final-state. Processes with B0 and W 0 implicitly represent the respective diagonal

terms in the neutral gauge boson’s density matrix, whereas [BW ]0 indicates either of the

off-diagonal terms (see text). Anti-fermion splittings are obtained by CP conjugation. The

conventions for the couplings are given in C.1.

⇐

⇒

1

8π2

1

k2T

(

(1− zz̄)2

zz̄

)

1

8π2

1

k2T

(

z2 + z̄2

2

)

1

8π2

1

k2T
(zz̄)

→ WT WT fs f̄
(′)
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Nf = 3 for quarks). Other conventions as in Table 1.

⇐

⇐

1

8π2

1

k2T

(

2z̄

z

)

1

8π2

1

k2T

(

1

2

)

→ V 0
T H [BW ]0T H W±
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state φ+,H0 for the given splitting, and H ′ represents the SU(2)L isospin partner (e.g.,

H0′ = φ+). Anti-particle splittings are obtained by CP conjugation. Other conventions as

in Tables 1 and 2.
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Chiral fermions: fs, gauge bosons: B,W0,W±; & 

In particular, only one specific linear combination of γ/ZT states participates in the high-

rate nonabelian splittings to W±
T W∓

T . While collapse onto mass eigenstates is required

to obtain well-defined hard event kinematics, a simple remedy here would be to supply

for these particles their production density matrices, using some appropriately-mapped

massless kinematics.
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=
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1√
2
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, (3.1)

where φ±,φ0 will later become the electroweak Goldstone bosons and h the Higgs boson.
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scalar H0, as they are produced and showered together coherently.9 We denote a generic
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8While the gauge helicity averaging is not strictly necessary, especially given that we will later make a

distinction between transverse and longitudinal polarizations, it does simplify our presentation. We also

do not incorporate azimuthal interference effects, though this would be straightforward in analogy with

QCD [5].
9We have expanded the neutral scalar field as H0 ∝ h − iφ0, adopting a phase convention such that h

and φ0 fields create/annihilate their respective one-particle states with trivial phases, and H0 annihilates

the one-particle state |H0⟩ ∝ |h⟩ + i|φ0⟩. Treating h and φ0 as independent showering particles would be

analogous to adopting a Majorana basis instead of a Dirac basis for the fermions in QED or QCD. An

incoherent parton shower set up in such a basis would not properly model the flow of fermion number and

electric charge. Analogously, H0 and H0∗ particles carry conserved charges that we choose to explicitly

track through the shower. This leads to correlations between spins and electric charges within asymptotic

states.
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The Higgs:	

The SM EW sector:	

Unitary gauge:	
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Gauge boson splitting:

10

Splitting Functions: EW

Infrared & 
collinear (Pgg)

Collinear (Pqg) Collinear (new)

Interference (BW0) must be 
included!

⇐ ⇐ ⇐ ⇒

1

8π2

1

k2T

(

1 + z̄2

z

)

1

8π2

1

k2T

(z

2

)

→ VT f (′)
s [BW ]0T fs H0(∗) f-s or φ± f ′

-s

fs=L,R g2V (Q
V
fs)

2 g1g2YfsT
3
fs y2

f
(′)
R

Table 1: Chiral fermion splitting functions dP/dz dk2T in the massless limit, with z (z̄ ≡
1 − z) labeling the energy fraction of the first (second) produced particle. The fermion

helicity is labelled by s. Double-arrows in Feynman diagrams indicate example fermion

helicity flows. Prime indicates isospin partner (u′s = ds, etc, independent of s). Yukawa

couplings are labelled by the participating RH-helicity fermion. The state H0∗ is the “anti-

H0”, produced when the RH fermion is down-type and in the initial-state, or up-type in

the final-state. Processes with B0 and W 0 implicitly represent the respective diagonal

terms in the neutral gauge boson’s density matrix, whereas [BW ]0 indicates either of the

off-diagonal terms (see text). Anti-fermion splittings are obtained by CP conjugation. The

conventions for the couplings are given in C.1.

⇐

⇒

1

8π2

1

k2T

(

(1− zz̄)2

zz̄

)

1

8π2

1

k2T

(

z2 + z̄2

2

)

1

8π2

1

k2T
(zz̄)

→ WT WT fs f̄
(′)
-s φ+ φ− or H0 H0∗ φ+ H0∗ or φ− H0

VT 2g22 (V=W 0,±) Nfg2V (Q
V
fs
)2 1

4g
2
V

1
2g

2
2

[BW ]0T 0 Nfg1g2YfsT
3
fs

1
2g1g2T

3
φ+,H0 0

Table 2: Transverse vector boson splitting functions dP/dz dk2T in the massless limit,

where allowed by electric charge flow. Nf is a color multiplicity factor (Nf = 1 for leptons,

Nf = 3 for quarks). Other conventions as in Table 1.

⇐

⇐

1

8π2

1

k2T

(

2z̄

z

)

1

8π2

1

k2T

(

1

2

)

→ V 0
T H [BW ]0T H W±
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The Higgs:

EW Symmetry breaking:

Unitary gauge:
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“Scalarization” to implement the Goldstone-
boson Equivalence Theorem (GET): 

Goldstone-boson Equivalence Theorem:

At high energies E>>MW, the longitudinally polarized gauge 
bosons behave like the corresponding Goldstone bosons. 
(They remember their origin!)

Lee, Quigg, Thacker (1977); Chanowitz & Gailard (1984)

✏(k)µ
L =

E

mW
(�W , k̂) ⇡ kµ

mW

[ Excersise: Try the decay HàW+
LW-

L via a coupling  
-gµν and derive the equivalent Hφ+φ- vertex. ]



(a). Unitarity at higher energies:

14

SU(2) x U(1) @ E & The Higgs

Chanowitz, Furman, Hinchliffe

Bad high-energy
behavior cancelled

by: 

t+

t+
-

WL+

WL-

+
Z

b ∝ mtE

v2

t+

t+
-

WL+

WL-

t+

t+
-

WL+

WL-

H

gHtt gHWW

SU(2) x U(1) @ E & The Higgs

Chanowitz, Furman, Hinchliffe

Bad high-energy
behavior cancelled

by: 

t+

t+
-

WL+

WL-

+
Z

b ∝ mtE

v2

t+

t+
-

WL+

WL-

t+

t+
-

WL+

WL-

H

gHtt gHWW

✏(k)µ
L =

E

mW
(�W , k̂) ⇡ kµ

mW

/ E2

v2

/ mtmH

v2

A “light Higgs” fixes it:

bad high-energy behavior!

D. Dicus & V. Mathur (1973);
Lee, Quigg, Thacker (1977).

Appelquist & Chanowitz (1987).



15

VL contributions dominant at high energies:

Then, massless fermion splitting 
f à f VL

would be zero, in accordance with GET for
f à f φ (yf = 0).

✏(k)µ
L =

E

mW
(�W , k̂) ⇡ kµ

mW

(b). Puzzle of massless fermion radiation

GET ignored the EWSB effects at the order MW/E



At colliding energies E >> MW, 

16

Pq!qVT = (g2
V + g

2
A)

↵2

2⇡

1 + (1� x)2

x

ln
Q

2

⇤2

Pq!qVL = (g2
V + g

2
A)

↵2

⇡

1� x

x

Corrections to GET
1st example: “Effective W-Approximation”

• f à f WL, f ZL do not vanish & non-log! 
• Vector boson fusion observed at the LHC

WW, ZZàh & W+W+ scattering

S. Dawson (1985); G. Kane et al. (1984); 
Chanowitz & Gailard (1984)
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There are characteristically new channels 
in the broken phase:
“Ultra collinear”:
kT

2 > mW
2, it shuts off;

kT
2 < mW

2, flattens out!
The DPFs for WL thus don’t run at leading log: Bjorken
scaling restored (higher-twist effects)!

v2

k2
T

dk2
T

k2
T

⇠ (1� v2

Q2
)
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✏(k)µ
L =

E

mW
(�W , k̂) =

kµ

mW
� mW

E + |~k|
nµ, nµ = (1,�k̂).

The gauge is defined by introducing a momentum-dependent reference four-vector

n0(k) ⌘ 1 , ~n(k) ⌘ � k0

|k0|
~k

|~k|
, (4.2)

and a gauge-fixing Lagrangian term in momentum-space

L
fix

= � 1

2⇠

⇥
n(k) · W (k)

⇤⇥
n(k) · W (�k)

⇤
(⇠ ! 0), (4.3)

here taking “W” to represent any specific real gauge adjoint component. This particular

choice of gauge-fixing preserves rotational invariance and a limited form of boost invari-

ance, and isolates spurious gauge poles/discontinuities away from physical regions. Taking

the ⇠ ! 0 limit e↵ectively introduces an infinite mass term for the component of W aligned

with the complementary lightcone direction n̄ ⌘ (n0,�~n), reducing the naive number of

dynamical gauge degrees from four to three. The transverse “xy” or helicity ±1 modes

are as usual, except that they gain a mass term after spontaneous symmetry breaking.

The remaining gauge degree of freedom becomes associated with exactly the longitudi-

nal remainder polarization discussed above. Canonically normalizing such that this field

interpolates a longitudinal boson state with unit amplitude,

✏µ
long

(k) !
p|k2|
n(k) · k nµ(k)

on-shell! mW

E + |~k|
⇣
�1, k̂

⌘
. (4.4)

Because the timelike component has been deleted, the longitudinal gauge fields are no

longer capable of serving as proxies for the eaten Goldstones. Instead, that role is played

by the Goldstone fields themselves, which remain as dynamical degrees of freedom. Unlike

the Goldstones in R⇠ gauges, they are capable of directly interpolating external longitudinal

bosons. Somewhat counterintuitively, while the gauge and Goldstone fields participate in

di↵erent sets of interactions, they describe the same on-shell particle. (For a di↵erent but

related approach, see [32].) (JM) The wavefunction of the asymptotic state of the

longitudinal gauge boson is identified as

✏ML =

 
✏µn
i

!

✏µL = ✏µn = mA
n·k is the gauge components, M = µ for space-time components,

M = 4 for the goldstone component. Notice ✏µn ⇠ mA

E+|~k|
is suppressed energy, so

in a hard sacttering process its contribution is subdominant. This observation

is consistent with the goldstone equivalence theorem.

The onshell longitudinal propagator could then be written as a 5⇥5 matrix,

< AM
L AN

L >onshell=
i✏ML ✏⇤NL

k2 � m2

A + i✏
(4.5)

With the longitudinal field AM
L = (Aµ,�A). Notice this expression indicates

the mixing propagators < Aµ
n�A >=< �AA

µ
n >⇤,
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“Goldstone Equivalence Gauge”
(GEG)

1st term leads to GET à φ, well behaved;
2nd term captures EWSB ~ An

µ, well behaved
Separate them out by a special gauge choice:
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GEG:

• Non-covariant but physical gauge: 
Hybrid of Coulomb & light-cone gauge

à rotational and collinear boost invariance.
• εL: Time-like component is removed: 

- ξà 0 eliminates the VL collinear propagation
- Goldstones remain as dynamical degrees of freedom.

• εL ~ MW/E  as the remainder vector field: 
• Gauge – Goldstone boson mixing exists.
• Measures the departure from GET, keeps track of 

EWSB effect: As the “Higher-twist” power-counting 
by     v2/s !   à direct analogues to QCD Λ2/Q2 !
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Splitting in the Broken Gauge
New fermion splitting:

Helicity conserving:
Non-zero for massless f

Helicity flipping: ~mf

⇐
⇐

φ/VL

⇐
⇐

h

⇐
⇒

1

16π2

v2

k̃4T

(

1

z

)

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ VL f (′)
s (V ̸=γ) h fs VT f (′)

-s

fs=L

(

IVf (y2f z̄ − y2
f(′))z −QV

fL
g2V z̄

)2 1
4y

4
fz(1 + z̄)2 g2V z

(

QV
fR
yf z̄ −QV

fL
yf(′)

)2

fs=R

(

IVf yfyf(′)z2 −QV
fR
g2V z̄

)2 1
4y

4
fz(1 + z̄)2 g2V z

(

QV
fL
yf z̄ −QV

fR
yf(′)

)2

Table 4: Ultra-collinear fermion splitting functions dP/dz dk2T in the broken phase. Wavy

lines represent transverse gauge bosons, while the longitudinals/Goldstones and Higgs

bosons are represented by dashed lines. The k̃4T symbol is defined in Eq. (4.6). The

IVf symbol is a shorthand for the “charge” of a fermion in its Yukawa coupling to the eaten

Goldstone boson, or equivalently the fermion’s axial charge under the vector V . These

are normalized to approximately follow the weak isospin couplings, but are defined inde-

pendently of the fermion’s helicity: IZu = 1/2, IZd/e = −1/2, IW±

u = IW
±

d/e = 1/
√
2. Other

conventions are given in Appendix C

For the neutral boson states, the propagator factors become matrices. These may be

conveniently diagonalized by rotating from the interaction basis B0/W 0 and H0/H0∗ to

the mass basis γ/ZT and h/ZL. The former requires the usual rotation by θW in gauge

space. The latter is accomplished by a U(2) rotation into the standard CP-eigenstates. The

showering must still be performed coherently in order to capture nontrivial effects such as

the flow of weak isospin and Higgs-number. The full treatment is detailed in Appendix A.

One residual complication is that the off-diagonal terms in the splitting function matrices

are proportional to products of different propagator factors. E.g., for a γ/ZT state, the

appropriate modification factor for dPγZ would use instead

k̃4T → (k2T + z̄m2
B + zm2

C)(k
2
T + z̄m2

B + zm2
C − zz̄m2

Z) . (4.7)

We also note that our convention here is to align the phases of external ZL states with

those of the eaten scalar φ0. Consequently, terms like dPhZL
are pure imaginary.

4.2.2 Ultra-collinear broken-phase splitting functions

The remaining task is to compute all of the ultra-collinear splitting functions, proportional

to the EWSB scale like in Eq. (4.1). Generalizing the standard massless-fermion f → WLf ′

calculation [13–15], we include the splittings involving arbitrary particles in the SM. The

electroweak VEV (v), to which all of these splitting functions are proportionate, has been

explicitly extracted, as well as universal numerical factors, the kinematic factor k̃4T as

in Eq. (4.6) or Eq. (4.7), and the leading soft singularity structure (1/z, 1/z̄, or 1/zz̄).

These are obtained quite straightforwardly in GEG, where individual 1→ 2 ultra-collinear

matrix elements all scale manifestly as g2v, y2fv, or gyfv. See Appendix C for some explicit

examples.
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Splitting in the Broken Gauge
New gauge boson splitting to WL WT

v2

k2
T

dk2
T

k2
T

⇠ (1� v2

Q2
)

φ/VL

1

16π2

v2

k̃4T

(

1

z

)

→W±

L γT W±

L ZT ZL W±

T W+
L W−

T
or W−

L W+
T

W±

T e2g22 z̄
3 1

4c
2
W g42 z̄

(

(1 + z̄) + t2W z
)2 1

4g
4
2 z̄(1 + z̄)2 0

γT 0 0 0 e2g22 z̄

ZT 0 0 0 1
4c

2
W g42 z̄

(

(1 + z̄)− t2W z
)2

[γZ]T 0 0 0 1
2cW eg32 z̄

(

(1 + z̄)− t2W z
)

h ⇒

⇒

1

16π2

v2

k̃4T

1

16π2

v2

k̃4T

→ h VT (V ̸=γ) fs f̄
(′)
s

VT
1
4zz̄g

4
V

1
2g

2
V

(

QV
fs
yf(′)z +QV

f-s
yf z̄
)2

[γZ]T 0 1
2egZy

2
fQ

γ
f

(

QZ
fs
z +QZ

f-s
z̄
)

Table 5: Ultra-collinear transverse vector splitting functions dP/dz dk2T in the broken

phase. For the off-diagonal incoming [γZ]T , the k̃4T symbol is defined in Eq. (4.7). Other

conventions are as in Table 4 and in Appendix C.

5 Shower Implementation and Examples

We are now in a position to implement the splitting formalism and to present some ini-

tial physics results. Our studies here involving PDFs have been generated using simple

numerical and monte carlo integration techniques. Our studies involving final-state radi-

ation, which provide much more exclusive event information, have been generated using

a dedicated virtuality-ordered weak showering code. Some technical aspects of this code

can be found in Appendix D. We do not presently study the more technically-involved

exclusive structure of weak ISR radiation. More detailed investigations of specific physics

applications will appear in future work [62].

(Tao) We first show some representative behaviors and their relative rates

for an illustrative set of electroweak splitting processes in Table 7 at two initial

energies E = 1, 10 TeV. They are those with logarithmic enhancements from the

tables presented in Sections 3 and 4. The symbols in the parentheses denote the

co-linear (CL), infra-red (IR) and ultra-colinear (UC) behaviors, respectively.

As expected, the VT radiation off an SU(2)L doublet (f and φ) leads to the
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Splitting in the Broken Gauge
New gauge boson splitting in 3-WL
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L /ZL h h
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L
1
4z
(

g22(1 − zz̄) + λhz̄
)2

0

h 0 9
8λ

2
hzz̄

ZL
1
4z
(

g2Z(1− zz̄) + λhz̄
)2

0

[hZL] 0 0

⇐
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1

16π2
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k̃4T

1

16π2

v2

k̃4T

→ γT W±

T ZT W±

T /ZT W+
T W−

T fs f
(′)
-s

W±

L 2e2g22z
3z̄ 1

2c
2
W g42zz̄

(

(z̄ − z) + t2W
)2 0

s=L : 1
2

(

y2f z̄ + y2f ′z − g22zz̄
)2

s=R : 1
2y

2
fy

2
f ′

h 0 1
4g

4
Zzz̄

1
2g

4
2zz̄

1
4y

4
f (z̄ − z)2

ZL 0 0 1
2g

4
2zz̄ (z̄ − z)2

(

IZf y2f −QZ
fs
g2Zzz̄

)2

[hZL] 0 0 − i
2g

4
2zz̄ (z̄ − z) (−1)s i

2y
2
f (z̄ − z)

(

IZf y2f −QZ
fs
g2Zzz̄

)

Table 6: Ultra-collinear longitudinal vector boson and Higgs boson splitting functions

dP/dz dk2T . The Higgs quartic coupling λh is normalized such that m2
h = λhv2/2. For the

off-diagonal incoming [hZL], the k̃4T symbol stands for (k2T + z̄m2
B + zm2

C − zz̄m2
h) · (k2T +

z̄m2
B + zm2

C − zz̄m2
Z). Other conventions are as in Tables 4, 5 and in Appendix C.
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Splitting Probabilities:
gauge couplings 

• Non-Abelian gauge splitting larger than fermion splitting!

Process ≈ P(E) (leading-log term) P(1 TeV) P(10 TeV)

q → VT q(′) (CL+IR) (3× 10−3)
[

log E
mW

]2
1.6% 7%

q → VLq(′) (UC+IR) (2× 10−3) log E
mW

0.4% 1.1%

tR → W+
L bL (CL) (8× 10−3) log E

mW
2.5% 4%

tR → W+
T bL (UC) (6× 10−3) 0.6% 0.6%

VT → VTVT (CL+IR) (0.015)
[

log E
mW

]2
7% 34%

VT → VLVT (UC+IR) (0.014) log E
mW

2.7% 7%

VT → f f̄ (CL) (0.02) log E
mW

5% 10%

VL → VTh (CL+IR) (2× 10−3)
[

log E
mW

]2
0.8% 4%

VL → VLh (UC+IR) (2× 10−3) log E
mW

0.5% 1%

Table 7: Representative electroweak splitting behaviors and integrated fixed-order split-

ting probabilities for an illustrative set of processes at two parent energies E = 1, 10 TeV.

The symbols in the parentheses denote the collinear (CL), infrared (IR), and ultra-collinear

(UC) behaviors, respectively.

noted, the rates are summed/averaged over spins and particle species. (For instance,

q = uL, uR, dL, dR, and f denotes all twelve fermion types of either spin.) The symbols in

the parentheses denote the conventional collinear-enhanced (CL), infrared-enhanced (IR)

and ultra-collinear (UC) behaviors, respectively. Radiation of a VT boson exhibits the usual

CL+IR double-log behavior. Notably, the largest splitting rates occur for VT → VTVT , due

to the large adjoint gauge charge. Splittings of this type occur with roughly 35% probability

at 10 TeV, a factor that is enormous for an “EW correction” and which clearly indicates

the need for shower resummation. We also see the analogous UC+IR process VT → VLVT ,

which only grows single-logarithmically, but which still represents a sizable fraction of the

total splitting rate (even more so if we focus on low-kT regions, similar to Fig. 2). Similarly,

the other ultra-collinear channels are smaller but not negligible.

We next present our numerical results for various exclusive splitting phenomena, paying

special attention to the novelties that arise in the EW shower.

5.1 Electroweak effects in PDFs

We first revisit the classic calculation of weak boson PDFs within proton beams [19, 20].

The basic physical picture has been dramatically confirmed with the observation of the

Higgs boson signal via vector boson fusion at the LHC [22]. It is anticipated that at energies

in the multi-TeV regime, the total production cross section for a vector boson fusion process

V1V2 → X can be evaluated by convoluting the partonic production cross sections over the

gauge boson PDFs, originated from the quark parton splittings q → W±q′, q → γ/Zq.16

A useful intermediate object in this calculation is the parton-parton luminosity, consisting

16It should be noted that a formal factorization proof for electroweak processes in hadronic collisions is

thus far lacking. For instance, it is not presently demonstrated whether contributions from gauge boson
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EW Shower Implementation:
Sudakov Formalism

• On-shell massive particle: Breit-Wigner resonance
• Sequential showering with “back-reactions”:

Another place where mass effects can become important is in multiple emissions. In

massless showers, sequential splittings are dominantly very strongly-ordered in scale, and

as a consequence a given splitting rate can be computed without regard to the subsequent

splittings while still capturing the leading behavior. However, in showers with massive

particles, a large fraction of the available phase space for secondary splittings may require

nontrivial kinematic rearrangements within the preceding splittings. For example, a W

boson might nominally be produced with a kinematic mass mW via emission off of a

fermion. If the W subsequently splits into a W and a Z boson at a virtuality Q ≫
mW , there is a chance that the off-shell W now sits near a suppressed region (i.e., dead

cone) for emission off of the mother fermion. In order to avoid badly mis-modeling such

cases, secondary splittings can be weighted according to the relative rate modification

that would be incurred on the previous splitting. This back-reaction factor depends in

detail on how kinematic arrangements are done in the shower. Generally, a given (z,Q) or

(z, kT ) parametrizing the mother splitting will be mapped onto a new (z∗, Q∗) or (z∗, k∗T )

for producing the off-shell daughter. The required back-reaction factor is the ratio of the

new differential splitting function to the original one, multiplied by the Jacobian for the

change of variables. For a final-state shower sequence A∗ → B∗C → (DE)C, for the nested

splitting we can use a splitting function multiplied by the back-reaction factor:

dP(B∗ → DE)

dzDE dk2T,DE

×
(

dP(A∗ → B∗C)/dz∗dk2∗T
dP(A∗ → BC)/dz dk2T

·
∣

∣

∣

∣

det

[

dz∗dk2∗T
dz dk2T

]∣

∣

∣

∣

)

. (2.9)

The simplest implementation would compute this factor independently for each daughter

branch, assuming an on-shell sister and neglecting possible correlations in the potentially

fully off-shell final configuration A∗ → B∗C∗. But a more thoroughly correlated weight-

ing scheme could be pursued if deemed numerically relevant. The above prescription also

generalizes beyond massive showers, wherein it has a sizable overlap with the effects of

standard angular vetoing. We further show below how back-reaction factors can be con-

veniently applied for a complete treatment of mixed neutral bosons, wherein an “on-shell”

kinematic mass is not necessarily determined at their production.

The above back-reaction effects can be particularly important for ultra-collinear emis-

sions, as these occur almost exclusively at the boundaries delineated by finite-mass ef-

fects. For example, the prototypical ultra-collinear emission is f → WLf ′ with massless

fermions [19–21]. It proceeds only via a delicate balancing between a suppression factor

m2
W /E2 in the squared splitting matrix element and a strong 1/k4T power enhancement

from the fermion propagator that gets cut off at kT ∼ mW , controlled by the form of the

denominator in Eq. (2.5). Within a final-state shower, if either the WL or its sister f ′

is set far off-shell by a secondary splitting at some scale Q (possibly a QCD splitting),

that cutoff moves out to kT ∼ Q but the original production matrix element stays ap-

proximately the same, and the total rate picks up an additional relative power suppression

factor of O(m2
W /Q2).5 Roughly speaking, ultra-collinear processes can only occur near the

“end” of the weak parton shower as it passes through the weak scale, or conversely near

5When the WL is off-shell, we would naively compensate by using an off-shell gauge polarization, yielding

Q2/E2 instead of m2
W /E2. However, the appropriate treatment, discussed in more detail in Appendices A
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• Mixed state evolution:
In QED/QCD, it is sub-leading, after color/spin averaging.
But in chiral EW theory, need “density matrix” treatment: 

the “beginning” of weak PDF evolution. Such a feature is essentially built-into kT -ordered

parton evolution. The back-reaction correction ensures that it is also enforced in showers

built on other ordering variables, such as virtuality, while still allowing further low-scale

showering such as q → gq and WL → γWL.

2.3.2 Mixed-state evolution

Thus far, the shower formalism that we have presented neglects the possibility of inter-

ference between different off-shell intermediate particle states contributing to a specific

splitting topology. Traditionally in QED and QCD showers, such interference leads to sub-

leading effects associated with the unmeasured spin and color of intermediate particles [69].

However, the full electroweak theory at high energies presents us with cases where different

mass and gauge eigenstates can also interfere at O(1) level, most notably the neutral bo-

son admixtures γ/ZT and h/ZL [43]. All other particles in the SM carry (approximately)

conserved charge or flavor quantum numbers that can flow out into the asymptotic state,

and therefore they do not tend to interfere in this manner. Interferences originating from

CKM/PMNS flavor violations should be small and difficult to observe, and we neglect them

for simplicity.

Showering involving superpositions of different particle species can be described using

density matrix formalism. Let us consider the simpler case of final-state showers for illus-

tration. The initial value of the density matrix is set proportional to the outer product

of production amplitudes: ρij ∝ M(prod)∗
i M(prod)

j , tracing out over other details of the

rest of the event.6 Here, the indices run over the particle species. The probability for an

initial mixed quantum state to subsequently split into a specific exclusive final state must

be computed by generalizing the splitting functions to Hermitian splitting matrices dPij .

The exclusive splitting rates are then computed by tracing against the normalized density

matrix,7

dP =
ρij dPji

tr[ρ]
. (2.10)

Representing the propagator matrix as Dij , and the amputated splitting amplitudes as

M(split)
i , this modifies Eq. (2.5) to the more complete, yet more complicated form

[

dPA→B+C

dz dk2T

]

ij

≃
1

16π2
1

zz̄
M(split)∗

k D∗
kiDjlM

(split)
l . (2.11)

Note that large interference effects can persist even in the massless limit with unmixed

propagators. A full treatment, including the Sudakov evolution for ρij and the explicit

form of the propagators for γ/ZT and h/ZL systems, is given in Appendix C.

and B, uses on-shell polarization factors throughout. Additional non-collinear corrections might still be

present, but are more appropriately viewed as contributions to 1 → 3 splittings. New soft logarithms might

also arise in these processes, but new collinear logs will not.
6This treatment does not attempt to address quantum correlations between different branches of an

event or shower.
7In more complete generality, a mixed state can split into another mixed state, leading to an enlarged

set of indices for the splitting matrices. However, in most cases, the final-state density matrices are fully

determined by the initial-state density matrices, such that in practice a single pair of indices suffices.
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determined by the initial-state density matrices, such that in practice a single pair of indices suffices.

– 12 –
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Multi Gauge-boson Production

W W                       σ=770 pb

W W W                   σ=2 pb

W W Z                    σ=1.6 pb

W W W W               σ=15 fb

W W W Z                σ=20 fb

....

A t  100 TeV:

Each W costs you a factor 
of ~ 1/100 (EW coupling)

M. Mangano’s talk
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Figure 5: The rates for multiple final-state W/Z emissions at 10 TeV, clustering all

particles into R = π/2 anti-kT jets, initiated by (a) dL and (b) W+
T . For the dL-initiated

showers, comparisons are made with a simpler shower that includes only q → V q splittings

(neglecting the V → V V splittings), with and without back-reaction corrections, as well as

with the PYTHIA q → V q weak shower. For the WT -initiated showers (true “weak jets”),

comparisons are made with/without back-reaction corrections and with/without angular

vetoing. Secondary splittings V → f f̄ are neglected in all cases for simplicity. (QCD

showering is not incorporated.)

indicated in Table XXXXXXXXX, these rates are even higher, about 20% for the first

emission. We also highlight here some of the ambiguities in modeling weak FSR given

nontrivial phase space and coherence effects. As pointed out in Section 2.3.1, secondary

emissions can experience large suppression effects due to back-reactions on their parent

splittings, which are particularly obvious in showers that involve massive particles. From

experience with QCD showers, it is also known that coherence effects in emission amplitudes

lead to effective color-screening and approximate angular-ordering of nested emissions. To

test this, we have also implemented a strict angular-ordering veto in our shower simulation,

similar to PYTHIA. The result, visible in Fig. 5(b), is that both the back-reaction correction

and the angular ordering can have an O(1) effect at high multiplicity rates compared

to unrestricted emission, but that the two effects come with sizable overlap. Splittings

with large opening angles tend to exhibit large back-reaction effects, and vice-versa. This

observation provides some evidence that modeling of the high-multiplicity region might be

made to quickly converge, though more study is required.

One immediate application of pure nonabelian “weak jets” would be studies of the

phenomenology of multi-TeV spin-2 resonances, which can decay to a pair of transverse

W -bosons. For a 20 TeV resonance, the probability of at least one weak FSR emission is

more than 40%.
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Logarithmic enhanced 
production: each W costs  

~ 1/10 
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An Example: WZ+j @ 100 TeV

WZj at FCC, 10 ab−1, pT(j) > 3 TeV
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Figure 4: Event population for exclusive WZ + j production with pT (j) ≥ 3 TeV at

a 100 TeV proton collider, with 10 ab−1 integrated luminosity. Events are represented

in the plane of 2pT (W )/HT versus ∆R(W,Z). (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2→ 2 Wj and Zj production dressed with fixed-order weak

FSR splitting functions; (c) 2 → 2 dressed with the PYTHIA weak shower, including only

q → V q splittings; (d) 2→ 2 dressed with the full weak FSR shower, including all collinear

final-state Sudakov effects. See text for more details on generation. (QCD showering is

not incorporated.)

is concentrated along a curved band at low ∆R(W,Z) and with enhancements at low/high

relative HT . A second clear concentration of events occurs at ∆R(W,Z) ≃ π and near-

maximal relative HT . A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and

low relative HT . These three populations respectively represent W (q/g) production with a
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Figure 4: Event population for exclusive WZ + j production with pT (j) ≥ 3 TeV at

a 100 TeV proton collider, with 10 ab−1 integrated luminosity. Events are represented

in the plane of 2pT (W )/HT versus ∆R(W,Z). (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2→ 2 Wj and Zj production dressed with fixed-order weak

FSR splitting functions; (c) 2 → 2 dressed with the PYTHIA weak shower, including only

q → V q splittings; (d) 2→ 2 dressed with the full weak FSR shower, including all collinear

final-state Sudakov effects. See text for more details on generation. (QCD showering is

not incorporated.)

is concentrated along a curved band at low ∆R(W,Z) and with enhancements at low/high

relative HT . A second clear concentration of events occurs at ∆R(W,Z) ≃ π and near-

maximal relative HT . A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and

low relative HT . These three populations respectively represent W (q/g) production with a
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Figure 4: Event population for exclusive WZ + j production with pT (j) ≥ 3 TeV at

a 100 TeV proton collider, with 10 ab−1 integrated luminosity. Events are represented

in the plane of 2pT (W )/HT versus ∆R(W,Z). (a) 2 → 3 fixed-order WZj production

generated with MadGraph; (b) 2→ 2 Wj and Zj production dressed with fixed-order weak

FSR splitting functions; (c) 2 → 2 dressed with the PYTHIA weak shower, including only

q → V q splittings; (d) 2→ 2 dressed with the full weak FSR shower, including all collinear

final-state Sudakov effects. See text for more details on generation. (QCD showering is

not incorporated.)

is concentrated along a curved band at low ∆R(W,Z) and with enhancements at low/high

relative HT . A second clear concentration of events occurs at ∆R(W,Z) ≃ π and near-

maximal relative HT . A third, more subtle concentration is visible at ∆R(W,Z) ≃ π and

low relative HT . These three populations respectively represent W (q/g) production with a
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Coherent treatment important
(almost) a pure W3

0 exchange
(almost) 

a pure B0 exchange
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Ultra-collinear behavior
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New Physics with energetic 
Multi tops/Gauge-bosons

SUSY examples:

Heavy quark examples: TT’, BB’, … 

Energetic W±, Z, H, t as new radiation sources 
from heavy W’, Z’ decays, 
subsequent showering.

b̃b̃⇤ ! t�� t̄�+, t̃W� t̃⇤W+ ! 4W± bb̄.
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An Example: W+’ Shower

W+0

L ! tb̄, tt̄(W�), bb̄(W+), bt̄(W+W+).

With W/Z showers, all t/b iso-spin components exist.
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Lumi(W+
TW-

T) similar size to lumi(tt) @ 10 TeV;
Lumi(W+

TW-
T) ~ Lumi(W± γ), Electro=weak

Lumi(W+
LW-

L) 100 times smaller: “untra-collinear” 
Lumi(100/14) increased by 30 – 3000 for 500 GeV - 4 TeV!

TH, R. Ruiz, B. Tweedie, in prep

resulting in the following qV luminosity formula

ΦqV (τ) =

∫

1

τ

dξ

ξ

∫

1

τ/ξ

dz

z

∑

q′

[

fq/p(ξ)fV/q′(z)f

(

τ

ξz

)

+ fq/p

(

τ

ξz

)

fV/q′(z)fq′/p(ξ)

]

(5)

We can study initial-state V V ′ scattering by making a substitution of initial-state parton j:

fj/p(ξ, Q
2
f ) → fV/p(ξ, Q

2
V , Q

2
f ). (6)

The resulting luminosity expression is

ΦV V ′(τ) =
1

(δV V ′ + 1)

∫

1

τ

dξ

ξ

∫

1

τ/ξ

dz1
z1

∫

1

τ/ξ/z1

dz2
z2

∑

q,q′

(7)

×
[

fV/q(z2)fV ′/q′(z1) fq/p(ξ)fq′/p

(

τ

ξz1z2

)

+ fV/q(z2)fV ′/q′(z1) fq/p

(

τ

ξz1z2

)

fq′/p(ξ)

]

2.0 Vector Boson Distribution Functions

The transversely and longitudinally polarized W± distributions from a quark with momentum
fraction z and evolved to a scale QV ≫ MW is given by

fWT /q(z,Q
2
V ) =

C2
V +C2

A

8π2

[

z2 + 2(1− z)
]

z
log

(

Q2
V

M2
W

)

, CV = −CA =
g

2
√
2
, (8)

fW0/q(z) =
C2
V +C2

A

4π2

(1− z)

z
. (9)

For a photon from a quark with electric charge eq evolved to a scale Qγ

fγ/q(z,Q
2
γ) =

αEM e2q
2π2

[1 + (1− z)]

z
log

(

Q2
V

Λ2
γ

)

, αEM ≈ 1/137, (10)

where Λγ =
√
1.5 GeV2 ≈ 1.22 GeV is a cutoff scale separating partonic and hadronic physics. The

quark, gluon, and EW vector boson factorization scales are evolved up to

Q2
V = Q2

f =
s

4
. (11)

3.0 Check with “Majorana Neutrinos from Wγ Fusion”

The qq′ (Φqq′), and qγ (Φqγ) luminosities have been checked at 100 TeV against results of “Majorana
Neutrinos from Wγ Fusion”. In this case, Qγ is evolved up to 25 GeV. Good agreement is found:

qq′ : |
∆Φ

Φ
| = 0.69% (12)

qγ : |
∆Φ

Φ
| = 0.05% (13)
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• With the discovery of the Higgs boson, we 
have a consistent QM, relativistic theory up 
to high scales, where is Λ ~ 4 π v?

• EW sector 
presents 
rich physics:

• EW splitting/showering will become an 
increasingly important part at higher energies.

• It may serve as a tool for future discovery.

Novelties wrt QCD/QED 
Parton Showering

• Perturbative cutoff via SSB
• Longitudinals/scalars
• Chirality
• Yukawa showers
• Neutral boson interference
• Weak isospin self-averaging


