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INTRODUCTION

In recent years, many exact formulae for SUSY gauge theories

have been found by SUSY localization principle .

e Define & calculate SUSY-protected observables
using path-integrals

* Use SUSY to argue that the path integral localizes
onto "saddle points”

co-dim path integral — finite-dim integrals or sums




SPHERE PARTITION FUNCTION
In 2007, Pestun computed partition function of

4D N=2 SUSY gauge theories on SR

Zae = SD(‘Fields) exp (— Action (54-3) = Sd'h- A(a)

where | =: rank of gauge group
A(a) =: some knowh (though complicated) function,

depends on gauge coupling, mass of matters,

His argument was soon applied to many SUSY gauge theories

in other dimensions.



APPLICATIONS OF THE ExacT FORMULAE

Zg+ — led to the discovery of AGT relation

= exact correspondences between observables

in 4D SUSY gauge theory <= 2D CFTs

Zs3 —> |ed to the proof of the conjecture

F(N) ~ const-N** at large N

free energy of the systemof N membranes in M-theory

Zs2—> Applications to Calabi-Yau compactifications




What are Calabi- Yau manifolds 2

Why are they important in superstring theory ¢



SUPERSTRING COMPACTIFICATIONS

We have Five superstring theories, all 10-dimensional ,

32 SUSY ---- type TA, type IIB
16 SUSY -~ type I , Heterogpuyy , Heteroggr,

- We need to reduce the dimension and SUSY,

VAV AN MAAAY

The six-torus T° (= product of six circles) is flat
and does not reduce the SUSY.

- We need curved 6-manifolds.



HoLoNomy

The curvature of a space can be measured by

paralle |-transporting a vector or a spinor

along a closed path.

ﬂ In a general 6-manifold,

e Vectors receive SO(6) rotations.

“ o chiral spinors (4-component )

“ receive SU(4) rotations.



CY 3-FoLDsS

( complex 3-dim Calabi-Yau manifolds )

---are 6-dimensional manifolds with SU(3) holonomy .

( 1 of the 4 spinor components does not feel curvature)

CY compactifications reduce the SUSY to 1/4,

I[A, ]IB ..... 32.q 8
I. Het ------ lé._)q.



CY 3-FoLDsS

( complex 3-dim Calabi-Yau manifolds )

The reduced holonomy (SU(3)<SU(4) ) also implies

- CY3 satisfies Einstein’s eq ( Ricci- flatness)
RMav=0,
+ CY3 is a Kihler manifold
ds* = a5 -d2*d7b  (a.B=1,2,3)

ga'r =9 J K (i’, z
d#a 3Zb \,MWZ, Kahley potehtia\




Let us discuss some general properties of
the IIA or IIB superstrings on CY3,
(4D 8SUSY theories)

The 4SUSY theovies are much more difficult.



MobuLl
There are many CY3 s of diffent topology known,

A CY3 of a given topology can change its shape & size
while satisfying Einstein’s eq.

. Parametrized by a finite # of "moduli’,

cv3 Q Q The shape of CY3 may vary

as a function of (t,X).

A 5 / Moduli are 4D massless scalars,




MobuLl SPACE

The massless scalars ¢i(t,x) appear
in the 4D effective Lagrangian as
L=t 9:3() 3,05 340 % + s
¢* are coordinates of the moduli space with metric 9is (4D,

— What's the dimension of the moduli space?

— How to determine the metric <



DIMENSI0N OF THE MobuL| SPACE

.- determined by the number of independent
non-contractible cycles (closed submanifolds)

& hPl= number of closed (P.4)-forms

= - (3 3) d3® 42¢439..45F
W=Wa-c3-F (2,F) dt>- 43" dz" - d2

P ?
1
O o - e eee "'
0 W o # of 2-cycles - h
N S # of 3-cycles - 2h*'+2
0 K* 0 g
D 0 # of 4-cycles - h”
: (h'=h**, h"*=h™')




PropucT STRUCTURE

The moduli space takes the form | M= M, x M,

M - moduli space of Kahler structures

h“* - dimensional.
controls the sizes of even-dim cycles

Mc - moduli space of complex structures
h*t -dimensional.

controls the size of 3-cycles

Both My, Mc are “special Kahler manifolds®,

AAAAAAAAAAA



SPeC|AL KAHLER GEOMETRY

An n-dim special Kahler manifold has a set of

2n+2 holomorphic‘zfunctions' (x4 -, X", Fo, -, Fin)

“special coordinates”
Kahler potential :

K (28 =~ log i | X Rele)- X2 Fad)

When T are expressed as functions of XT, they satisfy

3%: _ OFy
IXT T T e

This implies there is a function F(X) called prepotential,

5.1:' FJ.: %": o



K ®or CY MopuLI SPACE

For Mk, (X% x%;R:, Fo) correspond to
the volumes of the 0,2,4,6-cycles.

% have to be complexified and analytically continued,

have to incorporate “*worldsheet instanton”correction

----- Difficult
For Mc, (X% Fz) are the period integrals

Xt= S*,.Q. , Fi= 531_(1. {2 (3.0)form
o%, Bx - 3-cycles

-~ Easy (classical )




MIRROR SYMMETRY

A traditional approach to solve Mk
for a Calabi-Yau 3-fold ‘A" is:

Find a mirror Calabi-Yau 3-fold "B"
suchthat  h"'(A)=K"(8) , h*'(A)=h"(B)

Mi(A=Mc(B), Mc(A)=Mk(B)
difficult e€asy

Let us discuss the simplest example h"“'(A) =h*'(B)=1.



THE SIMPLEST EXAMPLE

A=: a quintic hypersurface G(Z,, B5)=0

{(Z|I“‘I 25)* (01"‘10) }
(zn,‘“, Z5) ~ (7\%:,“’, AZs5)

in CP% =

e sizeof CP* .. parametrizes M

o coefficients of the quintic polynomial & >
< .- parametrize Mc




THE SIMPLEST EXAMPLE

B =: a quintic hypersurface
B +Bi+ By tBa+3E -5V BB BsTu 5 =0
in CPY/T: (%,~ Z5)~ (221, 225)
(201 25) ~ (w21, 0 F5)

wee”"/F Yai=0modb

J

¢ ---- coordinate on M



THE SIMPLEST ExAmpLE

The moduli space Mc(B) =Mk (A) is easily solved,

(X °(w), X'y, Fo(w), P,,(\v)) (special coordinates)

are period integrals of L over the basis 3-cycles,

_( dz'dz*d23
where (= S P /ai,i, , P =R+ Tt ifd‘f +1-5Yy 2222324

* 24 eliminated using P(z)-24)=0

They satisty Picard-Fuchs equation, (z=y7%)

[ &) - 2(2h+ ) (rir £) 24+ 3) (24+ D) L Fr=0



A more direct solution has been found,

Benini-Cremonesi 712
Doroud- Le Floch - Gomis-Lee 12
Jockers- Kumar - Lapan- Morrison-Romo ‘12

Gomis-Lee 12



A Direct solution

o realize the Calabi-Yau 3fold as a vacuum moduli space

of a 2DN'=(2,2) SUSY gauge theory (Witten 92)

The U(D gauge theory with matters

¢|,¢z,¢3,¢4,¢5, P
(U charge 1, 2, 1, 1, 1, -F)

with FI coupling >0, Superpotential W=P.Gy(4)

quintic polynomial

—>vacua. P=Gg($)=0, |&/++losl*=r /U

..quintic hypersurface in CP* of size I,



MucTipLeT @

Vector multiplet for gauge group (T

A -+ gauge field

O, f - real scalars

Do auxiliary scalar
]\:( i_) .- gaugino, R-charge (+1)

_i) gaugino, R-charge (-1)

>/

1
0~
>| >



SUSY localization (1)

The path inteqral over vector multiplet fields

oh the sphere with metric I = 12 (46" + w6 dg*)
localizes onto saddle poini configurations

=2 =_2
4] 2 D

’ 2%

P:—% , A= S-(c059=|=1)d9 ~on N/S hemispheres

% a.5€(Lie algebra ) , ¢ is GNO quantized,



Multiplet @

chira| multiplets

c.cC.
¥ N
4) e ceeeerenanes Complex SCQ'GY', R-charge 29' 6
V= ( ) Dirac fermion , 29-1 ¢§(g':)
= oer ... complex auyx, field 29-2 F

Q

furnishes a complex rep.
of the gauge group,




SUSY localization (I)

Path integral over chirals |ocalizes to ¢=¢=F=0,

Gaussian approx. around there givesan exact result,

Take an U1) theory  and choose a saddle point (a,s),
Path integral over a single chiral of charge +1 gives

the " 1-loop determinant

_T(s+a-ia)

Z —
toob ™ D(st1-a+ia)
“"* R-charge




SPHERE PARTITION FuNcTION

For the U(1) gauge theory with b+1 charged matters,

= da -it(a+is)-it(atis)
ZSZ 526"'2 JQ—R' e ¢
[ T(s-a+9) J"' T (1-55+5ia-54)

['[‘(h-&ia-&) T'(-53-5iat+52)

Here t=r+i0 ( 9-- 2D theta angle ) parametrizes My (A)

% 4>0: requlator

da

Path integral over vector multiplet —— § S 2m

Path integral over matter multiplet ---- gaussian



Soon it was realized that

£) = da _it(atis)-it(atis)
R < [I’(s-iwg) ] T'()1-55+5ia-59)

T(i1+s+ia-2))] T'(-55-5ia+52)

= exp (-K(t, £))
Kahler potential for Mk (A)

An evidence of this can be seen
by closing the a-integration contour in LHP

and rewriting it into a residue-sum




Another formula for Zs2

Bsr = () b 48 (5 SO o w(E,e)

where Zz=-5%"t

SK .
w(ze)=2, 2  (3+5€)

k>0 s"‘na‘j, (3+€)°

{(2&) 2(2g+ L) (28+2)(24+3) (2 5) pwlee) =2 €

Ls2(tX) isa bilinear of the solutionsto PF equation.



The new approach to CY compactification

@ exact formulae in SUSY dauge theories

allows us to study wider class of Calabi-Yau 3folds,
especially those constructed from

non-abelian 2D gauge theories.



INcLUsIoN oF DEEECTS

Sung jay Lee (KIAS) , Takuya Okuda (U Tokyo) and KH,

work in progress



VorTEX DEFECTS

In 2D gauge theories we can consider the defects

defined by the " singular boundary condition”
Vi

A =1.do
N e (&Gauge symmetry Lie algebra ) \?}‘P
@ -.- angle coordinate around the defect

For SUSY-preserving defects, one can
compute correlators,



Our Work
® Define the 2D N=(2,2) SUSY theory
of vector & chiral multiplet on s*

@ Introduce vortexdefects Vi, Viys ot NP & SP
so that Q is preserved

= compute Correlators v
n



GENERAL PROPERTIES
(for V() case)

Assuming charge quantization,
A=Ndgp ——> A=(1+1)d9 is a gauge symmetry,

The behavior of matters around Vo depends on ] mod Z .,

-t
An exact shift relation: Ve =€ Vy



Defect in the GLSM for quintic CY :

we found a defect W, satisfying

Me( 0, '%]
ne(-'%, 0
We(-¥5, %)
ne(-s,%)
ne(-%s, %)
1e(-1,7%]

V> = -£(24)* 2 (2=-5%t)
Vywp) = Za

My vp)> = (145253 ) Zs2

YRS (145255 ) (245253 ) 22

Ve = (14525 ) (245255 ) (3+52 53 ) 22
<VQ(NP)> = (11-'523%)(7-1-523%)(3 +52%)(4+523%) Za2

Combining with the shift relation one recovers PF equation,



With more exact & powerful formulae,

SUSY localization may help us understanding

the physics & math of CY compactification even better,



