SUSY LOCALIZATION AND

SPHERE PARTITION FUNCTIONS

KAZUO HOSOMICHI (NTU)

INTRODUCTION

In recent years, many exact formulae for SUSY gauge theories have been found by <u>SUSY</u> <u>localization</u> <u>principle</u>.

- Define & calculate SUSY-protected observables using path-integrals
- Use SUSY to argue that the path integral localizes onto "saddle points"

∞-dim path integral -> finite-dim integrals or sums

SPHERE PARTITION FUNCTION

In 2007, Pestun computed partition function of 4D N=2 SUSY gauge theories on S^4 .

$$\mathbb{Z}_{S^4} \equiv \int D(\text{fields}) \exp(-\text{Action}_{(S^4)}) = \int d^4 a \cdot \Delta(a)$$

where r=: rank of gauge group

 $\Delta(a) =:$ some known (though complicated) function. depends on gauge coupling, mass of matters,

His argument was soon applied to many SUSY gauge theories in other dimensions.

APPLICATIONS OF THE EXACT FORMULAE

Z_S⁴ → led to the discovery of <u>AGT relation</u>

= exact correspondences between observables
in 4D SUSY gauge theory ← 2D CFTs

 $\mathbb{Z}_{S^3} \longrightarrow \text{led to the proof of the conjecture}$

 $F(N) \sim const \cdot N^{3/2}$ at large N

free energy of the system of N membranes in M-theory

Zs2 --- Applications to Calabi-Yau compactifications

Why are they important in superstring theory?

What are Calabi-Yau manifolds?

SUPERSTRING COMPACTIFICATIONS

We have five superstring theories, all 10-dimensional.

```
32 SUSY ..... type IIA, type IIB

16 SUSY ..... type I, Hetero SO(32), Hetero E8×E8
```

... We need to reduce the dimension and SUSY.

The six-torus T^b (= product of six circles) is flat, and does not reduce the SUSY.

... We need curved 6-manifolds.

HOLONOMY

The curvature of a space can be measured by parallel-transporting a vector or a spinor along a closed path.

In a general 6-manifold,

- Vectors receive SO(6) rotations.
- chiral spinors (4-component)
 receive SU(4) rotations.

CY3-FOLDS (complex 3-dim (alabi-Yau manifolds)

... are 6-dimensional manifolds with SU(3) holonomy.

(1 of the 4 spinor components does not feel curvature)

CY compactifications reduce the SUSY to 1/4.

IIA, IIB
$$\cdots$$
 32 \rightarrow 8

I, Het $\cdots 16 \rightarrow 4$

CY3-FOLDS

(complex 3-dim Calabi-Yau manifolds)

The reduced holonomy (SU(3) < SU(4)) also implies

· CY3 satisfies Einstein's eq (Ricci-flatness)

$$R^{\lambda}_{\mu\lambda\nu} = 0$$
.

· CY3 is a Kähler manifold

$$ds^{2} = g_{a\bar{b}} \cdot dz^{a} d\bar{z}^{\bar{b}} \qquad (a, \bar{b} = 1, 2, 3)$$

$$g_{a\bar{b}} = \frac{\partial}{\partial z^{a}} \frac{\partial}{\partial \bar{z}^{\bar{b}}} K(z, \bar{z})$$
Kähler potential

Let us discuss some general properties of the IIA or IIB superstrings on CY3.

(4D 8SUSY theories)

The 4SUSY theories are much more difficult.

MODULI

There are many CY3's of differt topology known.

A CY3 of a given topology can change its shape & Size while satisfying Einstein's eq.

... Parametrized by a finite # of "moduli".

The shape of CY3 may vary as a function of (t,x).

Moduli are 4D massless scalars.

MODULI SPACE

The massless scalars $\phi^i(t,x)$ appear in the 4D effective Lagrangian as

$$\int = \cdots + \frac{1}{2} 9_{i\dot{j}}(\phi) \cdot \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{\dot{j}} + \cdots$$

 Φ^i are coordinates of the moduli space with metric $g_{ij}(\Phi)$.

- What's the dimension of the moduli space?
- How to determine the metric?

DIMENSION OF THE MODULI SPACE

... determined by the number of independent non-contractible cycles (closed submanifolds)

$$\Leftrightarrow$$
 h^{P.q} = number of closed (P.q.)-forms

$$\omega = \omega_{a - c \bar{d} - \bar{f}} (\bar{z}, \bar{z}) d\bar{z}^{a} \cdot d\bar{z}^{c} d\bar{z}^{\bar{d}} \cdot d\bar{z}^{\bar{f}}$$

$$0 \quad 0 \quad 0 \quad \# \text{ of } 2\text{-cycles} \cdot \cdots \quad h^{1,1} \quad \# \text{ of } 3\text{-cycles} \cdot \cdots \quad 2h^{2,1} + 2 \quad \# \text{ of } 4\text{-cycles} \cdot \cdots \quad h^{1,1} \quad \# \text{ of } 4\text{-cycles} \cdot \cdots \quad \# \text{ of }$$

PRODUCT STRUCTURE

The moduli space takes the form $M = M_k \times M_c$

$$M = M_k \times M_c$$

M_K moduli space of Kähler structures h^{1,1} - dimensional. controls the sizes of even-dim cycles

Mc moduli space of complex structures h^{2,1} -dimensional. controls the size of 3-cycles

Both Mk, Mc are "special Kähler manifolds".

SPECIAL KÄHLER GEOMETRY

An n-dim special Kähler manifold has a set of

Kähler potential

$$K(z,\overline{z}) = -\log i(\overline{X}^{I}(\overline{z})\mathcal{F}_{I}(\overline{z}) - X^{I}(\overline{z})\overline{\mathcal{F}}_{I}(\overline{z}))$$

"special coordinates"

When Fi are expressed as functions of XI, they satisfy

$$\frac{9X_1}{9Y_1} = \frac{9X_1}{9Y_1}.$$

This implies there is a function $\mathcal{F}(x)$ called prepotential,

s.t.
$$\mathcal{F}_1 = \frac{\partial \mathcal{F}_1}{\partial X^2}$$
.

K FOR CY MODULI SPACE

For
$$M_K$$
, $(X^0, X^1; \mathcal{H}_1, \mathcal{H}_0)$ correspond to the volumes of the 0,2,4,6-cycles.

* have to be complexified and analytically continued.

have to incorporate "worldsheet instanton" correction

For
$$Mc$$
, $(X^{I}; \mathcal{F}_{I})$ are the period integrals

$$x^{z} \equiv \int_{\mathbf{q}^{z}} \Omega$$
, $\mathcal{F}_{z} \equiv \int_{\mathbf{\beta}z} \Omega$ $\Omega \cdots (3.0)$ form \mathbf{q}^{z} , $\mathbf{\beta}z \cdots 3$ -cycles

MIRROR SYMMETRY

A traditional approach to solve Mk for a Calabi-Yau 3-fold "A" is:

Find a mirror Calabi-Yau 3-fold "B"

such that
$$h^{1,1}(A) = h^{2,1}(B)$$
, $h^{2,1}(A) = h^{1,1}(B)$

$$\mathcal{M}_{K}(A) = \mathcal{M}_{C}(B)$$
, $\mathcal{M}_{C}(A) = \mathcal{M}_{K}(B)$
difficult easy

Let us discuss the simplest example $h''(A) = h^{2,1}(B) = 1$.

THE SIMPLEST EXAMPLE

A =: a quintic hypersurface
$$G(Z_1, \dots, Z_5) = 0$$

in
$$\mathbb{CP}^4 = \frac{\{(Z_1, ..., Z_5) \neq (0, ..., 0)\}}{(Z_1, ..., Z_5) \sim (\lambda Z_1, ..., \lambda Z_5)}$$

- Size of CP4 parametrizes MK
- coefficients of the quintic polynomial G … parametrize \mathcal{M}_c

THE SIMPLEST EXAMPLE

```
B =: a quintic hypersurface
       Z_1^5 + Z_2^5 + Z_3^5 + Z_4^5 + Z_5^5 - 5 \psi \cdot Z_1 Z_2 Z_3 Z_4 Z_5 = 0
  in \mathbb{CP}^4/\Gamma: (\Xi_1,...,\Xi_5) \sim (\lambda \Xi_1,...,\lambda \Xi_5)
                              (\Xi_1, \dots, \Xi_5) \sim (\omega^{\alpha_1}\Xi_1, \dots, \omega^{\alpha_5}\Xi_5)
                                                    \omega = e^{2\pi i/5}, \Sigma a_i = 0 \mod 5
```

 ψ coordinate on \mathcal{M}_c

THE SIMPLEST EXAMPLE

The moduli space $M_c(B) = M_k(A)$ is easily solved.

$$(X^{0}(\Psi), X^{1}(\Psi), \mathcal{F}_{0}(\Psi), \mathcal{F}_{1}(\Psi))$$
 (special coordinates) are period integrals of Ω over the basis 3-cycles,

where
$$\Omega \equiv \int \frac{dz^1 dz^2 dz^3}{\partial P/\partial z^4}$$
, $P = Z_1^5 + Z_2^5 + Z_3^5 + Z_4^5 + 1 - 5 \Psi Z_1 Z_2 Z_3 Z_4$
 $\stackrel{?}{\times} Z_4$ eliminated using $P(Z_1 \cdots Z_4) = 0$

They satisfy Picard-Fuchs equation, $(z = \psi^{-5})$

A more direct solution has been found.

Benini-Cremonesi 12

Doraud-Le Floch-Gomis-Lee 12

Jockers-Kumar-Lapan-Morrison-Romo 12

Gomis-Lee 12

A Direct solution

• realize the Calabi-Yau 3fold as a vacuum moduli space of a 2D N=(2,2) SUSY gauge theory (Witten '92)

→ Vacua
$$P = G_5(\phi) = 0$$
, $|\phi_1|^2 + \dots + |\phi_6|^2 = r / U(1)$
... quintic hypersurface in \mathbb{CP}^4 of size r .

MULTIPLET 1

Vector multiplet for gauge group G

$$\lambda = \begin{pmatrix} \lambda^{+} \\ \lambda^{-} \end{pmatrix}$$
 ... gaugino, R-charge (+1)

$$\overline{h} = \left(\frac{\overline{h}^{\dagger}}{\overline{h}^{-}}\right)$$
... gaugino, R-charge (-1)

SUSY localization (I)

The path integral over vector multiplet fields on the sphere with metric $ds^2 = l^2(d\theta^2 + \sin^2\theta d\phi^2)$

localizes onto saddle point configurations

$$\sigma = \frac{\alpha}{\ell}$$
, $D = -\frac{\alpha}{\ell^2}$,
 $\beta = -\frac{s}{\ell}$, $A = s \cdot (\cos \theta \mp 1) d\theta$... on N/S hemispheres

* a.s & (Lie algebra), s is GNO quantized.

Multiplet 2

chiral multiplets

C.C.

furnishes a complex rep. of the gauge group.

SUSY localization (I)

Path integral over chirals localizes to $\phi = \psi = F = 0$.

Gaussian approx. around there gives an exact result.

Take an U(1) theory, and choose a saddle point (a,s).

Path integral over a single chiral of charge +1 gives the "1-loop determinant"

$$Z_{1loop} = \frac{\Gamma(S+q-ia)}{\Gamma(S+l-q+ia)}$$
R-chara

SPHERE PARTITION FUNCTION

For the U(1) gauge theory with 5+1 charged matters,

$$Z_{S^{2}} = \sum_{s \in \frac{1}{2} \mathbb{Z}} \int_{\mathbb{R}} \frac{da}{2\pi} e^{-it(a+is) - i\overline{t}(a+is)} \times \left[\frac{\Gamma(s-ia+q)}{\Gamma(l+s+ia-q)} \right]^{5} \frac{\Gamma(l-5s+5ia-5q)}{\Gamma(-5s-5ia+5q)}$$

Here t=r+i0 (0...2D theta angle) parametrizes MK(A)

* 9>0: regulator

Path integral over vector multiplet
$$\longrightarrow \sum_{s} \int \frac{da}{2\pi}$$

Path integral over matter multiplet gaussian

Soon it was realized that

$$\begin{split} \overline{Z}_{S^2}(t,\bar{t}) &= \sum_{S \in \frac{1}{2} \mathbb{Z}} \int_{\mathbb{R}} \frac{da}{2\pi} e^{-it(a+is) - i\bar{t}(a+is)} \\ & \times \left[\frac{\Gamma(s-ia+g)}{\Gamma(l+s+ia-g)} \right]^5 \frac{\Gamma(l-5s+5ia-5g)}{\Gamma(-5s-5ia+5g)} \\ &= \exp\left(-K(t,\bar{t})\right) \\ &\quad \text{Kähler potential for } \mathcal{M}_K(A) \end{split}$$

An evidence of this can be seen by closing the a-integration contour in LHP and rewriting it into a residue-sum

Another formula for Zs2

$$\mathbb{Z}_{S^2} = (\cdots) \cdot \oint_0 \frac{d\epsilon}{2\pi i} \left(\frac{5}{\epsilon^4} - \frac{400 \, \xi(3)}{\epsilon} \right) w(\overline{z}, \epsilon) w(\overline{z}, \epsilon)$$
where $\overline{z} = -5^5 e^{-t}$,
$$W(\overline{z}, \epsilon) = \sum_{k \geqslant 0} \overline{z}^{k+\epsilon} \frac{\prod_{j=1}^{5k} (j+5\epsilon)}{5^{5k} \prod_{j=1}^{k} (j+\epsilon)^5}$$

$$\left\{ (z_{6}^{4})^{4} - z(z_{6}^{4} + \frac{4}{5})(z_{6}^{4} + \frac{3}{5})(z_{6}^{4} + \frac{2}{5})(z_{6}^{4} + \frac{1}{5}) \right\} W(z, \epsilon) = z^{\epsilon} \cdot \epsilon^{4}$$

... $Z_{S^2}(t,\bar{t})$ is a bilinear of the solutions to PF equation.

The new approach to CY compactification

exact formulae in SUSY gauge theories

non-abelian 2D gauge theories.

allows us to Study wider class of Calabi-Yau 3folds, especially those constructed from

Inclusion of Defects

work in progress

Sungjay Lee (KIAS), Takuya Okuda (UTokyo) and KH,

VORTEX DEFECTS

In 2D gauge theories we can consider the defects defined by the "singular boundary condition"

$$A \simeq \eta \cdot dg$$

$$\gamma \in (Gauge symmetry Lie algebra)$$

9 ... angle coordinate around the defect

For SUSY-preserving defects, one can compute correlators.

OUR WORK

- ① Define the 2D N=(2.2) SUSY theory of vector & chiral multiplet on S^2
- 2 Introduce vortex defects $V_{\eta N}$. $V_{\eta S}$ at NP & SP so that Q is preserved
 - ⇒ compute correlators

GENERAL PROPERTIES (for U(1) case)

Assuming charge quantization,

$$A \simeq \eta d\varphi \longrightarrow A \simeq (\eta + 1) d\varphi$$
 is a gauge symmetry.

The behavior of matters around V_n depends on $n \mod \mathbb{Z}$.

An exact shift relation: $V_{\eta+1} = e^{-\tau} V_{\eta}$

Defect in the GLSM for quintic CY:

we found a defect \sqrt{n} satisfying

$$\begin{array}{ll} \eta \in (\ \, 0 \ \, , \ \, \frac{1}{5}] & \langle V_{\eta}(NP) \rangle = -\frac{1}{5} \big(2\frac{d}{dz} \big)^4 \, \mathbb{Z}_{S^2} & \big(\, z = -5^5 e^{-t} \, \big) \\ \eta \in (-\frac{1}{5}, \ \, 0 \, \big] & \langle V_{\eta}(NP) \rangle = \mathbb{Z}_{S^2} \\ \eta \in (-\frac{2}{5}, -\frac{1}{5}] & \langle V_{\eta}(NP) \rangle = (1+5z\frac{d}{dz}) \, \mathbb{Z}_{S^2} \\ \eta \in (-\frac{3}{5}, -\frac{2}{5}] & \langle V_{\eta}(NP) \rangle = (1+5z\frac{d}{dz}) \, \big(2+5z\frac{d}{dz} \big) \, \mathbb{Z}_{S^2} \\ \eta \in (-\frac{4}{5}, -\frac{3}{5} \big] & \langle V_{\eta}(NP) \rangle = (1+5z\frac{d}{dz}) \, \big(2+5z\frac{d}{dz} \big) \, \big(3+5z\frac{d}{dz} \big) \, \mathbb{Z}_{S^2} \\ \eta \in (-1, -\frac{4}{5} \big] & \langle V_{\eta}(NP) \rangle = (1+5z\frac{d}{dz}) \, \big(2+5z\frac{d}{dz} \big) \, \big(3+5z\frac{d}{dz} \big) \, \big(4+5z\frac{d}{dz} \big) \, \mathbb{Z}_{S^2} \end{array}$$

Combining with the shift relation one recovers PF equation.

With more exact & powerful formulae,

SUSY localization may help us understanding

the physics & math of CY compactification even better.