The PandaX Experiments and Recent Results from PandaX-II

Jianglai Liu Institute of Nuclear and Particle Physics Shanghai Jiao Tong University

On behalf of the PandaX Collaboration

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016

Composition of the universe

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016

WIMP, the miracle, and the detection

Relic density

DM direct detection: wait for DM interacting atomic nucleus in the detector, and detect its recoil (Goodman & Witten, 1985)

Dual phase xenon experiments

Dual phase xenon

detector is

Large target

Low energy calorimeter

3D camera

XENON100, 60 kg, completed 2012, Gran Sasso XENON1T commissioning LUX, 250 kg, running, Sanford Lab LZ(multi-ton) in preparation Signal/bkg discriminator

Dual phase xenon experiments

DM direct detection: recoil of atomic nucleus in the detector (Goodman & Witten, 1985), <10 keV_{ee} energy

Underground experiments

- Every second there are 10⁸ dark matter passing through us
- Our body has 10²⁹ atoms

- Less <1 nucleus is hit <u>per</u> <u>year</u>!
- But our body is hit 10⁸/day by environmental background radiation!
- Hide detector in deep underground lab, and put massive shield

China Jinping Underground Lab

Jianglai Liu, NCTS annual meeting, Hsinch 🚱 🛯 🖉 💯 / 2016

PandaX Experiments

PandaX-I: 120 kg DM experiment 2009-2014

PandaX-II: 500 kg DM experiment 2014-2018

PandaX-xT: multi-ton (~4-T) DM experiment 2018PandaX-III: 200 kg to 1 ton HP gas ¹³⁶Xe 0vDBD experiment 2016-

PANDAX=Particle and Astrophysical Xenon Experiments

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016

PandaX collaboration

Started in 2009, ~50 people

- Shanghai Jiao Tong University (2009-)
- Peking University (2009-)
- Shandong University (2009-)
- Shanghai Institute of Applied Physics, CAS (2009-)
- University of Science & Technology of China (2015-)
- China Institute of Atomic Energy (2015-)
- Sun Yat-Sen University (2015-)
- Yalong Hydropower Company (2009-)
- University of Maryland (2009-)
- Alternative Energies & Atomic Energy Commission (2015-)
- University of Zaragoza (2015-)
- Suranaree University of Taska also free (2010)

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016

First delivery of PandaX equipment to Jinping

PandaX apparatus

PandaX-I results

Phys. Rev. D 92, 052004(2015)

- Completed in Oct.
 2014, with 54.0 x 80.1
 kg-day exposure
- Data strongly disfavor all previously reported claims
- Competitive upper limit for low mass WIMP among xenon experiments

PandaX-II

- New inner vessel with clean SS
- New and taller TPC
- More 3" PMTs and improved base design with split -ve and +ve HV
- New isolated skin veto region

Detector construction

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016 🤷 🖓

Putting all together

Run8+run9=98.7 days, exposure:3.3x10⁴ kg-day

Largest dual phase xenon experiment producing science data

Major upgrade in run 9

Items	Status in Run 9			
Krypton level	Reduced by x10			
Exposure	Increased x4 (79.6 vs 19.1 day)			
ER calibration	Using tritium calibration			
NR calibration	Statistics x6			
Analysis	Improved position reconstruction			
Background	Accidental background suppressed more than x3 using BDT			

Typical single scattering event

Extensive calibration program

■ Low rate AmBe neutron source
 ⇒ Simulate DM NR signal

 CH₃T injection: tritium beta decays

 \Rightarrow Simulate ER background

ER/NR separation

 Separating electron-recoil background from nuclear recoil signal by using known sources

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016

Low energy rate in run 9

Item	Run 8 (mDRU)	Run 9 (mDRU)
85 Kr	11.7	1.19
127 Xe	0	0.42
222 Rn	0.06	0.13
220 Rn	0.02	0.01
Detector material ER	0.20	0.20
Total	12.0	1.95

- Events selected in the FV with energy <10 keV_{ee}
- ~2 mDRU in the FV on average, world lowest reported background level.
- Decrease over time due to ¹²⁷Xe decay

Final candidates (run 9)

Gray: all Red: below NR median Green: below NR median and in FV

- 389 total candidates found in the FV (329 kg)
- 1 below NR median
- Outside FV, edge events more likely to lose electrons, leading to S2 suppression

Jianglai Liu, NCTS annual meeting, Hsinchu, 12/9/2016

Final candidates (run 9)

Final candidate (run 8)

Summary of final candidates

	ER	Accidental	Neutron	Total	Total
				Expected	observed
Run 8	622.8	5.20	0.25	628 ± 106	734
Below	2.0	0.33	0.09	$2.4{\pm}0.8$	2
<u>NR median</u>	277.0	14.0	0.01	202 ± 40	200
Run 9	377.9	14.0	0.91	393 ± 40	389
Below	1.2	0.84	0.35	2.4 ± 0.7	1
NR median		0.01	0.00		-

Combined exposure: 33000 kg-day

Spin-independent cross section limit

Minimum exclusion: 2.5x10⁻⁴⁶ cm² @ 40 GeV/c² improved x10 from run 8, >x2 from LUX 2015 LUX 95+332 day results had a limit at 1.1x10-46 cm^2 @ 50 GeV/c², not published yet This is the first low background result from PandaX-II, a long life (~500 live-day) ahead of this!

Spin-dependent limit

 ¹³¹Xe and ¹²⁹Xe has unpaired neutrons (non-zero spins)

 WIMP could have spin, and could interact with nuclear spin via axial coupling

 arXiv:1611.06553, world best SD-neutron limit from direct detection

PandaX new home: CJPL-II

8 experimental Halls, 14(H)x 14(W)x65(L) m each.

B4, PandaX site!

PandaX in CJPL-II

A large experimental infrastructure to host multiple dark matter and double beta detectors

To achieve an extremely low background environment, use ultrapure water contained in a large SS water tank with 25(I)x13(w)x13(h), 3400 ton capacity

3-40 ton LXe DM experiment

HP Xe136 experiment (multiple detectors)

PandaX-III: High pressure ¹³⁶Xe TPC

- OvDBD signal: two electrons emitting from the same vertex with a summed energy at the Q value (tracking essential)
- TPC: 200 kg, 10 atm, symmetric, double-ended charge readout plane with micromegas module with cathode in the middle
- Four more upgraded modules for a ton scale experiment
- Published CDR recently: <u>ArXiv:1610.08883</u>

Experimental hall

Summary and outlook

- Many exciting physics opportunities in PandaX at the world deepest CJPL
- PandaX-II has reached the forefront of the DM search, and will continue PandaX-II data taking till end of 2018
- The collaboration is going forward in preparation for PandaX-xT and PandaX-III!
- We love to discuss with theorists where and what to look for!