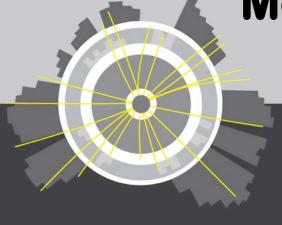


RADIATIVE NEUTRINO MASS GENERATION: Models, Flavour & the LHC



COEPP

ARC Centre of Excellence for Particle Physics at the Terascale

Ray Volkas
School of Physics
The University of Melbourne

- 1. Intro: see-saw vs radiative ν mass
- 2. Models: opening up d=7 operators
- 3. LHC: constraints from Run 1 (on a new model)
- 4. Flavour: bounds and prospects
- 5. Final remarks

1. Intro: see-saw vs radiative ν mass

△ L=2 SM effective operators can be used to systematically study models of Majorana neutrino mass generation.

These have mass dimension d = 5, 7, 9, ...

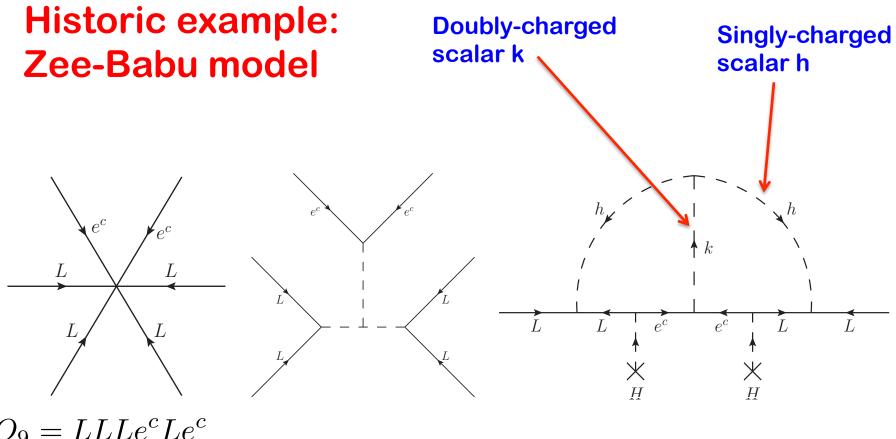
At d = 5, there is only the Weinberg operator: LLHH

It gives neutrino mass directly, via the see-saw formula $m_{\nu} \sim \langle H \rangle^2 / M$

Underlying renormalisable theories yielding LLHH are constructed by "opening up" the operator. The type-1,2,3 see-saw models are the minimal, tree-level ways to open up LLHH.

Other \triangle L=2 SM effective operators require external legs (quarks, additional leptons) to be closed off in loops to give neutrino mass: radiative neutrino mass generation.

The effective operator is still minimally opened up at tree-level.



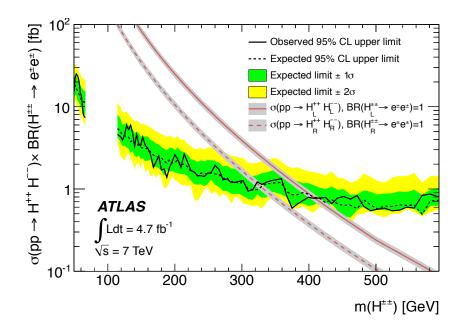
 $O_9 = LLLe^cLe^c$

Effective op

Opening it up

2-loop nu mass diagram

The exotics (k, h in this case) can be searched for at the LHC.



Mass limits on charge-2 scalar. Depends on BR assumption. Early Run 1 data.

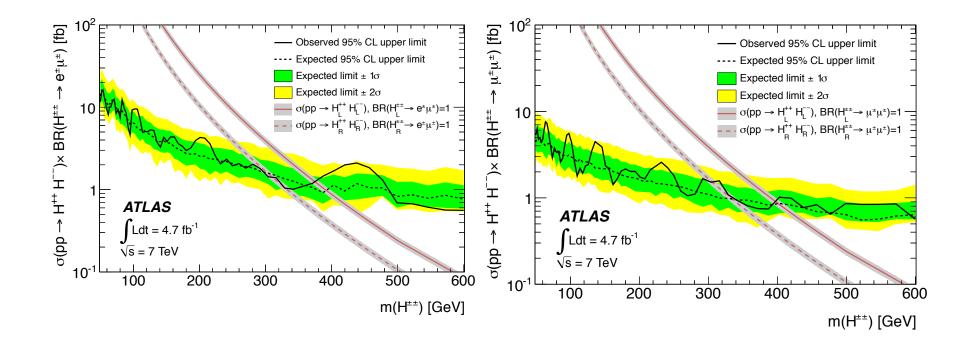
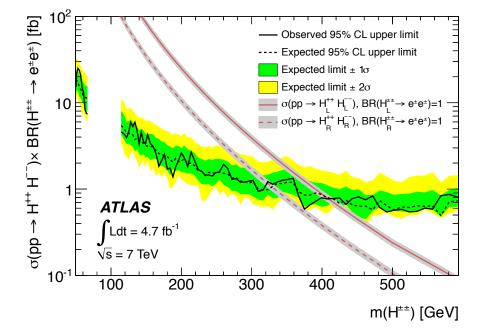


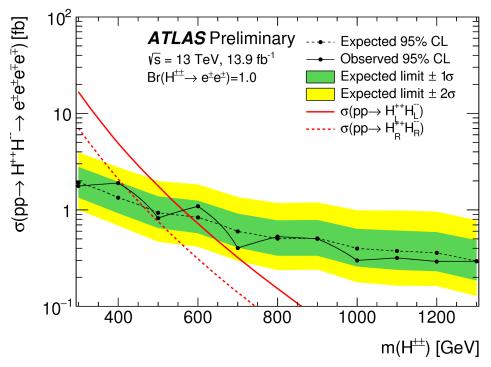
Table 1 Lower mass limits at 95% CL on $H^{\pm\pm}$ bosons decaying to $e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, or $e^{\pm}\mu^{\pm}$ pairs. Mass limits are derived assuming branching ratios to a given decay mode of 100%, 33%, 22%, or 11%. Both expected and observed limits are given.

$\mathrm{BR}(H_L^{\pm\pm} \to \ell^{\pm}\ell'^{\pm}) \mid$	95% CL lower limit on $m(H_L^{\pm\pm})$ [GeV]					
	$e^{\pm}e^{\pm}$		$\overline{\parallel \mu^{\pm}}$	$\overline{\mu^\pm}$	e^{\pm}	$\overline{u^{\pm}}$
	exp.	obs.	exp.	obs.	exp.	obs.
100%	407	409	401	398	392	375
33%	318	317	317	290	279	276
22%	274	258	282	282	250	253
11%	228	212	234	216	206	190
$BR(H_R^{\pm\pm} \to \ell^{\pm}\ell'^{\pm}) \mid$	95% CL lower limit on $m(H_R^{\pm\pm})$ [GeV]					
	$e^{\pm}e^{\pm}$		$\overline{\parallel \mu^{\pm}}$	$\overline{\mu^\pm}$	e^{\pm}	$\overline{u^{\pm}}$
	exp.	obs.	exp.	obs.	exp.	obs.
100%	329	322	335	306	303	310
33%	241	214	247	222	220	195
22%	203	199	223	212	194	187
11%	160	151	184	176	153	151

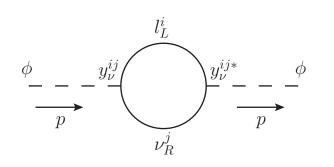
ATLAS mass limits as function of BR



For the 100% BR to ee case, bound increases from about 320 GeV to 450 GeV going to Run 2 data.



Comment on naturalness of the type-1 see-saw model:



Vissani PRD57, 7027 (1998):

$$\delta\mu^2 \simeq \frac{1}{4\pi^2} \frac{1}{\langle\phi\rangle^2} m_\nu M_N^3 < 1 \text{ TeV}^2$$

 $\Rightarrow m_N < 3 \times 10^7 \text{ GeV}$

Standard hierarchical, thermal leptogenesis:

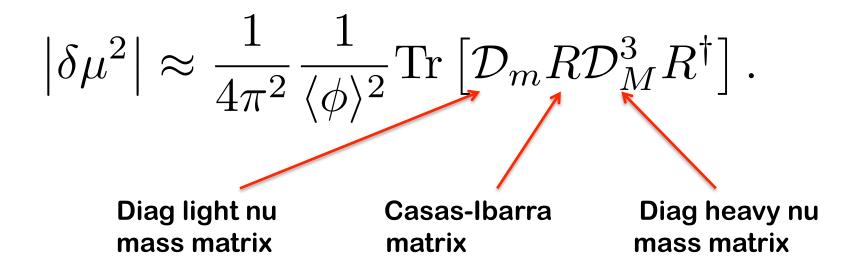
Bound for N_1 leptogen $m_N > 5 \times 10^8 - 2 \times 10^9$ GeV

Davidson, Ibarra Giudice et al

What about in the full, three-flavour case, and for N1-, N2- and N3-leptogenesis?

Clarke, Foot, RV: PRD91 (2015) 073009

arXiv:1502.01352



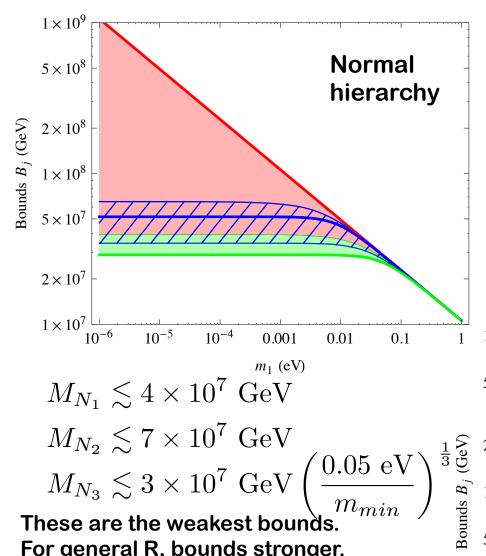
No dependence on PMNS matrix in the appropriate basis.

Naturalness criterion:

$$\frac{1}{4\pi^2} \frac{1}{\langle \phi \rangle^2} M_j^3 \sum_i m_i |R_{ij}|^2 < 1 \text{ TeV}^2,$$

$$\Rightarrow M_j \lesssim 2.9 \times 10^7 \text{ GeV} \left(\frac{0.05 \text{ eV}}{\sum_i m_i |R_{ij}|^2} \right)^{\frac{1}{3}}$$
 Vissani

3-flavour effects



Challenge for all hierarchical, thermal leptogen scenarios.

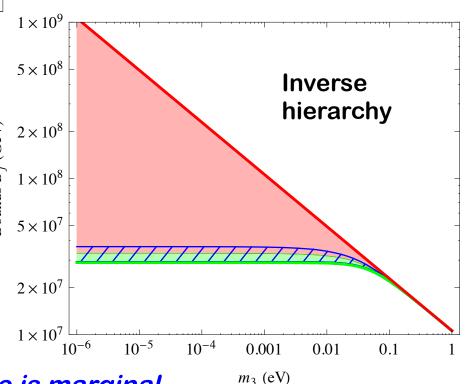
These are the weakest bounds

For general R, bounds stronger.

Upper bounds B_i ordered s.t. $B_1 < B_2 < B_3$ (green/blue/red)

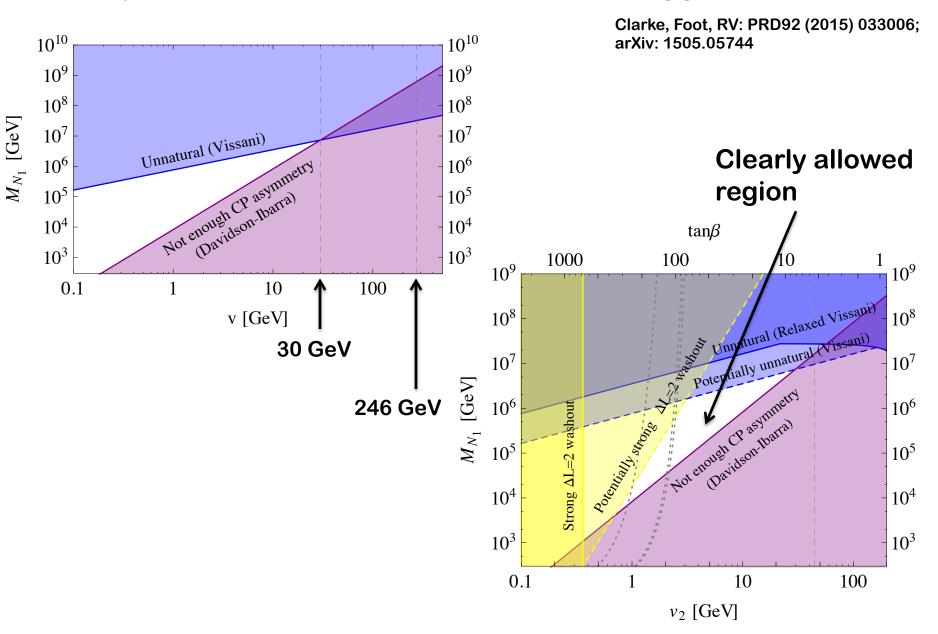
Scan over R parameters (real) and absolute nu mass scale

Whether a given B_i applies to N₁, N₂ or N₃ depends on R



Initial dominant N₁ abundance case is marginal.

One possible minimal modification: 2 Higgs doublets



2. Models: opening up d=7 operators

Assumption: SM gauge group and multiplets

Babu & Leung, NPB619, 667 (2001) de Gouvêa & Jenkins, PRD77, 013008 (2008) W. Winter et al, recent papers

Classification criteria:

- mass dimension = d
- number of fermion fields = f

Pre-2015 analys	ses
-----------------	-----

B=Babu J=Julio L=Leung Z=Zee d=detailed, b=brief

•	i ie zo ie diidiyeee					
d	f	operator(s)	scale from m _v (TeV)	model(s)?	comments	
7	4	$O_2 = LLLe^c H$	10 ⁷	Z (1980,d)	pure-leptonic,1- loop, ruled out	
		$O_3 = LLQd^cH(2)$	10 ^{5,8}	BJ (2012, <mark>d</mark>) BL (2001,b)	2012 = 2-loop 2001 = 1-loop	
		$O_4 = LL\bar{Q}\bar{u}^c H(2)$	10 ^{7,9}	BL (2001,b)	1-loop vector leptoquarks	
		$O_8 = L\bar{e}^c \bar{u}^c d^c H$	104	BJ (2010,d)	2-loop	
9	4	$O_5 = LLQd^cHH\bar{H}$	10 ⁶	BL (2001,b)	1-loop	
		$O_6 = LL\bar{Q}\bar{u}^c H H \bar{H}$	10 ⁷			
		$O_7 = LQ\bar{e}^c\bar{Q}HHH$	10 ²			
		$O_{61} = (LLHH)(Le^c\bar{H})$	10 ⁵		purely leptonic	
		$O_{66} = (LLHH)(Qd^c\bar{H})$	10 ⁶			
		$O_{71} = (LLHH)(Qu^cH)$	10 ⁷	BL (2001,b)	1-loop	

A=Angel et al dGJ=deGouvêa+Jenkins

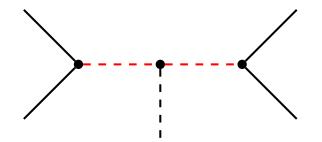
d	f	operator(s)	scale from mv (TeV)	model(s)?	comments
9	6	$O_9 = LLLe^cLe^c$	10 ³	BZ (1988,d)	2-loop, purely leptonic
		$O_{10} = LLLe^cQd^c$	10 ⁴	BL (2001,b)	two 2-loop models
		$O_{11} = LLQd^cQd^c(2)$	30, 10 ⁴	BL (2001,b) A (2013,d)	three 2-loop models one 2-loop model
		$O_{12} = LL\bar{Q}\bar{u}^c\bar{Q}\bar{u}^c(2)$	10 ^{4,7}	BL (2001,b)	2-loop
		$O_{13} = LL\bar{Q}\bar{u}^c Le^c$	10 ⁴		
		$O_{14} = LL\bar{Q}\bar{u}^c Q d^c(2)$	10 ^{3,6}		
		$O_{15} = LLLd^c \bar{L}\bar{u}^c$	10 ³		3-loop
		$O_{16} = LL\bar{e}^c d^c \bar{e}^c \bar{u}^c$	2		3-loop
		$O_{17} = LLd^c d^c \bar{d}^c \bar{u}^c$	2		3-loop
		$O_{18} = LLd^c u^c \bar{u}^c \bar{u}^c$	2		3-loop
		$O_{19} = LQd^cd^c\bar{e}^c\bar{u}^c$	1	dGJ (2008,b)	3-loop
		$O_{20} = Ld^c \bar{Q} \bar{u}^c \bar{e}^c \bar{u}^c$	40		3-loop

In Cai, Clarke, Schmidt, RV JHEP 1502 (2015) 161, arXiv:1410.0689 we constructed all minimal models from d = 7 operators:

$$\mathcal{O}_1' = LL\tilde{H}HHH$$

$$\mathcal{O}_2 = LLL\bar{e}H, \quad \mathcal{O}_3 = LLQ\bar{d}H, \quad \mathcal{O}_4 = LLQ^{\dagger}\bar{u}^{\dagger}H, \quad \mathcal{O}_8 = L\bar{d}\bar{e}^{\dagger}\bar{u}^{\dagger}H$$

Scalar-only extension:

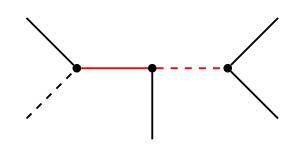


Scalar	Scalar	Operator
(1,2,1/2)	(1,1,1)	O _{2,3,4}
(3,2,1/6)	(3,1,-1/3)	O _{3,8}
(3,2,1/6)	(3,3,-1/3)	O ₃

Zee

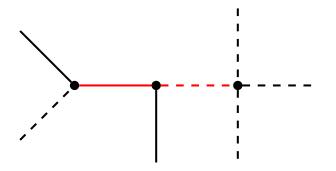
Babu, Leung, Julio

Scalar + fermion extension:



Dirac fermion	Scalar	Operator	
(1,2,-3/2)	(1,1,1)	O_2	
(3,2,-5/6)	(1,1,1)	O_3	
(3,1,2/3)	(1,1,1)	O_3	
(3,1,2/3)	(3,2,1/6)	O_3	Babu, Julio
(3,2,-5/6)	(3,1,-1/3)	O _{3,8} Ca	ai, Clarke, Schmidt, RV
(3,2,-5/6)	(3,3,-1/3)	O_3	- this talk
(3,3,2/3)	(3,2,1/6)	O ₃	
(3,2,7/6)	(1,1,1)	O_4	
(3,1,-1/3)	(1,1,1)	O ₄	
(3,2,7/6)	(3,2,1/6)	O ₈	
(1,2,-1/2)	(3,2,1/6)	O ₈	

Scalar + fermion extension:



Dirac fermion	Scalar	Operator
(1,3,-1)	(1,4,3/2)	O' ₁

3. LHC: constraints from Run 1 (on a new model)

O₃ = LLQd^cH model (subdominant O₈ contribution)

Exotics:
$$\phi \sim (\bar{3}, 1, 1/3), \qquad \chi \sim (3, 2, -5/6)$$

Leptoquark scalar

Vector-like quark

$$-\mathcal{L} = \mu_{\phi}^2 \phi^{\dagger} \phi + m_{\chi} \bar{\chi} \chi + \left(Y_{ij}^{LQ\phi} L_i Q_j \phi + Y_i^{L\bar{\chi}\phi} L_i \bar{\chi} \phi^{\dagger} + Y_i^{\bar{d}\chi H} \bar{d}_i \chi \right) H + h.c.$$

$$+ \left(Y_{ij}^{\bar{e}\bar{u}\phi} \bar{e}_i \bar{u}_j \phi^{\dagger} + h.c. \right)$$

$$+ \left(Y_{ij}^{\bar{e}\bar{u}\phi} \bar{e}_i \bar{u}_j \phi^{\dagger} + h.c. \right)$$

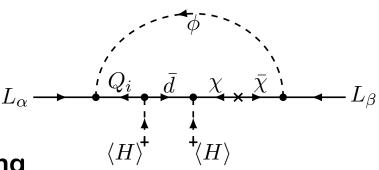
Set to zero for simplicity b/c no role in nu mass gen

Impose B-conservation to forbid proton-decay interactions allowed by the gauge symmetry: $QQ\phi^{\dagger}$ and $\bar{d}\bar{u}\phi$

Neutrino mass generation:

Prop to down quark masses

- dominated by b quark
- for simplicity, have zero mixing of χ with 1st, 2nd gen quarks



$$(m_{\nu})_{ij} = \frac{3}{16\pi^{2}} \left(Y_{i3}^{LQ\phi} Y_{j}^{L\bar{\chi}\phi} + (i \leftrightarrow j) \right) m_{bB} \frac{m_{b}m_{B}}{m_{\phi}^{2} - m_{B}^{2}} \ln \frac{m_{B}^{2}}{m_{\phi}^{2}}$$

$$m_{bB} = Y_{3}^{\bar{d}\chi H} v / \sqrt{2} \qquad (m_{b} \ll m_{B}, m_{\phi})$$

$$\chi = \left(\begin{array}{c} B' \\ Y \end{array} \right)$$
 charge -1/3 mixing with b to give B charge -4/3 massive exotic quark

One almost massless nu, and two massive

$$m_{\nu} = a_{+}a_{-}^{T} + a_{-}a_{+}^{T}$$
 outer product of vectors

$$a_{\pm}^{\text{NO}} = \frac{\zeta^{\pm 1}}{\sqrt{2}} \left(\sqrt{m_2} u_2^* \pm i \sqrt{m_3} u_3^* \right), \qquad a_{\pm}^{\text{IO}} = \frac{\zeta^{\pm 1}}{\sqrt{2}} \left(\sqrt{m_1} u_1^* \pm i \sqrt{m_2} u_2^* \right)$$

$$a_{\pm}^{\text{IO}} = \frac{\zeta^{\pm 1}}{\sqrt{2}} \left(\sqrt{m_1} u_1^* \pm i \sqrt{m_2} u_2^* \right)$$

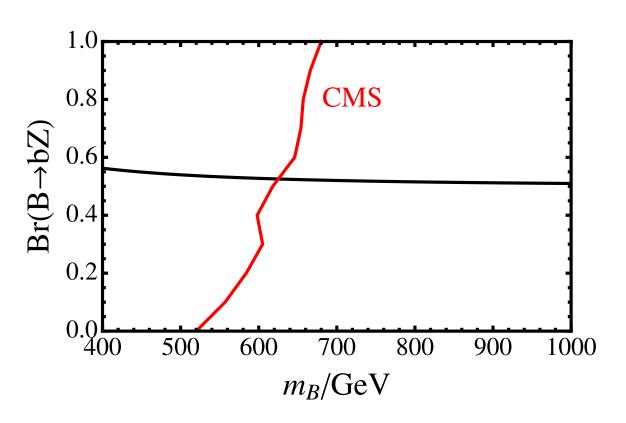
$$U_{\text{PMNS}} = (u_1, u_2, u_3)$$

 ζ is a Casas-Ibarra-like, complex parameter not determined by low-energy parameters

Set lightest nu mass and all PMNS phases to zero.

CMS search for vector-like B quark (no Y search has been done):

$$B \to Zb$$
, $B \to Hb$ dominate



$$m_B \geq 620 \text{ GeV}$$

Leptoquark searches:

Pair production: gg fusion and q q-bar annihilation.

Colour charge only, so $\sigma(pp \rightarrow \phi \phi)$ depends on m_{ϕ} only.

 σ (pp $\to \phi \phi$) = 82 (23.5) fb for m_{ϕ} = 500 (600) GeV.

 $\phi \to Lt, \quad b\nu \qquad \quad L \equiv (e, \mu, \tau)$ Decays:

$$L \equiv (e, \mu, \tau)$$

Consider $m_{Y,B} >> m_{\phi}$ only, so LY, B \cup final states not possible

$$\Gamma(\phi \to Lt) = \frac{m_{\phi}}{8\pi} \left| Y_{L3}^{LQ\phi} \right|^2 f(m_{\phi}, m_L, m_t)$$

Also give nu mass

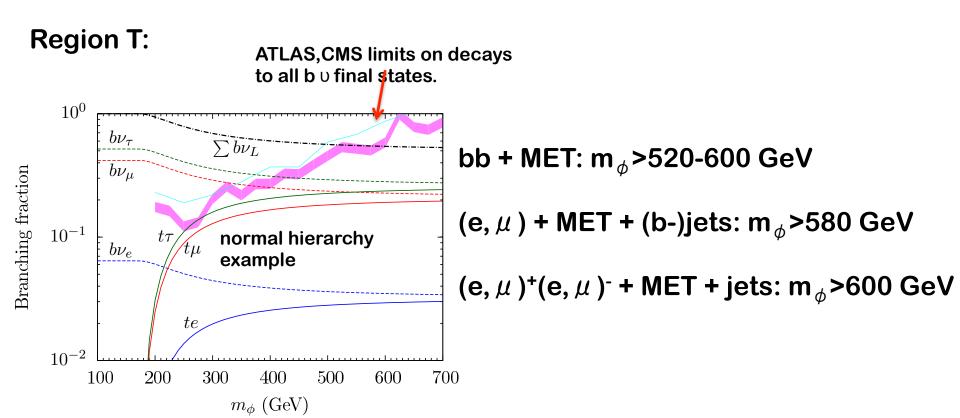
$$\Gamma(\phi \to \nu_L b) \simeq \frac{m_\phi}{8\pi} \left(\left| Y_{L3}^{LQ\phi} c_2 \right|^2 + \left| Y_L^{L\bar{\chi}\phi} s_1 \right|^2 \right) f(m_\phi, m_{\nu_L}, m_b)$$

BRs depend on $|\zeta|$. Because of connection to nu mass generation, they are quite constrained.

Next slide: region B (Br($\phi \rightarrow b \cup)\approx 100\%$) and region T (Br($\phi \rightarrow b \cup)< 100\%$)

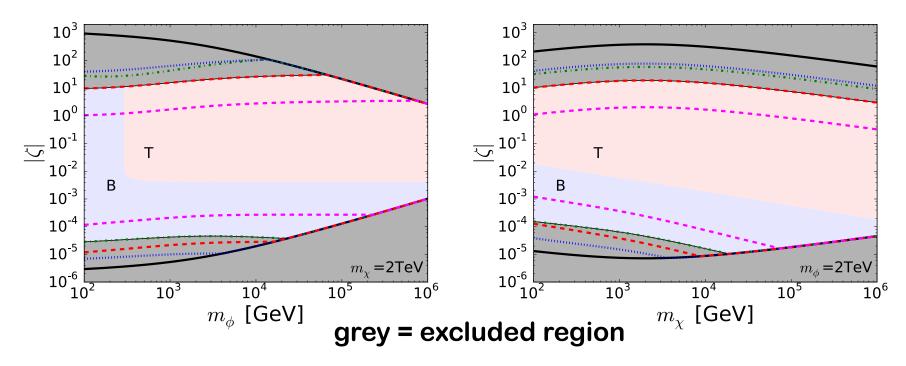
Region B: $pp o \phi \phi o bb + {
m missing} \ E_T$

sbottom pair searches apply: $m_{\phi} > 730$ GeV at 95% C.L.



4. Flavour: bounds and prospects

Same model, flavour violation constraints: $~\mu \to e \gamma, ~~\mu \to e e e, ~~\mu N \to e N$



Blue (B) allowed region has Br($\phi \rightarrow b \cup)\approx 100\%$ Red (T) allowed region has Br($\phi \rightarrow b \cup)< 100\%$

$$BR(\mu \to e\gamma) < 5.7 \times 10^{-13}$$
 $BR(\mu \to eee) < 10^{-12}$ $BR(\mu Au \to eAu) < 7 \times 10^{-13}$

----- ${
m BR}(\mu{
m Ti}
ightarrow e{
m Ti})\sim 10^{-16}\,$ reach of Mu2E, COMET

Scalar leptoquarks, which abound in radiative nu mass models, are of considerable interest for the following flavour anomalies:

$$R_K \equiv \frac{\Gamma(\bar{B} \to \bar{K} \mu^+ \mu^-)}{\Gamma(\bar{B} \to \bar{K} e^+ e^-)} \qquad \begin{array}{c} \mathbf{b} \to \mathbf{s} \text{ transition} \\ \mathbf{2.6} \, \sigma \, \mathbf{discrepancy} \end{array}$$

SM: 1.0003 ± 0.0001 LHCb: $0.745^{+0.090}_{-0.074} \pm 0.036$

$$R_{D^{(*)}} \equiv \frac{\Gamma(\bar{B} \to D^{(*)} \tau \bar{\nu})}{\Gamma(\bar{B} \to D^{(*)} \ell \bar{\nu})} \qquad \text{b} \to \text{c transition}$$

SM: $R_D \approx 0.30 \pm 0.01$, $R_{D^*} = 0.252 \pm 0.003$

BaBar: $R_D = 0.440 \pm 0.058 \pm 0.042$, $R_{D^*} = 0.332 \pm 0.024 \pm 0.018$

Belle: between BaBar & SM; LHCb R_{D*} similar to BaBar

For example, the leptoquark used earlier: $\,\phi \sim (\bar{3},1,1/3)\,$

has the couplings $d_i \nu_j \phi$, $u_i \ell_j \phi$

For nu mass, b-quark couplings dominate.

But we can switch on $c au\phi$ involving 2nd family.

Needed to fit central value of R_{D(*)} (tree-level process)

Also:

 $s\nu_i\phi$ $\mu u_i\phi$

are of relevance to R_K at 1-loop level

See, e.g. Bauer & Neubert, 1511.01900

Bečirević et al, 1608.07583

Deshpande & He, 1608.04817v4

More analysis is needed and underway!

5. Final remarks

- 1. △ L=2 effective operators are a useful organising principle for Majorana nu mass models
- 2. Exotic scalars and fermions are constrained by LHC searches.
- 3. There is interesting flavour-violation pheno in these models for both leptons and quarks.