Search for new scalar in general 2HDM via $cg ightarrow tS^0$

Tanmoy Modak

Work in progress National Taiwan University In collaboration with Wei-Shu Hou, Masaya Kohda Energy Frontier in Particle Physics: LHC and Future Colliders

29 September 2017

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

イロン イロン イヨン イヨン 三日

Outline

- Introduction
- Model framework
- Same-sign dilepton
- Triple top
- Summary

ヘロト ヘロト ヘヨト ヘヨト

Introduction

- A second Higgs doublet of 125 GeV boson is possible, replicating fermions generations in scalar sector.
- Possibly hidden due to alignment.
- Alignment without decoupling: No Z₂ symmetry + all quartic couplings of extra Higgs O(1) and μ²₂₂/ν² ~ O(1). μ²₂₂ inertial mass of extra Higgs. [Hou and Kikuchi, arXiv:1706.07694]
- Allows extra scalar mass ~ 500 GeV.
- Required for first order Electroweak Phase Transition (EWPT).
- Diagonal S^0tt ($S^0 = A, H$) and FCNH S^0tc Yukawa: $\mathcal{O}(1)$ is possible.
- Large *S*⁰*tt*: efficient Electroweak Baryogenesis EWBG. [K. Fuyuto, W-.S. Hou, E. Senaha, arXiv:1705.05034]
- If $|S^0tt|$ small: $S^0tc \sim O(1)$ with near maximal phase for EWBG.
- Driven by alignment and EWBG, we study $cg \rightarrow tS^0$ process at 14 TeV LHC.

(日) (周) (ヨ) (ヨ) (ヨ)

Model framework

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Higgs potential

• CP conserving general Higgs potential without Z_2 symmetry:

$$\begin{split} V(\Phi,\Phi') &= \mu_{11}^2 |\Phi|^2 + \mu_{22}^2 |\Phi'|^2 - \left(\mu_{12}^2 \Phi^{\dagger} \Phi' + h.c.\right) \\ &+ \frac{\eta_1}{2} |\Phi|^4 + \frac{\eta_2}{2} |\Phi'|^4 + \eta_3 |\Phi|^2 |\Phi'|^2 + \eta_4 |\Phi^{\dagger} \Phi'|^2 \\ &+ \left\{ \frac{\eta_5}{2} \left(\Phi^{\dagger} \Phi' \right)^2 + \left(\frac{\eta_6}{|\Phi|^2} + \frac{\eta_7}{|\Phi'|^2} \right) \Phi^{\dagger} \Phi' + h.c. \right\} \end{split}$$

- Higgs basis where Φ generates v, μ_{12}^2 is identified as η_6 and μ_{22}^2 is inertial mass of Φ' .
- Mass matrix for CP even Higgs:

$$M = \left(\begin{array}{cc} \eta_1 v^2 & \eta_6 v^2 \\ \eta_6 v^2 & \mu_{22}^2 + \frac{1}{2}(\eta_3 + \eta_4 + \eta_5) v^2 \end{array}\right)$$

◆□ → ◆□ → ▲目 → ▲目 → ◆□ →

Diagonalizing matrix:

$$R = \left(\begin{array}{cc} \cos\gamma & -\sin\gamma \\ \sin\gamma & \cos\gamma \end{array}\right)$$

 $\cos \gamma = 0$ is analogous to $\cos(\beta - \alpha) = 0$ in Type-II 2HDM • Masses of *H* and *A* :

$$m_{H^0}^2, m_{A^0}^2 = \mu_{22}^2 + \frac{1}{2}(\eta_3 + \eta_4 \pm \eta_5)v^2,$$

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Natural Alignment

$$\cos^2 \gamma = \frac{\eta_1 v^2 - m_h^2}{m_H^2 - m_h^2}, \quad \sin 2\gamma = \frac{2\eta_6 v^2}{m_H^2 - m_h^2}$$

- Alignment: Current data shows 125 GeV Scalar behaves like Standard Model Higgs. $\cos \gamma = 0$ and $\sin \gamma = -1$.
- Close to alignment: $\cos \gamma \simeq \frac{-n_6 v^2}{m_H^2 m_h^2}$.
- Alignment without decoupling in Type-II 2HDM. [M. Carena et al. JHEP 1404]
- $\eta_6 \ll 1$. [Bechtle et al. Eur. Phys. J. C 2017].
- $|\eta_6| \lesssim \eta_{3,4,5} \sim \mathcal{O}(1) \lesssim \mu_{22}^2/v^2$. Can result in small $\cos \gamma$. Natural Alignment. [Hou et al. arXiv:1706.07694]
- Mass of the extra scalar: Sub-TeV, thanks to Natural Alignment.
- Such extra scalar can drive EWPT strongly 1st order, needed for EWBG. [More on Alignment: See talk by H. Haber]

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

Yukawa couplings

• In Alignment limit, Yukawa couplings for up-type quarks,

$$\frac{\rho_{ij}}{\sqrt{2}}\,\overline{u}_{iL}(H^0+i\,A^0)u_{jR}+\text{h.c.}$$

- ρ_{ij} in general non-diagonal.
- ρ_{tt} and ρ_{tc} to be $\mathcal{O}(y_t)$ where $y_t \cong 1$.
- ρ_{bb} and $\rho_{\tau\tau}$ (and $\rho_{\tau\mu}$) should not be larger than the y_b and y_{τ} .
- *B* Physics: $\rho_{ct} \simeq 0$. [Chen et al. Phys. Lett. B (2013), Altunkaynak et al. Phys. Lett. B (2015)]
- Large ρ_{tt} (with phase): Driver of EWBG.
- If $|\rho_{tt}|$ is small, ρ_{tc} with large phase can also drive EWBG.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ○ ○

Searches at LHC

- Masses: ~ 500 GeV, large ρ_{tt} and large ρ_{tc} .
- $gg \rightarrow S^0 \rightarrow t\bar{t}$: Interference with QCD $t\bar{t}$ background. Could be sensitive. [ATLAS-CONF-2016-073]
- $gg \rightarrow S^0 \rightarrow \bar{t}c + \bar{c}t$: suffers from mass resolution of (t+j).
- Large ρ_{tt} may drive $gg \rightarrow t\bar{t}S^0$. [Kanemura et al. Nucl. Phys. B (2015), N. Craig et al. JHEP 1506, JHEP 1701]
- $cg \rightarrow tS^0 + \overline{t}S^0, S^0 \rightarrow t\overline{t}$: Excellent S/B ratio, clean final state topology.
- $cg \rightarrow tS^0 + \bar{t}S^0$, $gg \rightarrow t\bar{t}S^0$: Same-sign dilepton may emerge first.

[Recent BSM Higgs result: Talk by S. Paganis]

Feynman Diagrams

Search for new scalar in general 2HDM via $\mathit{cg} \rightarrow \mathit{tS}^0$

< ∃⇒

æ

Cross sections

Figure: Cross sections for H and A.

MadGraph5_aMC@NLO, PDFset: NN23LO1 PDF SM $t\bar{t}t \sim fb$.

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

문어 세 문어

Branching ratios of A and H (Simplified)

Figure: Branching ratios of H^0 [left] and A^0 [right]

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

★ E ► < E ►</p>

э

Same-sign Dilepton

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 - のへで

Processes and Selection criterion

Processes:

- 1) $cg \to tS^0 \to t\bar{t}t/tt\bar{c}$ (with conjugate process); 2) $gg \to t\bar{t}S^0 \to t\bar{t}t\bar{t}/t\bar{t}c\bar{t}$ (with conjugate process), (with at least two t (\bar{t}) decay $t \to b\ell^+\nu_\ell$ ($\bar{t} \to \bar{b}\ell^-\bar{\nu}_\ell$)).
- Selection criteria: 2 same-sign dilepton (SS-ℓℓ), at least three jets out of which two are *b*-jets and missing energy E^{miss}_T.
- $p_T^{\ell_1} > 25 \text{ GeV}, \ p_T^{\ell_2} > 20 \text{ GeV}; \ \Delta R_{\ell\ell} > 0.4, \ |\eta^{\ell}| < 2.5; \ p_T^{b_1} > 30 \text{ GeV}, \ p_T^{b_2} > 20 \text{ GeV}; \ \Delta R_{bb/bj/jj/j\ell} > 0.4, \ |\eta^{j/b}| < 2.5; \ E_T^{miss} > 30 \text{ GeV}$
- Sum of the transverse momenta of the two leading leptons and three leading jets $H_T > 300$ GeV.

Madgraph, Pythia 6.4, Delphes 3.4.0

Backgrounds

Backgrounds	Cross section (fb)
tτΖ	0.04
tŦW	0.72
tZ+jets	0.001
3t+j	0.0002
3t + W	0.0004
4 <i>t</i>	0.04
<i>Q</i> -flip	0.04

Table: Backgrounds for same-sign dilepton at 14 TeV.

SM non-prompt background ~ 1.5 of $t\bar{t}W$ [CMS,Eur. Phys. J.C 77, 578 (2017)]

Cross section and significance

Figure: [left] Cross sections (fb), and [right] significance [right], $\sqrt{s} = 14$ TeV.

< ∃⇒

= 990

Triple top

Search for new scalar in general 2HDM via $\mathit{cg}
ightarrow \mathit{tS}^0$

ヘロト ヘロト ヘヨト ヘヨト

= 990

Processes and Selection criteria

• Processes:

- 1) $cg \rightarrow tS^0 \rightarrow t\bar{t}t$ (with conjugate process);
- 2) $gg \rightarrow t\bar{t}S^0 \rightarrow t\bar{t}t\bar{t}/t\bar{t}c\bar{t}$ (with conjugate process).
- Selection criteria: at least three leptons, at least three *b*-jets and missing energy E_T^{miss} .
- $p_T^{\ell} > 30$ GeV, $p_T^b > 20$ GeV and $E_T^{\text{miss}} > 30$ GeV.
- ΔR and $|\eta|$ cuts : Same as SS- $\ell\ell$
- Sum of the transverse momenta of the three leading leptons and three leading *b*-jets $H_T > 300$ GeV.
- Use $76 < m_{\ell\ell} < 95 Z$ boson veto on events.

Backgrounds

Backgrounds	Cross section (fb)
$t\bar{t}Z$ +jets	0.0205 (0.0026)
t t Wb	0.0017 (0.0015)
tZjb	0.0002 (-)
3t+j	0.0001 (0.0001)
3t + W	0.0004 (0.0003)
4 <i>t</i>	0.0232 (0.0209)
$t\overline{t}+$ jets (fake)	0.0026 (0.0025)

Table: Backgrounds at 14 TeV for $3\ell 3b$.

Do not consider non-prompt background.

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

◆□ > ◆□ > ◆臣 > ◆臣 > ―臣 - のへで

Cross sections and Discovery potential

Figure: [left] Cross sections (fb), and [right] significance [right], $\sqrt{s} = 14$ TeV).

・日・ ・ヨ・ ・ヨ・

э.

Current constraint on ρ_{tc} and ρ_{tt} from Run-2 data

- SS- $\ell\ell$ search by CMS (13 TeV 35.9 fb⁻¹ data, [arXiv:1704.07323]) constrains ρ_{tc} and ρ_{tt} .
- Several signal regions are defined.
- SR: At least two jets with two are *b*-tagged+ missing energy. High-High selection for same-sign dilepton i.e. *p*_T > 25 GeV.
- Assuming $\rho_{tt} = 0$, constraint on ρ_{tc} :

• Can probe/rule out ρ_{tc} as driver.

→

Summary

- Motivated by EWBG and alignment, we search FCNH initiated $cg \rightarrow tS^0$ process at LHC.
- We find $SS-\ell\ell$ will emerge first. Run-2 data already sensitive.
- The triple top would act as confirmation.
- If $\rho_{tt} \sim 1$ and $\rho_{tc} \gtrsim 0.5$: triple top could discover S^0 up to 700 GeV in HL-LHC.
- If both processes are seen: Might confirm EWBG via ρ_{tt} .
- If ρ_{tt} is small triple top may not emerge. SS- $\ell\ell$ would still emerge driven by ρ_{tc} .
- This may confirm EWBG via ρ_{tc} .

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ○ ○ ○ ○

Thank You

Search for new scalar in general 2HDM via $cg
ightarrow tS^0$

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @