Zero-Range Effective Field Theory for Resonant Wimp Dark Matter

Eric Braaten Ohio State University

Evan Johnson Ohio State University Hong Zhang Technical University Munich

support from US Department of Energy

Zero-Range Effective Field Theory for Resonant Wino Dark Matter

Eric Braaten
Evan Johnson
Hong Zhang

arXiv:1706.02253 I. Framework

arXiv:1708.07155 II. Coulomb resummation

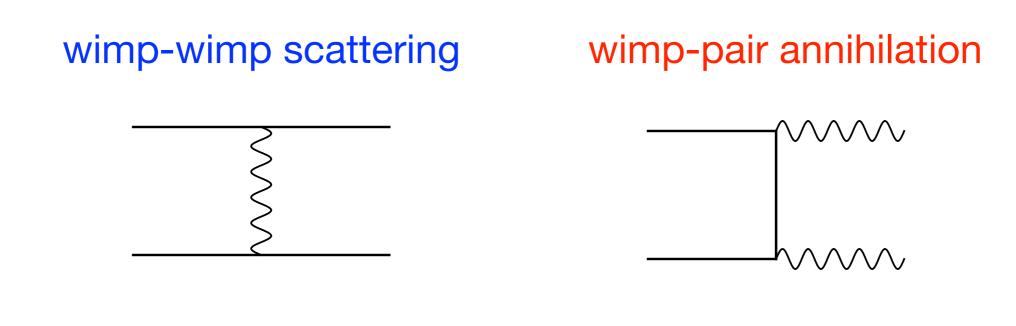
arXiv:1712.nnnnn III. Annihilation effects

WIMP: Weakly Interacting Massive Particle

massive particle: M ≥ m_W ≈ 100 GeV

• weakly interacting: $\alpha_2 = 1/29.5$

 $\sigma_{\rm el} \sim \alpha 2/m_W^2$

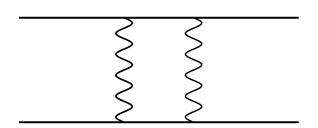


neutral wimp: candidate for <u>dark matter particle</u> thermal relic abundance ~ observed dark matter density

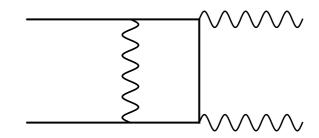
 $V\sigma_{ann} \sim \alpha_2^2/M^2$

Wimps can have NonPerturbative Weak Interactions Hisano, Matsumoto, Nojiri 2002

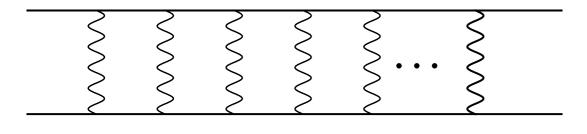
loop diagrams can produce factors of $\alpha_2 M/m_W$



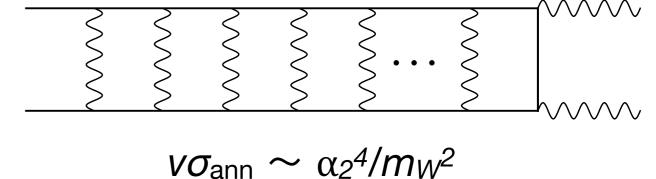
wimp-pair annihilation



If $M \ge m_W/\alpha_2 \approx$ few TeV, ladder diagrams must be summed to all orders!



$$\sigma_{\rm el} \sim \alpha_2^2/m_W^2$$



"Sommerfeld enhancement"

NonRelativistic Effective Field Theory

Hisano, Matsumoto, Nojiri 2002

NREFT for wimps with momentum « M (velocity « c)

weak interactions of wimps:
instantaneous nonlocal potential
(from exchange of W±, Z0)

numerical results for 2-wimp problem from solving Schroedinger equation

- wimp-wimp cross sections
- wimp-pair bound states
- wimp-pair annihilation rates ("Sommerfeld enhancement")

Wimps can have Resonant Weak Interactions

If *M* is large enough, attractive weak interactions can produce wimp-pair bound states!

Near critical values of M for bound state at threshold, σ_{el} and $v\sigma_{ann}$ can be enhanced by orders of magnitude!

most dramatic enhancements: S-wave channel if S-wave resonance is exactly at threshold elastic cross section saturates unitarity bound for velocity in range $\alpha_2^2 \ll v \ll \alpha_2$

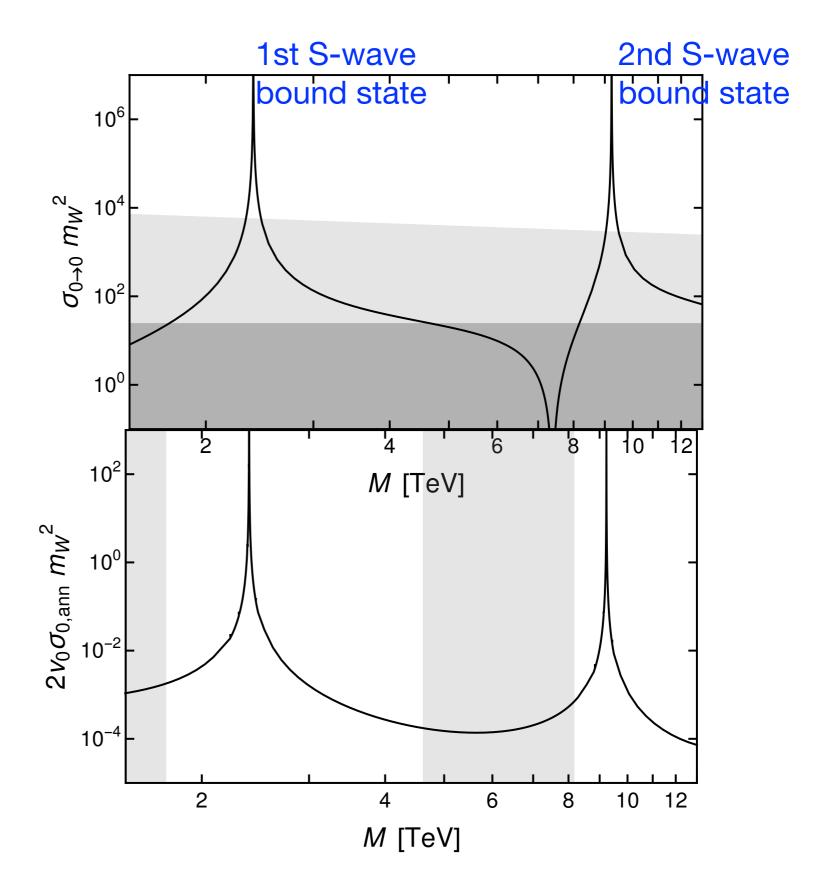
$$\sigma_{\rm el} \sim 1/M^2 v^2$$
 $v\sigma_{\rm ann} \sim \alpha_2^2/M^2 v^2$

enhancement factors as large as $1/\alpha_2^4 \approx 10^6$!

Resonant Reaction Rates of Wimps

wimp-wimp elastic cross section

wimp-pair annihilation rate



Zero-Range Effective Field Theory

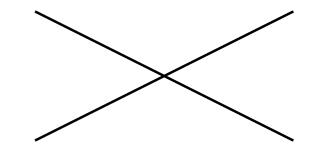
Braaten, Johnson, and Zhang arXiv:1706.02253, 1708.07155, 1712.nnnnn

ZREFT

for wimps with <u>S-wave</u> resonance near threshold ($|scattering length| > 1/m_W$)

with momentum $< m_W$ (velocity $\le 10^{-3}$ c)

weak interactions of wimps: local



analytic results for 2-wimp problem

- wimp-wimp cross sections
- wimp-pair bound states
- wimp-pair annihilation rates (Sommerfeld enhancement)

Zero-Range Effective Field Theory

ZREFT

for wimps with S-wave resonance near threshold with momentum < mw

analytic results for 2-wimp problem

- wimp-wimp cross sections
- wimp-pair bound states
- wimp-pair annihilation rates (Sommerfeld enhancement)

simplifies numerical solution of 3-wimp problem

3-body recombination:
 wimp + wimp → (bound state) + wimp

predictive model for <u>Strongly Interacting Dark Matter</u>
with dark matter mass ≈ 15 GeV

Zero-Range Effective Field Theory for Resonant Wimp Dark Matter

- Field Theories for nonrelativistic wimps
- Systematically improvable EFTs
- Zero-Range Effective Field Theory
 - I. Framework
 - II. Coulomb resummation
 - III. Annihilation effects
- ZREFT at LO
- Conclusion

Wino Dark Matter

MSSM in corner of parameter space where neutral wino is LSP only nearby SUSY partners are charged winos

OR Standard Model with additional SU(2) multiplet $\begin{pmatrix} w^+ \\ w^- \end{pmatrix}$

neutral-wino mass: M ~ few TeV (adjustable)

charged-wino masses: $M+\delta$, $\delta=170$ MeV radiative correction

electroweak

wino interactions:
local couplings to electroweak gauge bosons

Wino Momentum Scales

range over more than 5 orders of magnitude!

Fundamental FT

wino mass

 $M \sim 2 \text{ TeV}$

weak boson masses

mw ~ 80 GeV

NREFT

nonperturbative weak scale: $\alpha_2 M \sim 80 \text{ GeV}$

Bohr momentum:

 $\alpha M \sim 20 \text{ GeV } ZREF$

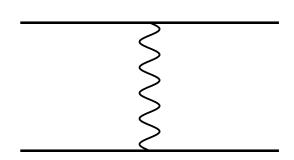
 w^0w^0 -to- w^+w^- transition: $(2M\delta)^{1/2} \sim 30 \text{ GeV}$

inverse scattering length: $|v_0| > \alpha_2^2 m_W \sim 100 \text{ MeV}$

Wino Weak Interactions

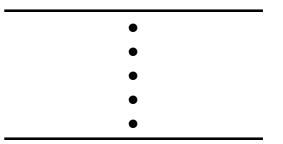
Fundamental Field Theory

local couplings to W±, Z0



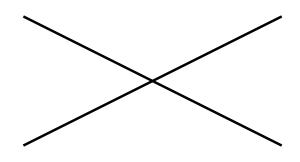
NREFT

instantaneous nonlocal potential (from exchange of W±, Z0)



ZREFT

local interactions between winos



NonRelativistic EFT for Winos

Hisano, Matsumoto, Nojiri 2002

kinetic mass rest energy

neutral wino w⁰ M

charged winos w[±] M = 170 MeV

coupled S-wave scattering channels

0: w⁰ w⁰

1: w+ w-

2×2 potential matrix in spin-singlet channel

from exchange of γ , W^{\pm} , Z^{0}

$$V(r) = -\frac{\alpha}{r} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \frac{\alpha_2}{r} \begin{pmatrix} 0 & \sqrt{2} e^{-m_W r} \\ \sqrt{2} e^{-m_W r} & c_w^2 e^{-m_Z r} \end{pmatrix}$$

long-range Coulomb potential

weak potential with range $1/m_W$

solve Schrodinger equation <u>numerically</u>

wimp-wimp cross sections wimp-pair bound state

NonRelativistic EFT for Winos

Hisano, Matsumoto, Nojiri 2002

coupled S-wave scattering channels: wow, w+ w-

 2×2 potential matrix in spin-singlet channel from exchange of $V=\gamma$, W^{\pm} , Z^{0} and annihilation into VV

$$V(r) = -\frac{\alpha}{r} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \frac{\alpha_2}{r} \begin{pmatrix} 0 & \sqrt{2} e^{-m_W r} \\ \sqrt{2} e^{-m_W r} & c_w^2 e^{-m_Z r} \end{pmatrix}$$
$$-i \frac{\pi \alpha_2^2}{2M^2} \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 3 \end{pmatrix} \delta^3(\vec{r})$$

imaginary zero-range annihilation potential

solve Schrodinger equation <u>numerically</u>

wimp-wimp cross sections wimp-pair bound state wimp-pair annihilation rates

- RG fixed point: <u>scale invariant!</u>
- scaling perturbations:
 operators with increasing scaling dimensions

EFT at LO

include all relevant and marginal operators

Systematic Improvements:

add irrelevant operators with ...

NLO: ... lowest scaling dimension

NNLO: ... next lowest scaling dimension

•

RG fixed point is usually <u>noninteracting</u> fixed point but it can be a nontrivial <u>interacting</u> fixed point

for nonrelativistic particles with one S-wave scattering channel

particle w: $E = p^2/2M$ scale invariant!

S-wave scattering channel: ww

T-matrix for total energy
$$E = k^2/M$$
:
$$T(E) = \frac{4\pi/M}{k \cot \delta(k) - ik}$$

short-range interaction \implies low-energy expansion

$$T(E) = -1/a + r k^2/2 + ...$$

 $a =$ scattering length
 $r =$ effective range

noninteracting fixed point

$$T(E) = 0 \implies \text{no scattering}$$

unitarity fixed point

$$T(E) = \frac{4\pi i/M}{k} \Longrightarrow$$

scattering saturates S-wave unitarity bound:

$$\sigma(E) = \frac{4\pi/M}{E}$$

for nonrelativistic particles with two S-wave scattering channels

particles w⁰: $E = p^2/2M$

w±: $E = \delta + p^2/2M$

scale invariance

 $\implies \delta = 0$

coupled S-wave scattering channels

0: w⁰w⁰

1: w+w-

T-matrix elements for total energy *E*:

$$T_{ij}(E) = i$$

RG fixed points?

for nonrelativistic particles with two S-wave scattering channels

RG fixed points

 $\delta = 0$: no splitting between w⁰ and w[±]

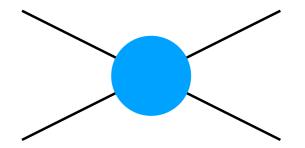
 $\alpha = 0$: no electromagnetism

noninteracting fixed point

$$T(E) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies \text{no scattering}$$

2-channel unitarity fixed point

$$T(E) = \frac{4\pi i/M}{k} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



⇒ scattering <u>saturates unitarity bound</u> in both channels

for nonrelativistic particles with two S-wave scattering channels

noninteracting fixed point

2-channel unitarity fixed point

single-channel unitarity fixed point

Lensky and Birse 2011 (coupled channels: ⁷Li p, ⁷Be n)

$$T(E) = \frac{4\pi i/M}{k} \begin{pmatrix} \cos^2 \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin^2 \phi \end{pmatrix}$$

> scattering saturates unitarity bound in resonant channel

$$\cos \phi |w^0w^0\rangle + \sin \phi |w^+w^-\rangle$$

no scattering in orthogonal channel

$$-\sin\phi |w^0w^0\rangle + \cos\phi |w^+w^-\rangle$$

for nonrelativistic particles with two S-wave scattering channels

single-channel unitarity fixed point

scattering saturates unitarity bound in resonant channel no scattering in orthogonal channel

scaling perturbations Lensky & Birse 2011

relevant: mass splitting δ

scattering length au in resonance channel

marginal: mixing angle ϕ

irrelevant: scattering length a_{ν} in orthogonal channel

effective range r_u in resonance channel

. . .

EFT at LO: kinematic parameters: M, δ

interaction parameters: a_u , ϕ

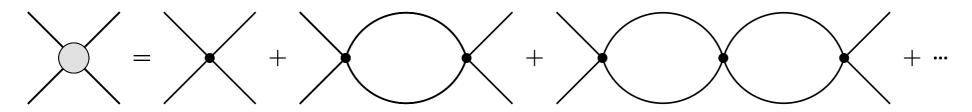
EFT at NLO: 2 additional interaction parameters a_v , r_u

Zero-Range Effective Field Theory for Resonant Wino Dark Matter

I. Framework

arXiv:1706.02253

turn off electromagnetism: $\alpha = 0$ sum bubble diagrams



by solving Lippmann-Schwinger equations

ZREFT at LO

2 interaction parameters: a_u , ϕ good predictions for wino-wino cross sections

except $w^+ w^- \rightarrow w^+ w^-$

ZREFT at NLO

2 additional interaction parameters improved predictions for all wino-wino cross sections

Zero-Range Effective Field Theory for Resonant Wino Dark Matter

II. Coulomb resummation arXiv:1708.07155

turn on electromagnetism: $\alpha = 1/137$

sum bubble diagrams

sum ladder diagrams with photons Kong and Ravndal 1999 (EFT for p p-bar scattering)

ZREFT at LO

 α =1/137 plus 2 real interaction parameters: a_u , ϕ good predictions for wino-wino cross sections

Zero-Range Effective Field Theory for Resonant Wino Dark Matter

III. Annihilation effects arXiv:1712.nnnnn

electromagnetism: $\alpha = 1/137$ turn on annihilation into gauge boson pairs (by analytically continuing real parameters to complex values)

ZREFT at LO

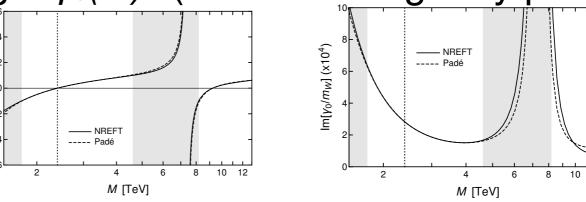
 α =1/137 and 2 <u>complex</u> interaction parameters: a_u , ϕ good predictions for wino-wino cross sections wino-pair annihilation rates

ZREFT at LO

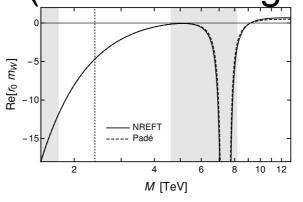
interaction parameters: $\alpha = 1/137$, a_u (complex), ϕ (complex)

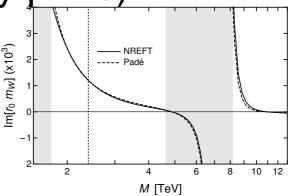
Matching with NREFT

determine a_u and ϕ as functions of M with $\delta = 170$ MeV w⁰ inverse scattering length $\gamma_0(M)$ (real and imaginary parts)



 \mathbf{w}^0 effective range $r_0(M)$ (real and imaginary parts)





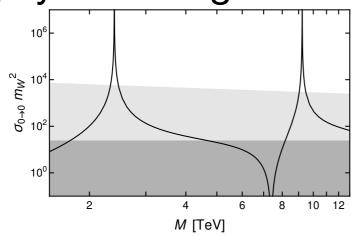
1st unitarity mass: $M_* = 2.39 \text{ TeV}$

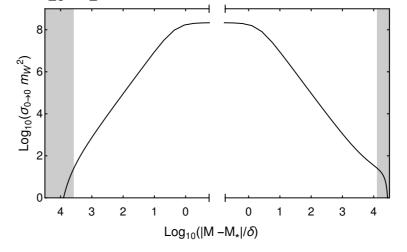
$$\gamma_0(M_*) = 0 + (3.4 \times 10^{-4}) i m_W$$

$$\tan \phi(M_*) = 0.88 - (1.4 \times 10^{-4}) i \quad \phi(M_*) \approx 40^{\circ}$$

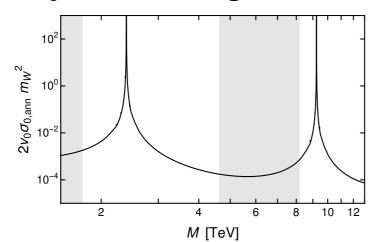
analytic predictions of <u>ZREFT at LO</u> matching conditions: \mathbf{w}^0 inverse scattering length $\gamma_0(M)$ \mathbf{w}^0 effective range $r_0(M)$

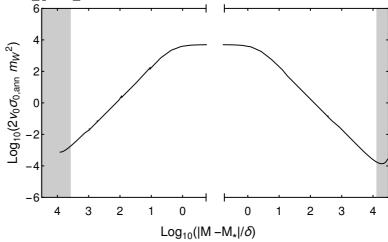
 w^0 elastic cross section at 0 energy as function of M exact by matching condition for Re[γ_0]





 w^0w^0 annihilation rate at 0 energy as function of M exact by matching condition for $Im[\gamma_0]$

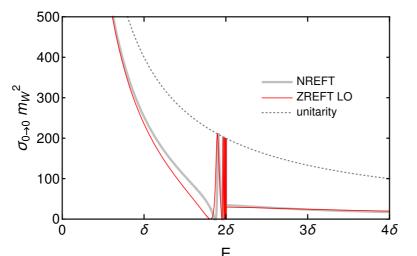


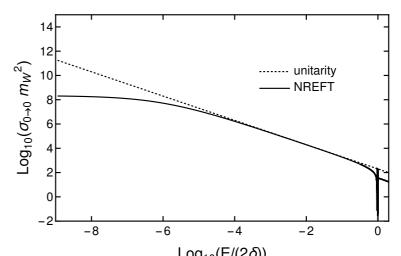


predictions of **ZREFT** at LO

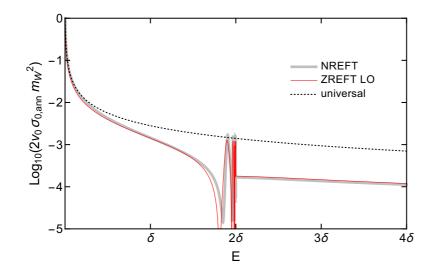
matching conditions: \mathbf{w}^0 inverse scattering length $\gamma_0(M)$ \mathbf{w}^0 effective range $r_0(M)$

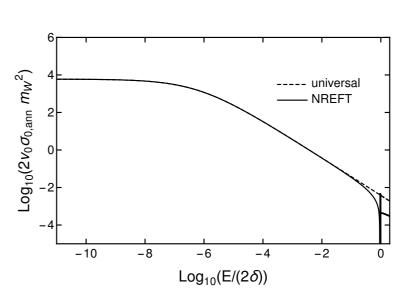
 \mathbf{w}^0 elastic cross section at $M_* = 2.39$ TeV as function of E





 w^0w^0 annihilation rate at $M_* = 2.39$ TeV as function of E





inclusive annihilation rate of wowo

leading order:
$$\mathbf{w^0w^0} \rightarrow \mathbf{W^+W^-} \quad v\sigma_{\mathrm{ann}}[w^0w^0] = \frac{2\pi\alpha_2^2}{M^2}$$

Sommerfeld enhancement factor at $E = Mv^2/4$

$$S(v) = \frac{8M}{\alpha_2^2} \frac{\operatorname{Im}[\gamma_0] - \operatorname{Im}[\tan^2 \phi] \left(\operatorname{Re}[K_1(E)] - K_1(0) \right)}{\left| \gamma_0 - \tan^2 \phi \left[K_1(E) - K_1(0) \right] + iMv/2 \right|^2}$$

$$K_1(E) = \alpha M \left[\psi(z) + 1/z - \log(-z) \right] \qquad z = -\frac{\alpha}{\sqrt{8\delta/M - v^2 - i\epsilon}}$$

$$\frac{2}{\delta \delta} \left(\frac{2}{\delta \delta} \right)^4 \left(\frac{2}{\delta \delta} \right)^{\frac{10}{8}} \left(\frac$$

Log₁₀ v_{rel}

Zero-Range Effective Field Theory for Resonant Wino Dark Matter

systematically improvable effective field theory based on scaling perturbations of single-channel unitarity fixed point

ZREFT at LO

3 interaction parameters: α =1/137 and a_u , ϕ convenient matching variables: $\gamma_0(M)$, $r_0(M)$

analytic predictions for

- wimp-wimp cross sections
- wimp-pair bound states
- wimp-pair annihilation rates (Sommerfeld enhancement) unitarization of wimp-pair annihilation

ZREFT at NLO

2 additional interaction parameters

Zero-Range Effective Field Theory for Resonant Wino Dark Matter

<u>analytic</u> results for 2-wimp problem from ZREFT more convenient for exploring the effects of resonances than numerical results from NREFT

simplifies numerical solution of 3-wimp problem

3-body recombination:
 wimp + wimp → (bound state) + wimp

predictive model for <u>Strongly Interacting Dark Matter</u> with dark matter mass ≈ 15 GeV

other dark matter applications: resonant Higgsinos

other high energy physics applications: charm mesons and X(3872) resonance