Measuring properties of a Heavy Higgs boson in the $H \rightarrow ZZ \rightarrow 4l$ decay

Jung Chang, KC, Jae Sik Lee, Chih-Ting Lu and Jubin Park arXiv: 1708.05583, JHEP 2017/12

Story of the Higgs Boson

- The Higgs boson is the key to understanding the origin of mass - our existence. The origin of mass is ultimately connected to Electroweak Symmetry Breaking.
- Before EWSB the whole universe is filled by a Higgs field and every particle is massless.
- When the Higgs field develops a VEV the EWSB happens and masses developed.
- Higgs boson is the evidence that EWSB did happen.
- The question is "this Higgs boson, that is it? What else?"

Motivations

- The SM with one Higgs doublet is not natural.
 Another heavy scalar boson can appear soon.
- LHC searched for H -> ZZ -> 41 and there are some 2-3 sigma here and there.
- The decay H ->ZZ->4l involves a number of angles that one can investigate the CP properties of the boson.

Interactions of HZZ

$$i\mathcal{M}^{H\to ZZ} \equiv i\frac{gM_W}{c_W^2} \; \Gamma_{\mu\nu}^{ZZ} \epsilon_1^{*\mu} \epsilon_2^{*\nu}$$

$$= i\frac{gM_W}{c_W^2} \left\{ g_{_{HZZ}} \, \epsilon_1^* \cdot \epsilon_2^* + S_H^{ZZ}(s) \left[\frac{-2k_1 \cdot k_2}{s} \, \epsilon_1^* \cdot \epsilon_2^* \, + \, \frac{2}{s} \, k_1 \cdot \epsilon_2^* \, k_2 \cdot \epsilon_1^* \right] + P_H^{ZZ}(s) \, \frac{2}{s} \left\langle \epsilon_1^* \epsilon_2^* k_1 k_2 \right\rangle \right\}$$

The first term comes from $\mathcal{L} = \frac{g M_W}{2 c_W^2} \; g_{_{HZZ}} \; Z_\mu Z^\mu H$

The second and third term come from higher-order or from genuine dim-6 operators. They can be complex if developed non-vanishing absorptive part.

Helicity Amplitude

$$H \rightarrow Z(k_1, \epsilon_1)Z(k_2, \epsilon_2) \rightarrow f_1(p_1, \sigma_1)\overline{f}_1(\overline{p}_1, \overline{\sigma}_1) f_2(p_2, \sigma_2)\overline{f}_2(\overline{p}_2, \overline{\sigma}_2).$$

$$i\mathcal{M}_{\sigma_{1}\bar{\sigma}_{1}:\sigma_{2}\bar{\sigma}_{2}} = \left(i\frac{gM_{W}}{c_{W}^{2}}\Gamma_{\mu\nu}^{ZZ}\right) \frac{-i\left(g^{\mu\rho} - \frac{k_{1}^{\mu}k_{1}^{\rho}}{M_{Z}^{2}}\right)}{k_{1}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \frac{-i\left(g^{\nu\sigma} - \frac{k_{2}^{\nu}k_{2}^{\sigma}}{M_{Z}^{2}}\right)}{k_{2}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}}$$

$$\times \left[-i\frac{g}{c_{W}} \sum_{A=L,R} \bar{u}(p_{1},\sigma_{1})\gamma_{\rho}(v_{f_{1}} - Aa_{f_{1}})P_{A}v(\bar{p}_{1},\bar{\sigma}_{1})\right]$$

$$\times \left[-i\frac{g}{c_{W}} \sum_{B=L,R} \bar{u}(p_{2},\sigma_{2})\gamma_{\sigma}(v_{f_{2}} - Ba_{f_{2}})P_{B}v(\bar{p}_{2},\bar{\sigma}_{2})\right]$$

$$=i\sum_{\lambda_1,\lambda_2}\mathcal{M}_{\lambda_1\lambda_2}^{H\to ZZ}\ \frac{1}{k_1^2-M_Z^2+iM_Z\Gamma_Z}\ \frac{1}{k_2^2-M_Z^2+iM_Z\Gamma_Z}\ \mathcal{M}_{\lambda_1:\sigma_1\bar{\sigma}_1}^{Z\to f_1\bar{f}_1}\mathcal{M}_{\lambda_2:\sigma_2\bar{\sigma}_2}^{Z\to f_2\bar{f}_2}$$

The helicity amplitude for the decay $H \to Z(k_1, \epsilon_1) Z(k_2, \epsilon_2)$ in the rest frame of H by

$$\mathcal{M}_{\lambda_1 \lambda_2}^{H \to ZZ} = \frac{gM_W}{c_W^2} \left\langle \lambda_1 \right\rangle \, \delta_{\lambda_1 \lambda_2}$$

with the reduced amplitudes $\langle \lambda_1 \rangle$ defined by

$$\begin{split} \langle + \rangle &\equiv g_{_{HZZ}} + (1 - \alpha_1 - \alpha_2) \, S_{H}^{ZZ} \, - i \lambda^{1/2} (1, \alpha_1, \alpha_2) \, P_{H}^{ZZ} \, , \\ \langle - \rangle &\equiv g_{_{HZZ}} + (1 - \alpha_1 - \alpha_2) \, S_{H}^{ZZ} \, + i \lambda^{1/2} (1, \alpha_1, \alpha_2) \, P_{H}^{ZZ} \, , \\ \langle 0 \rangle &\equiv g_{_{HZZ}} \left(\frac{1 - \alpha_1 - \alpha_2}{2 \sqrt{\alpha_1 \alpha_2}} \right) - 2 \sqrt{\alpha_1 \alpha_2} \, S_{H}^{ZZ} \, , \end{split}$$

$$\alpha_i = k_i^2 / M_H^2.$$

The longitudinal amplitude $\langle 0 \rangle$ is enhanced by a factor $M_H^2/2$ M_Z^2 in large M_H limit.

helicity amplitude for the decay $Z(k, \epsilon(k, \lambda)) \to f(p, \sigma) \bar{f}(\bar{p}, \bar{\sigma})$ is

$$\mathcal{M}_{\lambda:\sigma\bar{\sigma}}^{Z\to f\bar{f}} = \begin{cases} -\frac{g}{c_W} \left[\sqrt{2} m_f v_f \ \lambda \sigma e^{-i(\sigma-\lambda)\phi} \ s_{\theta} \ \delta_{\sigma\bar{\sigma}} \\ +\frac{\sqrt{k^2}}{\sqrt{2}} (v_f - \sigma \beta_f a_f) (\lambda c_{\theta} + \sigma) \ e^{i\lambda\phi} \ \delta_{\sigma-\bar{\sigma}} \right] & \text{for } \lambda = \pm \\ -\frac{g}{c_W} \left[2 m_f v_f \ e^{-i\sigma\phi} \ (-\sigma c_{\theta}) \ \delta_{\sigma\bar{\sigma}} + \sqrt{k^2} (v_f - \sigma \beta_f a_f) s_{\theta} \ \delta_{\sigma-\bar{\sigma}} \right] & \text{for } \lambda = 0 \end{cases}$$

Combining all sub-amplitudes

$$\mathcal{M}_{\sigma_{1}\bar{\sigma}_{1}:\sigma_{2}\bar{\sigma}_{2}} = \frac{gM_{W}}{2c_{W}^{2}} \left(\frac{g}{c_{W}}\right)^{2} \frac{\sqrt{k_{1}^{2}}}{k_{1}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \frac{\sqrt{k_{2}^{2}}}{k_{2}^{2} - M_{Z}^{2} + iM_{Z}\Gamma_{Z}} \times (v_{f_{1}} - \sigma_{1}a_{f_{1}})(v_{f_{2}} - \sigma_{2}a_{f_{2}}) \times \left[\langle + \rangle(c_{\theta_{1}} + \sigma_{1})(c_{\theta_{2}} + \sigma_{2})e^{i(\phi_{1} + \phi_{2})} + \langle - \rangle(-c_{\theta_{1}} + \sigma_{1})(-c_{\theta_{2}} + \sigma_{2})e^{-i(\phi_{1} + \phi_{2})} + 2\langle 0 \rangle s_{\theta_{1}}s_{\theta_{2}}\right] \delta_{\sigma_{1} - \bar{\sigma}_{1}}\delta_{\sigma_{2} - \bar{\sigma}_{2}}.$$

The amplitude squared can be written as a sum of independent combinations of angular variables:

$$\sum_{\sigma_1, \bar{\sigma}_1, \sigma_2, \bar{\sigma}_2} |\mathcal{M}_{\sigma_1 \bar{\sigma}_1 : \sigma_2 \bar{\sigma}_2}|^2 = \left(\frac{gM_W}{c_W^2}\right)^2 \left(\frac{g}{c_W}\right)^4 \frac{k_1^2}{(k_1^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \frac{k_2^2}{(k_2^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \times (v_{f_1}^2 + a_{f_1}^2)(v_{f_2}^2 + a_{f_2}^2) \frac{128\pi}{9} \sum_{i=1}^9 C_i f_i(\theta_1, \theta_2, \Phi)$$

$$(10)$$

$$f_{1}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[(1+c_{\theta_{1}}^{2})(1+c_{\theta_{2}}^{2}) + 4\eta_{1}\eta_{2}c_{\theta_{1}}c_{\theta_{2}} \right],$$

$$f_{2}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left\{ -2 \left[\eta_{1}c_{\theta_{1}}(1+c_{\theta_{2}}^{2}) + \eta_{2}c_{\theta_{2}}(1+c_{\theta_{1}}^{2}) \right] \right\},$$

$$f_{3}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[4s_{\theta_{1}}^{2}s_{\theta_{2}}^{2} \right],$$

$$f_{4}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[4(c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2})s_{\theta_{1}}s_{\theta_{2}}c_{\Phi} \right],$$

$$f_{5}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[4(c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2})s_{\theta_{1}}s_{\theta_{2}}c_{\Phi} \right],$$

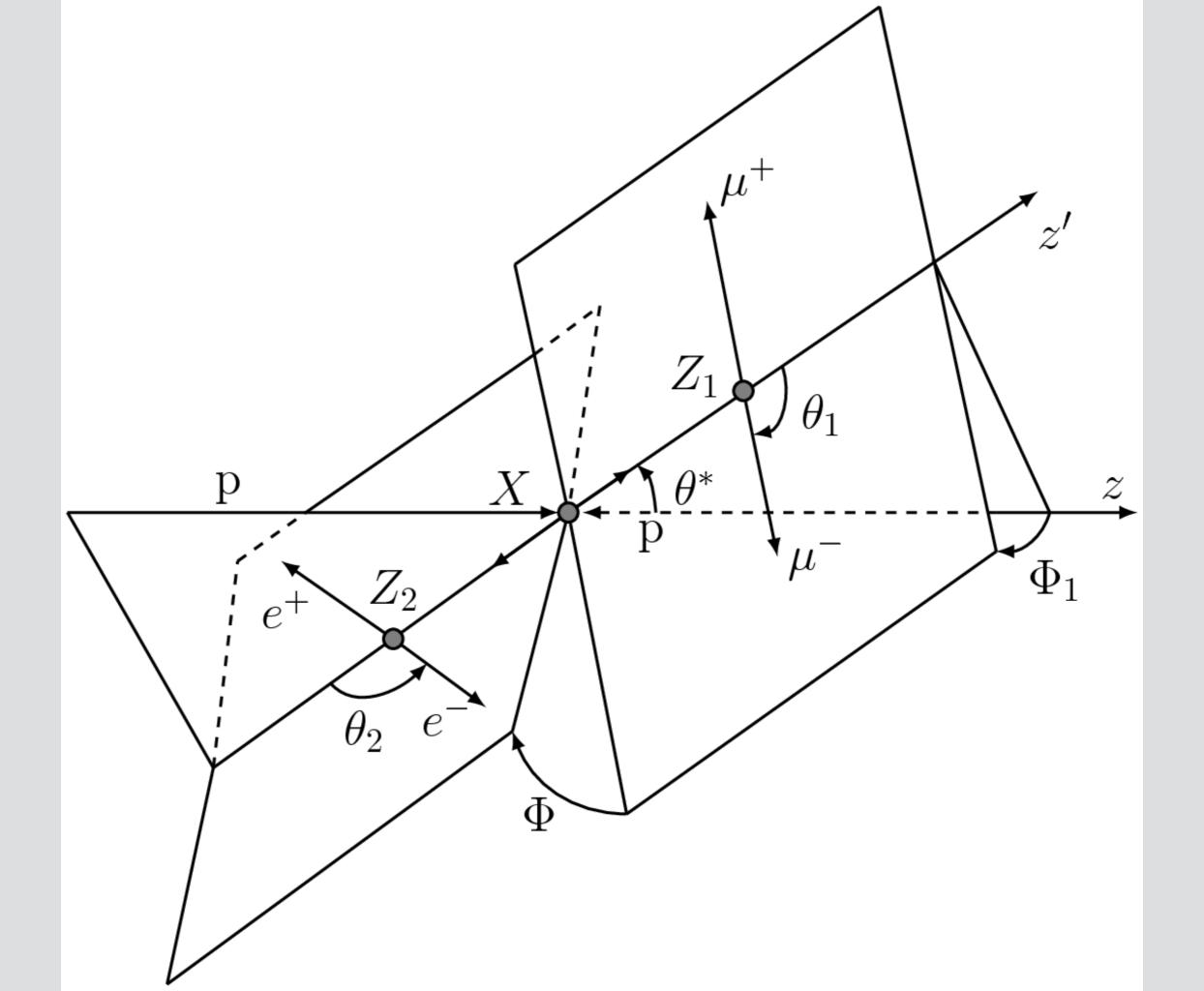
$$f_{9}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[-4(\eta_{1}c_{\theta_{2}} + \eta_{2}c_{\theta_{1}})s_{\theta_{1}}s_{\theta_{2}}c_{\Phi} \right],$$

$$f_{9}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[-4c_{\theta_{1}}c_{\theta_{2}} + \eta_{1}\eta_{2} \right]s_{\theta_{1}}s_{\theta_{2}}s_{\Phi} \right],$$

$$f_{9}(\theta_{1},\theta_{2},\Phi) = \frac{9}{128\pi} \left[-s_{\theta_{1}}^{2}s_{\theta_{2}}^{2}s_{2\Phi} \right].$$

with
$$\Phi = \phi_1 + \phi_2$$
 and $\eta_i = 2v_{f_i}a_{f_i}/(v_{f_i}^2 + a_{f_i}^2)$.

_



Also, the 9 angular coefficients C_{1-9} , which are combinations of the reduced helicity amplitudes $\langle + \rangle$, $\langle - \rangle$, and $\langle 0 \rangle$, are defined as

$$C_{1} \equiv |\langle + \rangle|^{2} + |\langle - \rangle|^{2} , \quad C_{2} \equiv |\langle + \rangle|^{2} - |\langle - \rangle|^{2} , \quad C_{3} \equiv |\langle 0 \rangle|^{2} ,$$

$$C_{4} \equiv \Re \left[\langle + \rangle \langle 0 \rangle^{*} + \langle - \rangle \langle 0 \rangle^{*} \right] , \quad C_{5} \equiv \Im \left[\langle + \rangle \langle 0 \rangle^{*} - \langle - \rangle \langle 0 \rangle^{*} \right] ,$$

$$C_{6} \equiv \Re \left[\langle + \rangle \langle 0 \rangle^{*} - \langle - \rangle \langle 0 \rangle^{*} \right] , \quad C_{7} \equiv \Im \left[\langle + \rangle \langle 0 \rangle^{*} + \langle - \rangle \langle 0 \rangle^{*} \right] ,$$

$$C_{8} \equiv 2\Re \left[\langle + \rangle \langle - \rangle^{*} \right] , \quad C_{9} \equiv 2\Im \left[\langle + \rangle \langle - \rangle^{*} \right] . \tag{12}$$

Under CP and CPT~ the reduced amplitudes transform like

$$\langle \lambda \rangle \stackrel{\mathrm{CP}}{\leftrightarrow} \langle -\lambda \rangle$$
, $\langle \lambda \rangle \stackrel{\mathrm{CP\widetilde{T}}}{\leftrightarrow} \langle -\lambda \rangle^*$.

- * C_2 , C_5 , C_6 , C_9 are CP-odd and nonzero when g_{HZZ}/S^{ZZ}_H and P^{ZZ}_H exist.
- * C_2 , C_6 , C_7 are CPT $^\sim$ odd and nonzero when induced by the absorptive parts of S^{ZZ}_H and/or P^{ZZ}_H

The partial decay width of the process $H \to ZZ \to 2\ell_1 2\ell_2$ is given by

$$d\Gamma = \frac{1}{2M_H} \left(\sum_{\sigma_1, \bar{\sigma}_1, \sigma_2, \bar{\sigma}_2} |\mathcal{M}_{\sigma_1 \bar{\sigma}_1 : \sigma_2 \bar{\sigma}_2}|^2 \right) d\Phi_4$$

$$= \frac{1}{2^{13} \pi^6 M_H} \lambda^{1/2} (1, k_1^2 / M_H^2, k_2^2 / M_H^2) \sqrt{k_1^2} \sqrt{k_2^2}$$

$$\times \left(\sum_{\sigma_1, \bar{\sigma}_1, \sigma_2, \bar{\sigma}_2} |\mathcal{M}_{\sigma_1 \bar{\sigma}_1 : \sigma_2 \bar{\sigma}_2}|^2 \right) d\sqrt{k_1^2} d\sqrt{k_2^2} dc_{\theta_1} dc_{\theta_2} d\Phi.$$

After integrating over $\sqrt{k_1^2}$ and $\sqrt{k_2^2}$, we obtain

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}c_{\theta_1} \mathrm{d}c_{\theta_2} \mathrm{d}\Phi} = \sum_{i=1}^{9} \overline{R}_i f_i(\theta_1, \theta_2, \Phi)$$

with the 9 angular observables defined by

$$\overline{R}_i \equiv \frac{w_i \overline{C}_i}{w_1 \overline{C}_1 + w_3 \overline{C}_3}.$$

$$\overline{C}_i = C_i(k_1^2 = M_Z^2, k_2^2 = M_Z^2)$$

All $w_i = 1$ for on shell Z's. We shall take the NWA.

We can integrate any 2 of the angles $\theta_1, \, \theta_2, \, {\rm and} \, \Phi$ to obtain 1-dim angular distributions

$$\frac{1}{\Gamma} \frac{d\Gamma}{dc_{\theta_{1,2}}} = \frac{3}{8} \overline{R}_1 \left(1 + c_{\theta_{1,2}}^2 \right) - \frac{3\eta_{1,2}}{4} \overline{R}_2 \ c_{\theta_{1,2}} + \frac{3}{4} \overline{R}_3 \left(1 - c_{\theta_{1,2}}^2 \right) ,$$

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\Phi} = \frac{1}{2\pi} + \frac{9\pi\eta_1\eta_2}{128} \left(\overline{R}_4 \ c_{\Phi} - \overline{R}_5 \ s_{\Phi} \right) + \frac{1}{8\pi} \left(\overline{R}_8 \ c_{2\Phi} - \overline{R}_9 \ s_{2\Phi} \right)$$

$$\Gamma = \frac{1}{2^6 3^2 \pi^5 M_H} \left(\frac{g M_W}{c_W^2} \right)^2 \left(\frac{g}{c_W} \right)^4 \left(v_{f_1}^2 + a_{f_1}^2 \right) \left(v_{f_2}^2 + a_{f_2}^2 \right) \left(w_1 \overline{C}_1 + w_3 \overline{C}_3 \right) \mathcal{F}$$

- * Only $C_{1,2,3}$ contribute to cos-theta_{1,2} distributions. When S^{ZZ}_{H} and P^{ZZ}_{H} are real, C_2 =0.
- * R_{6,7} never appear in 1-dim distributions. We need 2-dim distributions, e.g., c_{θ_1} - Φ and c_{θ_2} - Φ distributions.

- * The angular observables $R_{1,2,3}$ can be obtained from fitting to cos-theta_{1,2} distributions.
- * $R_{4,5,8,9}$ can be obtained from Fourier analysis or fitting to \emptyset distribution.
- * A non-vanishing R_2 signals may imply new particles of mass < $M_H/2$, such that develops absorptive part for S^{ZZ}_H and P^{ZZ}_H .
- * Measurements of R's cannot determine the absolute size of S^{ZZ}_{H} , P^{ZZ}_{H} and g_{HZZ} .
- * We need to measure $C_1 + C_3$ in the partial width

$$\Gamma = 2.78 \times 10^{-4} \ (w_1 \overline{C}_1 + w_3 \overline{C}_3) \text{ GeV}$$

$$= \Gamma_{\text{tot}}^H B(H \to ZZ \to 2\ell_1 2\ell_2) \simeq \Gamma_{\text{tot}}^H B(H \to ZZ) \ [B(Z \to \ell\ell)]^2$$

Numerical Analysis

- We used M_H=260 GeV
- B(H->ZZ, Zh, hh) are comparable, B(H->tt) = 0.
- S^{ZZ}_H and P^{ZZ}_H are real. Only 3 input parameters of couplings.

	g_{HZZ}	S_H^{ZZ}	P_H^{ZZ}	$\frac{\overline{C}_1[++]}{10^{-2}}$	$\frac{\overline{C}_2[]}{10^{-2}}$	$\frac{\overline{C}_3[++]}{10^{-2}}$	$\frac{\overline{C}_4[++]}{10^{-2}}$	$\frac{\overline{C}_5[-+]}{10^{-2}}$	$\frac{\overline{C}_6[]}{10^{-2}}$	$\frac{\overline{C}_7[+-]}{10^{-2}}$	$\frac{\overline{C}_8[++]}{10^{-2}}$	$\frac{\overline{C}_9[-+]}{10^{-2}}$
S1	0.1	0	0	2.00	0.00	9.39	-6.13	0.00	0.00	0.00	2.00	0.00
S2	0	0.1	0	1.14	0.00	0.0605	-0.371	0.00	0.00	0.00	1.14	0.00
S3	0	0	0.1	1.02	0.00	0.00	0.00	0.00	0.00	0.00	-1.02	0.00
S4	0	0.1	0.1	2.15	0.00	0.0605	-0.371	0.351	0.00	0.00	0.121	-2.15
S5	0	0.1	-0.1	2.15	0.00	0.0605	-0.371	-0.351	0.00	0.00	0.121	2.15
S6	0.032	0.1	0.1	1.39	0.00	0.540	0.638	-1.05	0.00	0.00	-0.639	-1.24

- * $S_{1,2,3}$ are CP conserving because one coupling is nonzero.
- * S_{4,5} are CP violating.
- * S_6 : parameters are chosen s.t. they contribute equally to amplitude squared. <0> is enhanced for large $M_{H.}$

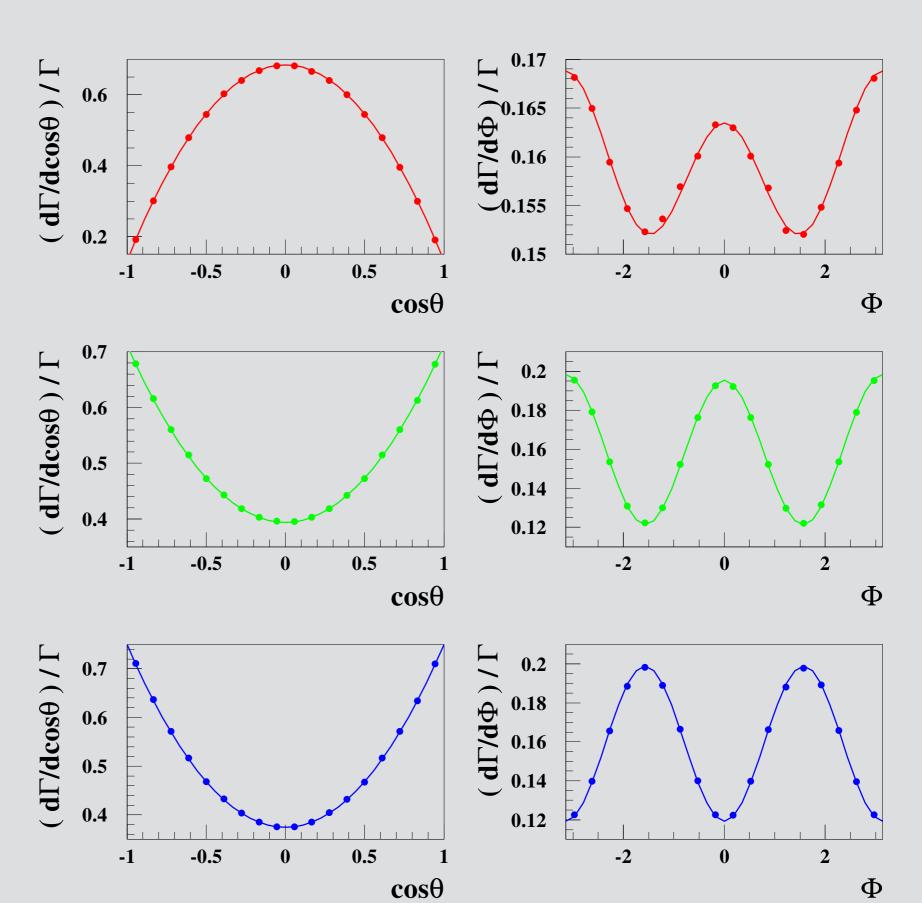
Non-vanishing R's

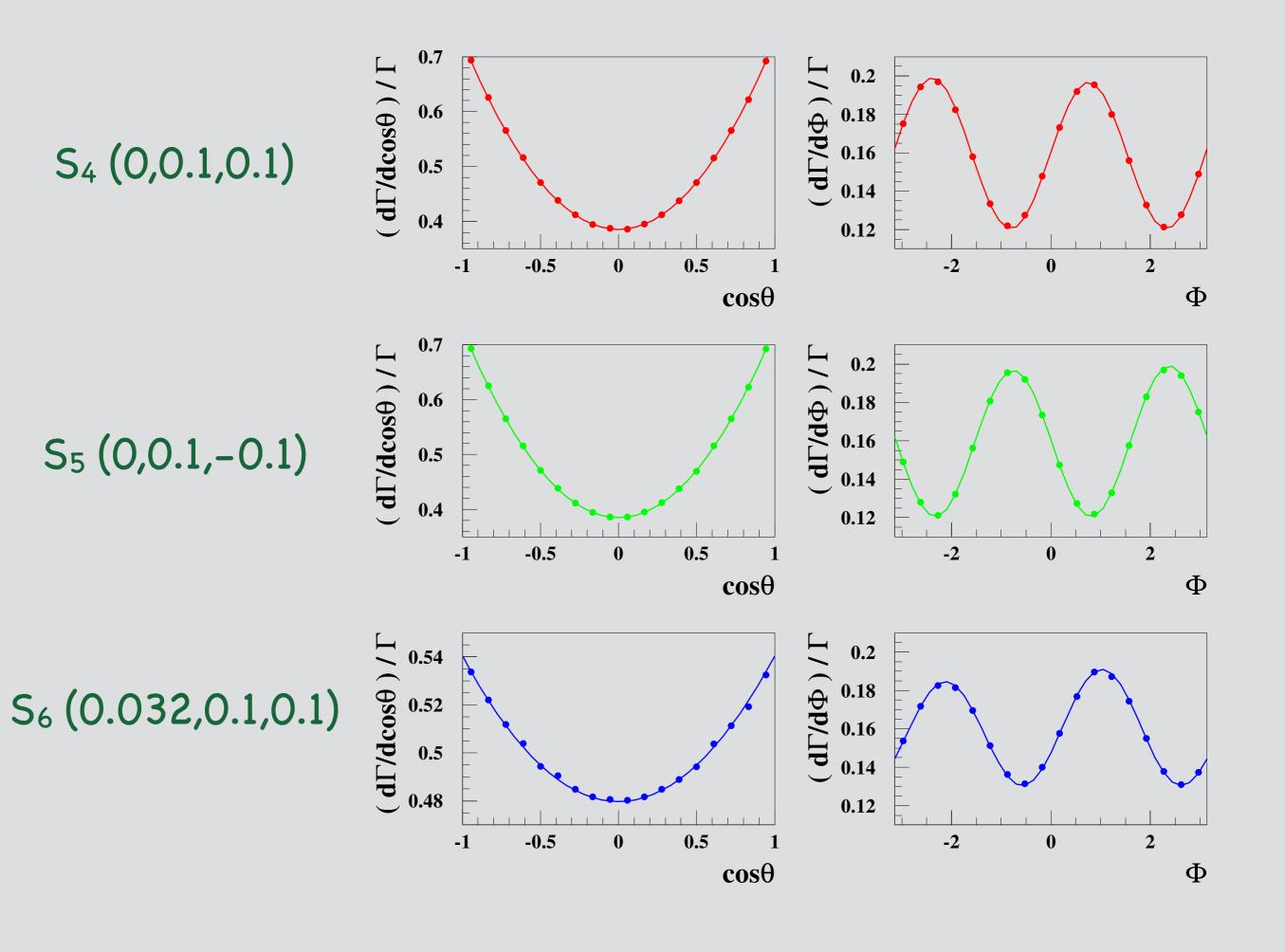
	$g_{\scriptscriptstyle HZZ}$	S_H^{ZZ}	P_H^{ZZ}	$\overline{R}_1[++]$	$\overline{R}_3[++]$	$\overline{R}_4[++]$	$\overline{R}_5[-+]$	$\overline{R}_8[++]$	$\overline{R}_9[-+]$	$(\overline{C}_1 + \overline{C}_3)[++] \times 10^2$
S1	0.1	0	0	0.176	0.824	-0.538	0.00	0.176	0.00	11.4
S2	0	0.1	0	0.950	0.0505	-0.310	0.00	0.950	0.00	1.20
S3	0	0	0.1	1.00	0.00	0.00	0.00	-1.00	0.00	1.02
S4	0	0.1	0.1	0.973	0.0273	-0.168	0.158	0.0547	-0.971	2.21
S5	0	0.1	-0.1	0.973	0.0273	-0.168	-0.158	0.0547	0.971	2.21
S6	0.032	0.1	0.1	0.721	0.280	0.330	-0.542	-0.331	-0.640	1.93

CP Conserving

S₁ (0.1,0,0)

S₃ (0,0,0.1)





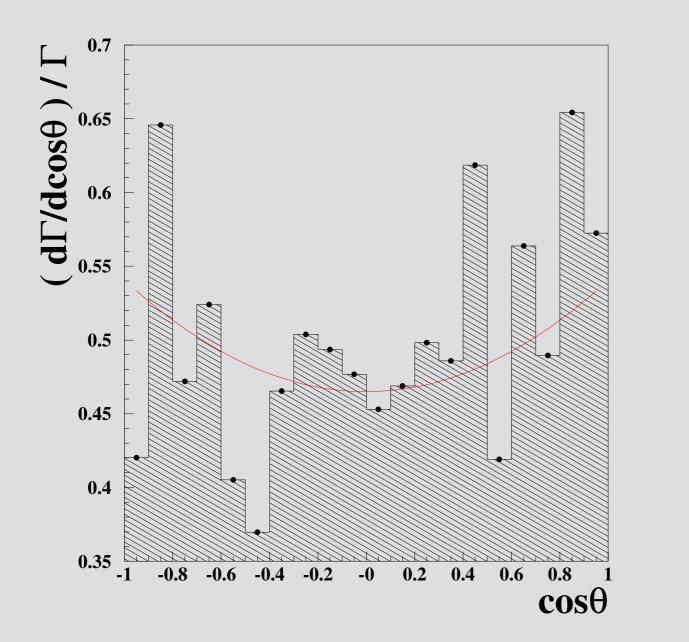
Illustrate the measurement in S6

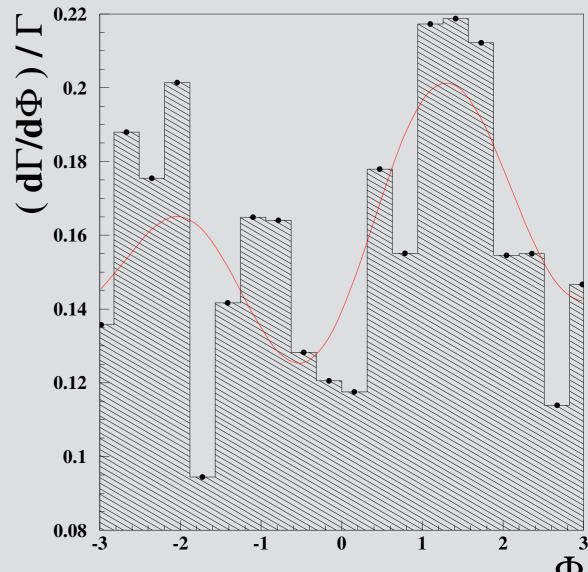
$$(g_{HZZ}, S_H^{ZZ}, P_H^{ZZ}) = (0.032, 0.1, 0.1)$$

Current upper limit: $\sigma(gg \to H) \cdot B(H \to ZZ) \lesssim 0.1 \,\mathrm{pb}$ for a 260 GeV

$$\sigma(gg \to H) \cdot B(H \to ZZ) \cdot 4[B(Z \to \ell\ell)]^2 \cdot \epsilon_{4\ell} \cdot \mathcal{L} \simeq 10^3$$

We take 10^3 events in the following, and angular resolution of cos-theta = 0.1, Phi=0.1 π .





S6	$\overline{R}_1[++]$	$\overline{R}_3[++]$	$\overline{R}_4[++]$	$\overline{R}_5[-+]$	$\overline{R}_8[++]$	$\overline{R}_9[-+]$	$(\overline{C}_1 + \overline{C}_3)[++] \times 10^2$
Input	0.721	0.280	0.330	-0.542	-0.331	-0.640	1.93
Output (center value)	0.721	0.260	-0.339	-4.07	-0.452	-0.387	1.93
Output (parabolic error)	± 0.037	± 0.034	± 1.37	± 1.45	± 0.17	± 0.18	± 0.386

correlation for \overline{R}_1 and \overline{R}_3 is $\rho = -0.813$.

Fit to the original inputs gHZZ, SZZH, PZZH

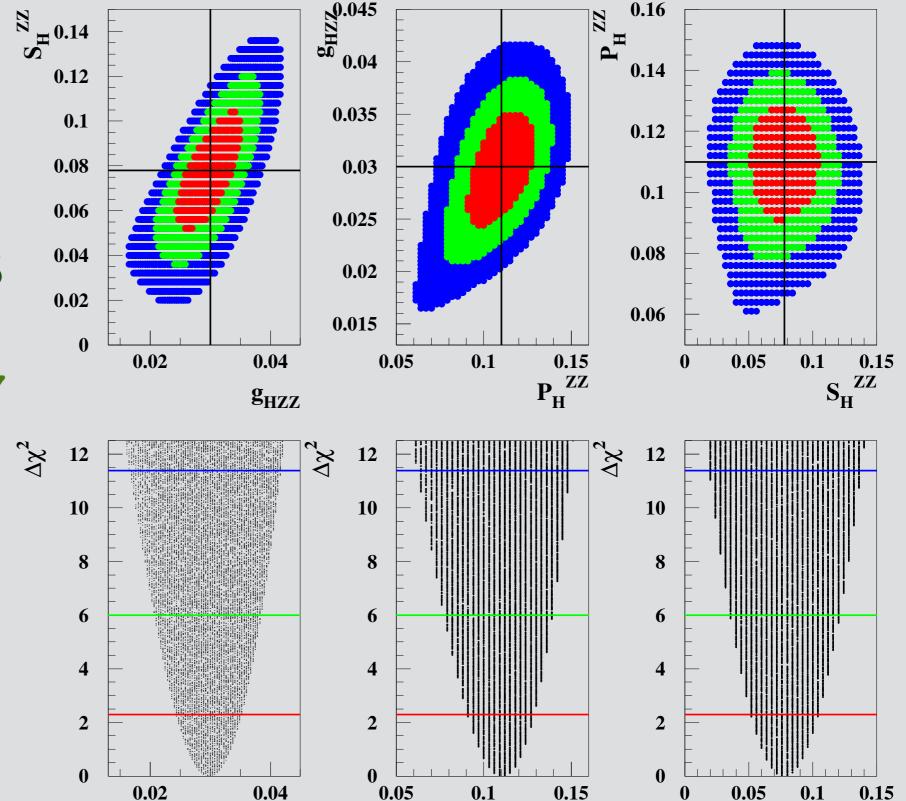
Best Fit

 $g_{HZZ}=0.030\pm0.0035$

 $S^{ZZ}_{H} = 0.0780 \pm 0.017$

 $P^{ZZ}_{H} = 0.11 \pm 0.013$

12-20% error for 10³ events

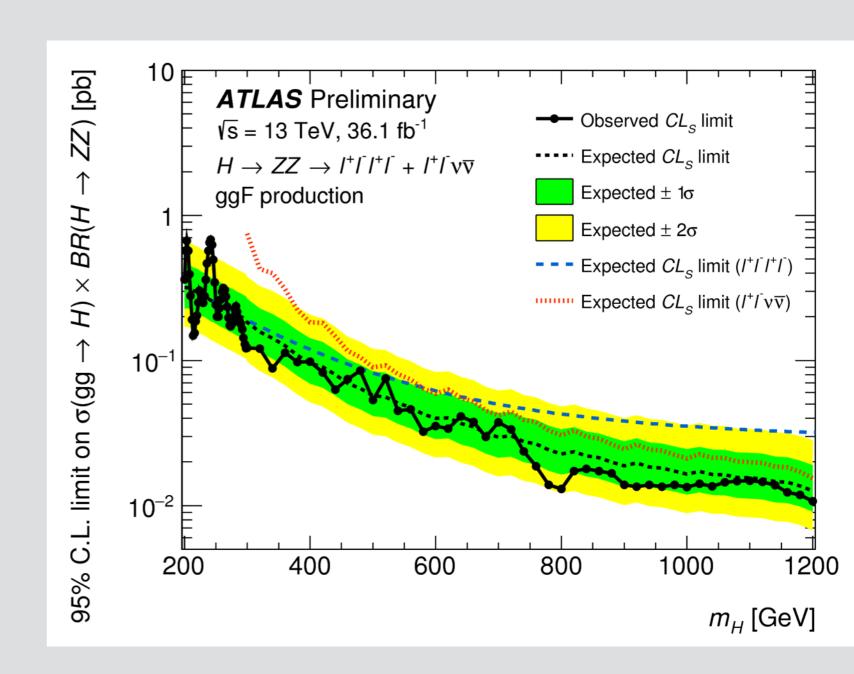


 \mathbf{g}_{HZZ}

ATLAS-CONF-2017-058

The upper limit around 240-270 GeV is 0.2-0.4 pb, corresponding to about 3000 events at HL-LHC.

The uncertainty decreases to 10%.



Summary

- The angular distributions of theta_{1,2} and Phi can be analysed and fitted to the observables R_i 's and then to Higgs couplings.
- With 10^3 H -> ZZ -> 4l events one can determine the couplings g_{HZZ} , S^{ZZ}_{H} and P^{ZZ}_{H} with 12-20% uncertainty. With 3000 events uncertainty goes down to 10%.
- Appearance of C_2 signals new particles with mass $< M_H/2$ running in the loop.
- One can also extend to 2-dim distributions to analyse other observables $R_{6.7}$.