Neutrino models

Hiroshi Okada (NCTS)

This Years Collaborators (14):

Arindam, Chao-Qiang, Cheng-Wei, Chuan-Hung, Eibun, Guan-Jie, Kingman, Pyung-won, Sang-Jong, Seungwon, Sourov, Takaaki, Yokoya, Yuta

• Neutrino:

Since neutrinos are electrically neutral, there exist two types of masses; Dirac and Majorana.

This Majorana nature can be determined by measuring the signal of neutrinoless beta decay, although it is not detected yet...

I will focus on Majorana type of neutrino.

Majorana neutrinos

One of the renowned ideas is to induce the neutrino masses through Weinberg operator: $(LHLH)/\Lambda =>v^2/\Lambda (v<<\Lambda).$

S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).

We have no way how theoretically to determine the scale and or structure of cut-off scale Λ .

This question might lead to renormalizable theories.

Seesaw models

There are three representative types of models:

Mohapatra, Valle, Foot, Lew, He, Joshi, etc.

Type-1(3):
$$\langle H \rangle$$
 $\langle H \rangle$ \langle

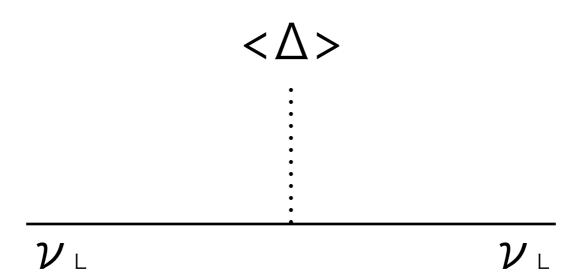
$$m_{\nu} \equiv -m_D^T M_N^{-1} m_D; \ D_{\nu} = U_{MNS}^T m_{\nu} U_{MNS}.$$

The neutrino mass matrix can be found by replacing \land into heavy mass of $N_R(\Sigma_R)$.

Casas-Ibarra(CI) parametrization:

$$y_D = i \frac{\sqrt{2}}{v} \sqrt{M_N} \mathcal{O} \sqrt{D_\nu} U_{MNS}^{\dagger},$$

 $3 N_R(\Sigma_R)$ case


$$2 N_R(\Sigma_R)$$
 case

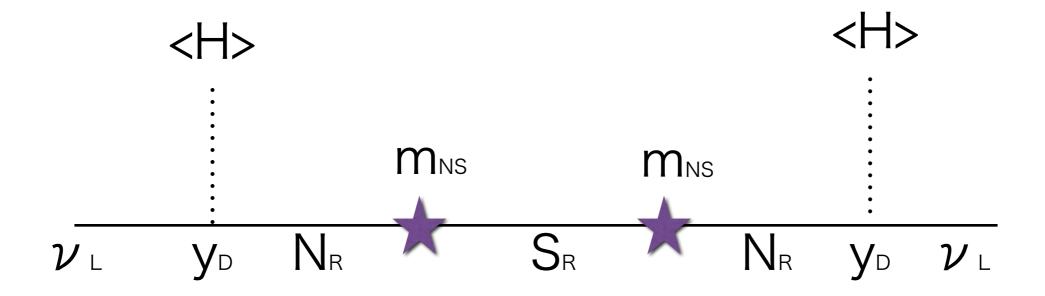
$$\mathcal{O} = \begin{bmatrix} c_{\theta_{13}}c_{\theta_{12}} & c_{\theta_{13}}s_{\theta_{12}} & s_{\theta_{13}} \\ -c_{\theta_{23}}s_{\theta_{12}} - s_{\theta_{23}}s_{\theta_{13}}c_{\theta_{12}} & c_{\theta_{23}}c_{\theta_{12}} - s_{\theta_{23}}s_{\theta_{13}}s_{\theta_{12}} & s_{\theta_{23}}c_{\theta_{13}} \\ s_{\theta_{23}}s_{\theta_{12}} - c_{\theta_{23}}s_{\theta_{13}}c_{\theta_{12}} & -s_{\theta_{23}}c_{\theta_{12}} - c_{\theta_{23}}s_{\theta_{13}}s_{\theta_{12}} & c_{\theta_{23}}c_{\theta_{13}} \end{bmatrix}, \qquad \mathcal{O} = \begin{bmatrix} 0 & 0 \\ \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T, \quad \mathcal{O} = \begin{bmatrix} \cos z & -\sin z \\ \pm \sin z & \pm \cos z \end{bmatrix}^T$$

This is a useful parametrization not only to fit the current neutrino oscillation data but also to connect a theory and experiment.

Note: The mass of $N_R(\Sigma_R)$ has to be diagonal!

Type-2:

The neutrino mass matrix can be found by replacing v^2/Λ into VEV of Δ .


$$m_{\nu_{ab}} = \frac{y_{\Delta_{ab}}}{\sqrt{2}} v_{\Delta}.$$

CI parametrization: $y_{\Delta} = \frac{\sqrt{2}}{v_{\Delta}} U_{MNS}^* D_{\nu} U_{MNS}^{\dagger}.$

This is completely determined by the experimental values except VEV of Δ !

The other complicated but representative models introducing additional tiny Majorana fermions: S_R

1. Inverse seesaw:

Assuming $M_N=0$ and hierarchy: $\mu_S \ll y_D v < m_{NS}$

$$m_{\nu} \approx m_D^T m_{NS}^{-1} \mu_S (m_{NS}^T)^{-1} m_D,$$

CI parametrization of Inverse seesaw

$$m_{\nu} \approx m_D^T m_{NS}^{-1} \mu_S (m_{NS}^T)^{-1} m_D,$$

= M_N^{-1}

Let us identify type-I like seesaw model by regarding the red part as inverse of M_N.

However since inverse of M_N is not diagonal but symmetric, one cannot apply the simplest CI!

One of the conventional solution is to apply Cholesky Factorization(CF) into M_N

$$M_N^{-1} \equiv L_N^T D_N^{-1} L_N$$
 \times LN is an triangular matrix

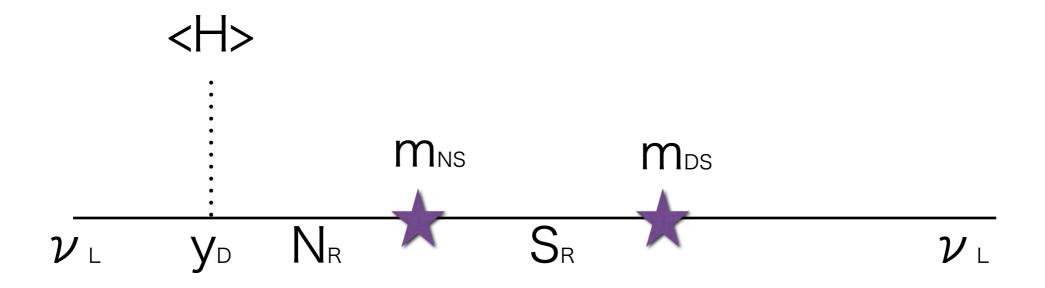
Then neutrino mass matrix can be redefined by

$$m_{\nu} \approx m_D^T L_N^T D_N^{-1} L_N m_D \equiv M_D^T D_N^{-1} M_D$$

Thus one finds the CI parametrization just by the following replacements:

$$m_D \to M_D$$
 and $M_N \to D_N$

Point: (DN, LN) can uniquely be fixed by components of MN, when DN is taken to be positive real.


Generalized CI parameterization:

One can generalize 3xN right-handed matrix.

In this case, O is extended by 3 by N mixing matrix and its degrees of freedom is given by 3(N-2).

Note: O is not orthogonal matrix but just satisfies $00^T=1_{3x3}$.

2. Linear seesaw:

Assuming M_N=0 and hierarchy: m_{DS} << y_DV < m_{NS},

$$m_{\nu} \approx -m_{DS}^{T} (m_{NS}^{T})^{-1} m_{D} - m_{D}^{T} (m_{NS})^{-1} m_{DS}$$

CI parametrization of linear seesaw is given by introducing anti-symmetric matrix A as:

$$m_D = -\frac{1}{2} m_{NS}^T (m_{DS}^T)^{-1} (U_{MNS}^* D_\nu U_{MNS}^\dagger + A).$$

where
$$A + A^T = 0$$
.

Careful points to applying CI!

If you have a specific texture of a Yukawa coupling related to the neutrino mass matrix (such as two-zero texture) or the undefined inverse matrix (due to the reduction of rank), applying "CI" is not recommended.

Textures

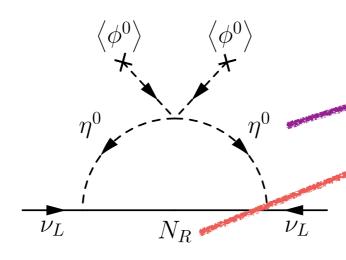
H. Fritzsch, Z. Xing, S. Zhou, etc,···

Reduced matrix of y_D

Juan Herrero-Garcia, Miguel Nebot, Nuria Rius, Arcadi Santamaria, etc,...

Radiatively induced neutrino mass models:

It provides a concrete structure of Λ at loop levels. => Theory can be within low energy scale(\sim TeV).


2. Dark matter candidate, muon anomalous magnetic dipole moment, origin of Baryon number asymmetry via leptogenesis, can be explained linking to the active neutrinos!

Note: One has to take care of Lepton flavor violations(LFVs), since they are always arisen from the related neutrino Yukawa couplings!!

Ma Model

SM+right-handed Neutrino +SU(2) doublet Scalar

	N ^c	$ \mid \eta \mid $
$SU(2)_L$	1	2
$U(1)_Y$	0	1/2
\mathbb{Z}_2	-1	-1

The lightest of N_R and or $\eta_{R/I}$ can be dark matter candidate!

Interacting term

 $\mathcal{L} = (\mathbf{y}_{\nu})_{\alpha i} \eta^{\dagger} \overline{\ell_{\alpha}} N_{i}^{c} + \text{h.c.} - \mathcal{V}(\phi, \eta) + \frac{1}{2} M_{i} N_{i} N_{i} + \text{H.c.}$

 \divideontimes y_{ν} is restricted by LFVs at one-loop level.

Scalar potential term

$$V(\phi, \eta) = m_{\phi}^{2} |\phi|^{2} + m_{\eta}^{2} |\eta|^{2} + \frac{\lambda_{1}}{2} |\phi|^{4} + \frac{\lambda_{2}}{2} |\eta|^{4} + \lambda_{3} |\phi|^{2} |\eta|^{2} + \lambda_{4} (\phi^{\dagger} \eta) (\eta^{\dagger} \phi) + \frac{\lambda_{5}}{2} \left[(\phi^{\dagger} \eta)^{2} + (\eta^{\dagger} \phi)^{2} \right]$$

Summary

Along this line of ideas, a vast of literature has arisen, since nonzero theta_13 has been measured (2012),

More than 110 ideas at one-loop level,

More than 40 ideas at two-loop level,

More than 30 ideas at three-loop level,

and a few ideas at four-loop level···

Another applications:

- Small mass SM fermions(e,u,d,muon) can be explained by introducing exotic charged fermions.
 - Anomaly such as b->s,mu mu_bar could be explained by introducing leptoquarks with/without flavor dependent gauged symmetries.
 - Several anomalies of indirect detections from cosmic-rays as a DM candidate could be explained.

Collider signatures could be expected in the near future.

Thanks.