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(last May) lectures on gravitational cat
Three elements: QIG
Quantum, Information and Gravity

e Quantum < Quantum Mechanics € Quantum Field Theory
Schroedinger Equation |
e Gravity € Newtonian Mechanics < General Relativity
GR+QFT= Semiclassical Gravity (SCG)

e Laboratory conditions: | Strong Field Conditions:
Weak field, nonrelativistic limit: | Early Universe, Black Holes
(work in both regimes ongoing since the 80’s)
e.g., Newton-Schroedinger Eq | Semiclassical Einstein Eq.
(NSE) € beware of problems! | Einstein-Langevin Equation



Quantum Information Issues
in gravitational quantum physics

e Quantum Decoherence: Environment-induced
— Gravity as ubiquitous environment
— “Universal / Fundamental / Intrinsic” Decoherence

e Quantum Entanglement: Entangled states
— Bell states
— Gravitational Cat State



This talk, Equivalence Principle
for Quantum Systems, focuses on

Gravity and Quantum, but
necessarily involve entanglement.

Here, more about GQP than RQI
Gravitational Quantum Physics than
Relativistic Quantum Information
GR + QFT Infact, only
weak field, nonrelativistic QM



Part I: Why worry about EP for
Quantum Systems?



[. Introduction
Weak Equivalence Principle

e Newton
F=ma (m inertial mass)
F= GMm/r”*2 (m gravitational mass)

e m (i) =m (g) weak equivalence principle
- E”otv’os expts,  Torsion pendulum expts
- Laboratory results correct to very high accuracy.



Classical description

Galileo: [G]

All masses fall (in vacuum) at the same rate:
X= 12 gth2 g=GM/r"2

Einstein: [E]

Gravity can be “replaced” by acceleration:

Physics in a freely falling frame (Einstein elevator)
FFF isthe same asin aninertial frame



EP assumed in QFT / CST

e Wave equation for a quantum field ¢ in
curved spacetime with metric g,
curvature scalar R ([ — m2 — Ry = (),

Box: Laplace-Beltrami Operator in CST with
metric g: Kineticterm: m_i inertial mass

Potential terms: m_g grav. mass
(g_00: expansion: 1-2GM/r)

e Einstein Equation-- as field equation: grav.
Mass; as equation of motion: inertial mass




What Is different in a quantum world?

Quantum description in terms of:
e state preparation

* measurements

e Probabilities

Quantum states and processes:
e pure [ mixed [ entangled states
e Dephasing vs Decoherence



How does EP manifest in
Quantum physics?

e Quantum systems with internal dof: Atoms
External dof (center of mass): Trajectory

(Caution: Quantum histories need be sufficiently
decohered before classical trajectories can be defined.)

. Consider two separate cases of:
1) an elementary (non-composite) particle
2) an atom (composite) in free fall

. Describe its motion in QM language



Our Findings: Equiv. Principle for
Quantum Systems: 2 versions

A. [Einstein] The probability distribution of
the position for a free-falling particle is the
same as the probability distribution of a
free particle, modulo a mass-independent
shift of its mean. (the % gt”2 term)

B. [Galileo]: Any two particles with the same
velocity wave-function behave identically
in free fall, irrespective of their masses.



o "2
ll. Elementary Particle A, =mi+ 2_ + mga,

in Free Fall: m

The Hamiltonian (1) has continuous spectrum over the whole real

generalized eigenstates |E),
H,|E) = (m+ E)|E).

We readily evaluate |E) in the momentum representation,
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The generalized eigenstates (3) are normalized so that (E|E') = 0(E — E).
We define the propagator

G (. a) = (] ot |y — / dEe— B (o EYOE |2,

Using (3) we find
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is the propagator of a free particle.



Let () be the initial state of the system, and ;" () the state at time t evolved
with the Hamiltonian H,. Eq. (5) implies that

. im 243 1 ¢
99 () = e O g ) ™
Eq. (7) can be written equivalently as
1M 243 A 1 ¢
U7y = eV (—mgt, —§9f2)|’¢1’f(.0)>.~. (8)

where V(a,b) = ¢™*="P is the Weyl translation operator.

2.2. Position measurements EPQS Ve rsion A [Einstein]

Eq. (7) implies that

0 @) = 10, (o + 59t (9)
1.e., that the probability distribution of position is the same as that of a free particle
with the same initial state, but with a time-dependent shift of the center. The shift

does not depend on the particle’s mass.



Applies to particles prepared in any initial state, not just
those prepared in a state with a direct classical analogue.

In particular, Eq. (9) applies also to cat states, i.e.,
superpositions of macroscopically distinct configurations.

Valid for composite particles. It remains unaffected by
the coupling between internal and translational degrees
of freedom that is induced by free-fall.

Thus, quantum tests of the EP could be used to constrain
[ discern different models of gravitational decoherence.



EPQS Version B [Galileo] in terms of Velocity Wigner function

Alternative formulation of the equivalence principle

We can provide a better formulation of the equivalence principle by examining free fall
in the Wigner picture. For any densit‘,-r matrix /3, we define the Wigner function

Wix,p) = / ;{5 T > (14)

as a quasi-probability density on the classical phase space I spanned by position x and

momentumn p .
By Eq. (8), we readily evaluate the Wigner function I-*l-';(g)(;z:,p) at time t for a
particle of mass m freely falling in a gravitational field g,

, , - 1 .
Wi (e, p) = Wol + -t + Sgt® p + mgt), (15)

where W) is the Wigner function at time ¢ = 0. In this case, the time evolution of the
Wigner function is identical to the time evolution of a classical probability distribution
according to the Liouville equation.

It is evident that the mass-dependence in the Wigner function originates from its
momentum dependence. If we change variables to (z,v) where v = p/m is the velocity,

the mass-dependence disappears. To this end we define the velocity Wigner function



EPQS Version B [Galileo]

Wiz, v) = lU(Jr muv), (16) =>

m

_ 1 .

Two particles of different masses m; and ms, but with the same velocity Wigner function
behave exactly the same in free fall. Equality of the velocity Wigner function implies
that the state vectors [¢1) and |¢)9) of the particles satisfy

(p/my|ir) = (p/malibs), (18)

i.e., their wave functions in the ‘velocity basis’ coincide. Thus, we are led to an equiva-

lent but stronger statement of the equivalence principle for quantum systems:

Equivalence principle for guantum system, Version B:
Any two particles with the same velocity wave-function
behave identically in free fall, irrespective of their masses.



Why Velocity Wigner Function?

I general. there is no correspondence between Hilbert spaces that correspond to
particles of different mass. The reason is that particles of different mass correspond to
unitarily inequivalent representations of the Galileo group (or the Poincaré group), and
thus, there 1s no natural i1dentification of observables defined on the different Hilbert
spaces.

Given the restriction above, the choice of the velocity basis provides the most
natural way of identifying states for particles of different mass, as long as relativity is
fully taken into account. The reason is that the defining representation for a relativistic
particle of mass m consists of square integrable functions on the positive-energy cone
V. =Apu,p.p" =m? po >0} Since V) NV, =0 for m # m’, the only natural way of
comparing the quantum states of particles with different mass is using wave functions
defined with respect to the four-velocity v* = p”/m, since the four-velocity is a unit

four-vector for all masses.



Ill. Composite particle:
An atom In Free Fall

e Effect of internal dof on the translational
motion: Dephasing in the position basis

e Effect of free fall on its internal dof:
Gravitational phase shift



At the fundamental level, composite particles are described by interacting QFTs.
Composite particles correspond to poles of appropriate correlation functions of the
quantum fields. Consider a two-point correlation function for a quantum field with
a sequence of poles labeled by the integers n = 0, 1.2, .... Each pole characterized by a
different rest mass m,,, so that mo < m; <mo < ..., and by different values of spin s,,.

lll.  One free composite particle:
Effect of internal dof on translational dof

A single composite particle for this QFT is described by the Hilbert space
H — @n%mn,sna (19)

where H,, s 1s the Hilbert space associated with an irreducible representation of the
Poincaré group with mass m and spin s. The Hilbert space H,, s can be written as
Ho ® C* where Hy = L*(V7) contains square integrable wave functions over four-

velocities v with ug > 0. Then,
H = Ho @ Hin. (20)

where H;,; = &,C*"T1 describes all internal (i.e., non translational) degrees of freedom
of the composite particles. The Hilbert space H,,; is spanned by a basis |n), that defines
the Hamiltonian for the internal degrees of freedom, H;,; = > m,|n)(n|.



The Hamiltonian for a composite particle in a
weak homogeneous gravitational field is given by
a matrix with respect to the basis |[n> of H_internal

mo + 5,— + mogx 0 0
~ O my + £ 1gT 0 .
H, = LT ,\ (21)
0 0 my + 5 — + magr

| Given Eq. (20), a general initial state |Wy) is decomposed with respect to the basis

]n) of %int as
o) = caltrno) ® |n) (22)

T

where the vectors |1, o) € Hg correspond to the translational degrees of freedom.
The state |Ug) evolves under the Hamiltonian (21) to

m7192f3 "T 1
’\IIIEQ)> - ch€€ ? ‘ (_NTTIJT _QJIJ ’ ?if> ® |T?> (23)

n

where |sz3> is the evolution of the initial state |1, o) with the free-particle Hamiltonian
A 52

_ D
H, =m, +3—.




Consider measurements only of the translational degrees of
freedom. All information about such a measurement is
encoded in the reduced density matrix on Ho that is obtained
by a partial trace of the internal degrees of freedom

(2l ()a’y =Y (TN |2 )
2 _—impgt(z—2'),,,(0) 1 1 2 oy
- Z ’Cr“ll € h V. f( + _gf ) n 1‘ (‘1 + LﬂL ) (2_1)

The probability density for position is obtained from the diagonal elements of the
reduced density matrix

1 1
(] p\9(t) Zm ) m (v -+ 59|t + 591*425)

Eq. (25) manifestly verifies Version A of the EP.

QEP Version A [Einstein]



Version B | Galileo| of QEP

Regarding Version B of the EP, we have to employ the velocity density matrix for
the translational degrees of freedom. This is naturally defined. because of the splitting
(20) of the Hilbert space ‘H. Hy is naturally defined in the velocity basis.

It is simpler to work with the velocity Wigner function of composite particles. This
is defined as follows. Let [U) = 3" ¢,[1),) ®|n) be a general state on H and let W, (z, v)
be the velocity Wigner function associated with the vectors |¢,,) according to Eq. (16).
Then, the reduced velocity Wigner function for the translational degrees of freedom is
defined as

ITred l U Z |Cn| n n l U) (26)

We readily verify that the time evolution of W,.,; is given by Eq. (17). Thus,

Version B of the equivalence principle is also satisfied when expressed in terms of W, ...



Dephasing
3.3. Dephasing of the translational dof by the internal dof

3.3.1. The evolution of a factorized initial state Consider now the special case of a
factorized initial state

[Wo) = [t) © ) caln), (27)

i.e., a state where all vectors [, ) in Eq. (22) coincide with [¢)y).
Time evolution entangles the translational and internal degrees of freedom

i-??z;ngtS ~ ]_ (0
W) = 37 eV (gt ) [U) @ [n). (29)

In this case, the dependence of mg’b on n in Eq. (28) is not due to the initial condition,

but due to the fact that the time-evolution of any state is mass-dependent, and the
mass depends on n. A measure of the dependence of ’77!97(32> on n is the difference 9,, in

the position dispersion Az*(t) between ]fg/),(fb and ]ybé?t) ). By Eq. (13),

- t>
62 = (mg® —m;?). (29)

" 4(Ax)s




We assume that the excitation energies
W, = M, — My, (30)

are much smaller than the energy mg of the ground state. Then, Eq. (29) becomes

2, ,
52 _ t “n
" 2mB(Ax)d

(31)

) (0 ) . P . .
Observe that the states |’L£2 ) are almost identical if 6, << (Ax)y, i.e., for times

t << \/mo/wamo(Ar)s. (32)

In this regime, all 15}? (x) in Eq. (28) coincide with

b (z) = / do' G (i, 2 Yo (o), (33)

where the propagator G is defined with respect to the mass my.
The state (28) still remains entangled. Therefore, the reduced density matrix for

the translational degrees of freedom is a mixed state,

A : o 1 . 1 .
(elpr2yD)la’) = Tu(w — a)em oo =0 @ 4 gty (! + Sgt%), (34)

where

[(Ax) = Z | ¢, [Pe ™ emtoR (35)



3.3.2. Dephasing due to internal degrees of freedom Assume that the internal degrees

of freedom are in a thermal state at temperature 57!, whence |Cn|2 ~ e¢~Pn  Then,
Z(B +igtAx) ‘
I'y(Ar) = , : (36)
Z(53)

where Z(3) =Y. e 7 is the partition function for the internal degrees of freedom.

For g3 YAz << 1, we expand the partition function log Z(3 + &) = log Z(3) —
(E)d + £372C,6%, in terms of the mean energy (E) and the heat capacity C,, to obtain

T (Ax)| =~ o~ 3Cu (987 (Ax)t)? (37)

Hence, time evolution typically suppresses the off-diagonal elements of the density
matrix (34), i.e., superpositions of states with position localizations that differ by Aux.

The relevant time scale 7 is
3

- gAx\/C,

There is no suppression at low temperatures, since Z(3) — 1 as 3 — o0.

T

(38)

We also note that the time-scale 7 depends on the internal structure of the particle,
as the latter is encoded in C',, but it does not depend on the particle mass. This is a

consequence of the EP, i.e., the equality between inertial and gravitational mass.



Universal Decoherence?

Eqg. (34) coincides with an analogous equation of
Pikovsky et al 2015, where it was claimed that the
suppression of interferences due to I' t(Ax) corres-
ponds to a process of universal decoherence.

We disapprove this claim.
1) Not universal:
Result depends on choice of initial state
2) Not decoherence, but dephasing:
No loss of information



Non-Markovian Evolution
of entangled state

e Since the Hamiltonian involves coupling between
translational and internal degrees of freedom, the
generic state for a composite particle is entangled.

e The evolution law Eq. (24) is non-Markovian
- Memory of the initial state can persist in time.

Depends on specific choices of the initial
condition.



V. Effects of translational dof
on the internal dof (qubit here):

Gravitational Phase Shifts



Phase Shift from Free Fall

Consider a factorized initial state (27), and assume that Eq. (32) applies. We can
evaluate the reduced density matrix for the internal degrees of freedom

|60’2 Cocfﬁiwt_mggﬁ/gg

ﬁ'qub(ﬂ - cter e—iwt+iwg2t3/3g |c1 |2 o (39)

where
- / dali)”) () [Pe 0t (40)

Consider a localized initial state with position spread o, and with vanishing mean
momentum. Assume that the qubit is recorded at distance L from each source. Hence,
the detection time is strongly peaked around t;, = \/2L/g. If

b:=wg\/2L/go, << 1, (41)

then (;, ~ 1, and it can be ignored in Eq. (39).
Hence, the qubit density matrix has developed a phase due to the free fall,

| I . 22 1 a

in addition to the phase wt due to free evolution.



Gravitational Phase-Shift

Albeit of quantum origin

@ g has a classical interpretation:
 half originates from gravitational red-shift

 half from special-relativistic time dilation.



To see this, consider the radial free-fall of a particle in Schwarzschild spacetime
which models the gravitational field of the Earth. The proper time 7 of the particle 1s
related to the coordinate time ¢ and the radial coordinate r by

. 2GM . dr*
2 2 N
We rewrite Eq. (44) as
2GM v? |
dr = df\/l - T {_mm (45)

where v = dr/dt. For a weak gravitational field (GM/r << 1) and non-relativistic
velocity (v << 1), we expand the square root in Eq. (45) to obtain

GM 1

dr ~ dt(1 — - 5@12). (46)
”
Suppose we drop a body from r = R. For r = R — r with » << R,
GM 1.
dr ~ dt(1 — 7 9T - 5@*2), (47)

where g = GM/R? is the gravitational acceleration, approximately constant as long as
r << R.



Let the trajectory of the falling particle be given by the function x(¢). Then,

GM ! L[
(=St [ dsets) - 5 [ asit(e (48)
R 0 2 0

t o : t o, .
The term ¢ fo dsxz(s) corresponds to gravitational redshift and the term % fo dsi?(s) to

special relativistic time dilation. For a general path z(s) those two terms are different.

However, for a free-falling particle, x(t) = % gt?, both terms turn out to be equal to
%gzt‘g, so that
GM 1, .
T=(1- t— =gt} 49
(1——-)t—39 (49)
Thus, the phase shift for a qubit of frequency w in the rest frame is
GM
wT =w(l — - It — ¢, = Wy — Oy, (50)

where the phase shift ¢, = %wggtg coincides with that of Eq. (42) and 7 is the proper
time for a static observer at r = R.

This phase ¢, is measurable, at least in principle. For w in the microwave range,
and L of the order of 100m, ¢, varies between 1074 and 1072 radians. If ¢, is of order
unity or smaller, the condition (41) is always satisfied since b/¢, ~ o, /L << 1. Thus,
we predict a rotation of a qubit’s Bloch vector by a phase ¢, due to free fall.

We emphasize that the mass independence of the phase shift ¢, is a direct

consequence of the mass independence of free-falling trajectories. i.e., of the classical

EP.



Summary l. Equivalence Principle for
quantum systems: 2 statements

A: The probability distribution of position for a
free-falling particle is the same as the
probability distribution of a free particle,
modulo a mass-independent shift of its mean.

B: Any two particles with the same velocity
wave-function behave identically in free fall,
irrespective of their masses.



Summary 2: Coupling between
internal dof & translational dof

Free fall induces a coupling between the internal and
translational degrees of freedom.

It depends on the initial state of the system and on
the observable that is being measured.

e For a particular class of initial states, we show that the
Internal degrees of freedom can lead to a suppression of
the off-diagonal terms of the density matrix in the
position basis: Dephasing of position

e This phenomenon is not universal and that it is not
decoherence, because it does not involve irreversible
loss of information.



Summary 3: Effect of free fall
on the internal dof

 We found a gravitational phase shift in the
reduced density matrix of the internal
degrees of freedom.

* While this phase shift is a fully guantum
effect, it has a natural classical interpretation
In terms of gravitational red-shift and
special relativistic time-dilation.



Thank You.

Happy Holidays !
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