Global fits of PDF

L Del Debbio

Higgs Centre for Theoretical Physics University of Edinburgh

L Del Debbio

Global PDF fits

understanding the structure of the proton

- definition of PDFs theoretical issues, comparison with NP (lattice) formulations
- current fits methodologies & results
- impact on phenomenology future targets
- future results: new data, theoretical progress

PDF from DIS

$$d\sigma = d\Phi L^{\mu\nu}(k,k')W_{\mu\nu}(p,q)$$

$$W_{\mu\nu}(p,q) = \frac{1}{4\pi} \sum_{X} \langle p|j_{\mu}(0)^{\dagger}|X\rangle \langle X|j_{\nu}(0)|p\rangle (2\pi)^{4} \delta\left(p_{X} - p - q\right)$$
$$= \frac{1}{4\pi} \int d^{4}y \; e^{iq \cdot y} \; \langle p|j_{\mu}(y)^{\dagger}j_{\nu}(0)|p\rangle$$

L Del Debbio

structure functions and PDFs

$$W_{\mu\nu}(p,q) = \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1(Q^2,\nu) + \left(p_{\mu} - q_{\mu}\frac{\nu}{q^2}\right)\left(p_{\nu} - q_{\nu}\frac{\nu}{q^2}\right)F_2(Q^2,\nu)/\nu$$

Factorization:

$$F_2(x,Q^2) = x \sum_i \int \frac{dz}{z} C_i(z,\mu^2) f_i\left(\frac{x}{z},\mu^2\right)$$
$$= x \sum_i C_i(x,\mu^2) \otimes f_i(x,\mu^2)$$

DGLAP evolution

• dependence on the factorization scale

$$\mu^2 \frac{d}{d\mu^2} f_i(x,\mu^2) = \sum_j P_{ij}\left(x,\alpha_s(\mu^2)\right) \otimes f_j(x,\mu^2)$$

• $P_{ij}(x, \alpha_s(\mu^2))$: perturbative Altarelli-Parisi splitting functions \hookrightarrow LO, NLO, NNLO PDFs

• Solution of the evolution equation:

$$f_i(x,\mu^2) = \sum_j \Gamma_{ij}(x,\alpha_s,\alpha_s^0) \otimes f_j(x,\mu_0^2)$$

the non-singlet PDF

Simple example:

$$F_2^{NS}(x,Q^2) = F_2^{p}(x,Q^2) - F_2^{d}(x,Q^2)$$

= $C_{NS}(x,Q^2) \otimes f_{NS}(x,Q^2)$

where

$$f_{\rm NS}(x,Q^2) = \left[\left(u(x,Q^2) + \bar{u}(x,Q^2) \right) - \left(d(x,Q^2) + \bar{d}(x,Q^2) \right) \right]$$

combining the evolution and the coefficient function

$$F_2^{\rm NS}(x,Q^2) = \int_x^1 \frac{dy}{y} K_{\rm NS}\left(y,\alpha_s\left(Q^2\right),\alpha_s\left(Q^2_0\right)\right) f_{\rm NS}\left(\frac{x}{y},Q_0^2\right)$$

L Del Debbio

collider processes

$$\begin{aligned} \sigma(H_1 H_2 \to X) &= \sum_{i,j} \int dx_1 dx_2 \ f_{i/H_1}(x_1, \mu^2) f_{j/H_2}(x_2, \mu^2) \times \\ &\times \hat{\sigma}_{ij \to X}(x_1 x_2 s, \mu^2, \mu_R^2) \end{aligned}$$

lattice data

a lot of activity on proton structure recently (cfr Kostas talk) quasi-PDF [Ji et al]

$$\mathcal{M}_{i}(\zeta, P) = \langle P | \bar{\psi}(\zeta) \Gamma_{i} \operatorname{P} \exp\left(-ig \int_{0}^{\zeta} d\eta \, A(\eta)\right) \psi(0) | P \rangle$$

$$q(x,\mu,M_N,P_z) = \int \frac{dz}{4\pi} e^{-i(xP_z)z} \mathcal{M}_z(z,P_z)$$

$$q(x,\mu,M_N,P_z) = C_Q\left(x,\frac{P_z}{\mu}\right) \otimes f(x,\mu) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M_N^2}{P_z^2}\right)$$

fit methodology

 χ^2 minimization

$$\chi^{2}[f] = \sum_{i,j=1}^{N_{\text{dat}}} \left(D_{i} - T_{i}[f] \right) \left(\operatorname{cov}^{-1} \right)_{ij} \left(D_{j} - T_{j}[f] \right)$$

for each PDF

$$xf(x,Q_0^2) = Ax^{\alpha}(1-x)^{\beta}I(x)$$

I(x): polynomial function or neural network

NN allow ≈ 40 parameters for each PDF \hookrightarrow redundant parametrization, small bias

Hessian method

$$H_{ij} = \frac{1}{2} \left. \frac{\partial^2 \chi^2}{\partial a_i \partial a_j} \right|_0$$

error on quantity \mathcal{F}

$$\Delta \mathcal{F} = \frac{1}{2} \sqrt{\sum_{i} \left[\mathcal{F}(S_i^+) - \mathcal{F}(S_i^-) \right]^2}$$

correlations

$$\rho(\mathcal{F}, \mathcal{G}) = \frac{1}{4\Delta \mathcal{F} \Delta \mathcal{G}} \sum_{i} \left[\mathcal{F}(S_{i}^{+}) - \mathcal{F}(S_{i}^{-}) \right] \left[\mathcal{G}(S_{i}^{+}) - \mathcal{G}(S_{i}^{-}) \right]$$

MC method generate replicas that reproduce the data distribution

$$\langle \mathcal{F} \rangle = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \mathcal{F}[q^{(k)}]$$

error on quantity \mathcal{F}

$$\Delta \mathcal{F} = \sqrt{\frac{1}{N_{\text{rep}} - 1} \sum_{k=1}^{N_{\text{rep}}} \left(\mathcal{F}[q^{(k)}] - \langle \mathcal{F} \rangle \right)^2}$$

correlations

$$\rho(\mathcal{F}, \mathcal{G}) = \frac{1}{\Delta \mathcal{F} \Delta \mathcal{G}} \Big[\langle \mathcal{F} \mathcal{G} \rangle - \langle \mathcal{F} \rangle \langle \mathcal{G} \rangle \Big]$$

comparing errors

bayesian reweighting

- in the MC approach all replicas are equivalent
- new data can be incorporated by a new fit or
- by changing the weight of the existing replicas

$$w_k \propto (\chi_k^2)^{(n-1)/2} e^{-\chi_k^2/2}$$

current fits

- focus on latest NNPDF3.1 set fitted charm + LHC data
- discuss new data and their impact
- current precision on PDFs
- can we identify areas for synergy with lattice results?

datasets

- fixed-target & collider DIS (NMC, BCDMS, SLAC, HERA final)
- charm production, F_2^b (HERA)
- neutrino DIS (CHORUS, NuTeV)
- inclusive jets, *Z* rapidity distribution, lepton asymmetries, fixed target DY (Tevatron)
- *Z* boson double differential, inclusive *W*/*Z* rapidity distribution, lepton asymmetries, *W*+*c*, Drell-Yan (LHC)
- $t\bar{t}$ distributions, total $t\bar{t}$ cross-section (LHC)
- inclusive jet data (LHC)

kinematic coverage

Kinematic coverage

L Del Debbio

ttbar production

inclusive jet

[NNPDF3.1]

forward EW boson production

[NNPDF3.1]

ATLAZ W Z production

[NNPDF3.1]

strangeness of the proton

$$R_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{\bar{u}(x,Q^2) + \bar{d}(x,Q^2)}$$

[NNPDF3.1]

strangeness of the proton

charm parametrization

same data, fitted charm vs. perturbative charm

[NNPDF3.1]

phenomenology

- prediction of LHC observables
- current PDF errors on LHC observables
- future PDF determinations 'Ultimate' PDFs

parton lumi for LHC 13TeV

[NNPDF3.1] Taipei, Nov 2018 25 / 38

L Del Debbio

Global PDF fits

parton lumi comparison

[NNPDF3.1]

L Del Debbio

Global PDF fits

Taipei, Nov 2018 26 / 38

W & Z production

[[]NNPDF3.1]

Higgs production

L Del Debbio

Global PDF fits

heavy new states

[Gao et al 17]

'ultimate' PDF

Generation of artificial HL-LHC data

- generate σ_i^{th} using NLO theory and PDF4LHC15
- compute the total uncertainty

$$\begin{pmatrix} \delta_{\text{tot},i}^{\text{exp}} \end{pmatrix}^2 = \left(\delta_{\text{stat},i}^{\text{exp}} \right)^2 + \left(f_{\text{corr}} \times f_{\text{red}} \times \delta_{\text{sys},i}^{\text{exp}} \right)^2$$
$$\left(\delta_{\text{stat},i}^{\text{exp}} \right)^2 = f_{\text{acc}} \times N_{\text{ev},i}$$

• fit/reweight PDFs to this set of artificial data

[Abdul Khalek et al 18]

DY - sea quark correlation

Correlations between forward DY and the down anti-quark PDF

[Abdul Khalek et al 18]

ttbar - gluon correlation

[Abdul Khalek et al 18]

W+c - strange correlation

[Abdul Khalek et al 18]

PDF uncertainty reduction

[Abdul Khalek et al 18]

L Del Debbio

Global PDF fits

Taipei, Nov 2018 35 / 38

lumi uncertainty reduction

[Abdul Khalek et al 18]

lumi uncertainty reduction

[Abdul Khalek et al 18]

conclusions

- current LHC data have allowed flexible, unbiased parametrizations of PDFs
- broad agreement between different fits, robustness of the results
- good statistical accuracy in the kinematic region covered by data
- improved accuracy at HL-LHC
- at this level of accuracy it is mandatory to understand systematics better – theory errors, bias in the fit, extrapolation region
- incorporate lattice data in fits, targeting kinematic regions that are not covered by experiments