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1. Introduction

• Basics
• PDFs from the lattice
• Quasi-PDFs
• Procedure

2. Results

• Lattice setup
• Bare ME
• Renormalized ME
• Matching
• Final results

3. Conclusions and prospects

Based on:
• C. Alexandrou, K. Cichy, M. Constantinou,

K. Jansen, A. Scapellato, F. Steffens, “Recon-
struction of light-cone parton distribution func-
tions from lattice QCD simulations at the phys-
ical point”, Phys. Rev. Lett. 121 (2018) 112001

• C. Alexandrou, K. Cichy, M. Constantinou,
K. Jansen, A. Scapellato, F. Steffens, “Transver-
sity parton distribution functions from lattice
QCD”, Phys. Rev. D (Rapid Communications),
in press, arXiv: 1807.00232 [hep-lat]

• C. Alexandrou, K. Cichy, M. Constantinou, K. Had-
jiyiannakou, K. Jansen, H. Panagopoulos, F. Stef-
fens, “A complete non-perturbative renormaliza-
tion prescription for quasi-PDFs”, Nucl. Phys. B923
(2017) 394-415 (invited Frontiers Article)

• K. Cichy, M. Constantinou, “A guide to light-cone
PDFs from Lattice QCD: an overview of approaches,
techniques and results”, invited review article for a
special issue of Advances in High Energy Physics,
arXiv: 1811.07248 [hep-lat]
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Source: LHC, CERN

• Hadrons are complicated systems with properties resulting from
the strong dynamics of quarks and gluons inside them.

• This dynamics is characterized in terms of, among others, parton
distribution functions (PDFs).

• PDFs are essential in making predictions for collider experiments.
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• PDFs have non-perturbative nature ⇒ LATTICE?
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• PDFs have non-perturbative nature ⇒ LATTICE?

• But: PDFs given in terms of non-local light-cone correlators –
intrinsically Minkowskian – problem for the lattice!
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• PDFs have non-perturbative nature ⇒ LATTICE?

• But: PDFs given in terms of non-local light-cone correlators –
intrinsically Minkowskian – problem for the lattice!

q(x) =
1

2π

∫

dξ−e−ixp+ξ−〈N |ψ(ξ−)ΓA(ξ−, 0)ψ(0)|N〉,

where: ξ− = ξ0−ξ3√
2

and A(ξ−, 0) is the Wilson line from 0 to ξ−.

• This expression is light-cone dominated – needs ξ2 = ~x2 + t2 ∼ 0
– very hard due to non-zero lattice spacing!
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• PDFs have non-perturbative nature ⇒ LATTICE?

• But: PDFs given in terms of non-local light-cone correlators –
intrinsically Minkowskian – problem for the lattice!

q(x) =
1

2π

∫

dξ−e−ixp+ξ−〈N |ψ(ξ−)ΓA(ξ−, 0)ψ(0)|N〉,

where: ξ− = ξ0−ξ3√
2

and A(ξ−, 0) is the Wilson line from 0 to ξ−.

• This expression is light-cone dominated – needs ξ2 = ~x2 + t2 ∼ 0
– very hard due to non-zero lattice spacing!

• Accessible on the lattice – moments of the distributions, but:

⋆ higher derivatives noisy,

⋆ operator mixing.
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• The common feature of all the approaches is that they rely to some extent on
the factorization framework:

Q(x, µR) =

∫ 1

−1

dy

y
C

(

x

y
, µF , µR

)

q(y, µF ),
some lattice observable
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⋆ generalizations of light-cone functions; direct x-dependence,
⋆ hadronic tensor; decomposition into structure functions.
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• The common feature of all the approaches is that they rely to some extent on
the factorization framework:

Q(x, µR) =

∫ 1

−1

dy

y
C

(

x

y
, µF , µR

)

q(y, µF ),
some lattice observable

• Two classes of approaches:

⋆ generalizations of light-cone functions; direct x-dependence,
⋆ hadronic tensor; decomposition into structure functions.

• Matrix elements: 〈N |ψ̄(z)ΓF (z)Γ′ψ(0)|N〉 with different choices of Γ,Γ′ Dirac
structures and objects F (z).

⋆ hadronic tensor – K.-F. Liu, S.-J. Dong, 1993
⋆ auxiliary scalar quark – U. Aglietti et al., 1998
⋆ auxiliary heavy quark – W. Detmold, C.-J. D. Lin, 2005
⋆ auxiliary light quark – V. Braun, D. Müller, 2007
⋆ quasi-distributions – X. Ji, 2013
⋆ “good lattice cross sections” – Y.-Q. Ma, J.-W. Qiu, 2014, 2017
⋆ pseudo-distributions – A. Radyushkin, 2017
⋆ “OPE without OPE” – QCDSF, 2017
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Theoretical idea

theoretical challenges lattice challenges

Exploratory studies

theoretical challenges lattice challenges

Advanced studies

theoretical challenges lattice challenges

Precision calculations

(N)qTMDs (N)qGPDs

(π)qDAs, (π)qPDFs, (N,π)qPDFs(g), (N)pPDFs

(N)htPDFs, (N)opePDFs, (π)ahqDAs

(π)alqDAs, (π)lcsDAs, (π)lcsPDFs

(N)qPDFs



Review of the field

Outline of the talk

Introduction

PDFs

Approaches

Quasi-PDFs

Renormalization

Matching

Procedure

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 8 / 54

• 97 pages, arXiv: 1811.07248 [hep-lat]
• invited review article for a special issue of Advances in High

Energy Physics
• discusses in detail quasi-distributions:

nucleon: non-singlet quark qPDFs, qGPDs, qTMDs, singlet
qPDFs, gluon qPDFs; pion: qPDFs, qDAs

• reviews also other approaches:
hadronic tensor, auxiliary scalar quark, auxiliary heavy quark,
auxiliary light quark, pseudo-distributions, “OPE without OPE”,
lattice cross sections
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• Quasi-PDF approach:
X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002
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• Quasi-PDF approach:
X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

• Compute a quasi distribution q̃, which is purely spatial and uses nucleons with
finite momentum:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.
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• Quasi-PDF approach:
X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

• Compute a quasi distribution q̃, which is purely spatial and uses nucleons with
finite momentum:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

• z – distance in any spatial direction z,

• P3 – momentum boost in this direction.

• e.g. Γ = γ0, γ3 – unpolarized, Γ = γ5γ3 – helicity,
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• Theoretically very appealing and intuitive!

• Differs from light-front PDFs by O

(

Λ2
QCD

P 2
3
,
m2

N

P 2
3

)

.
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• Quasi-PDF approach:
X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

• Compute a quasi distribution q̃, which is purely spatial and uses nucleons with
finite momentum:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

• z – distance in any spatial direction z,

• P3 – momentum boost in this direction.

• e.g. Γ = γ0, γ3 – unpolarized, Γ = γ5γ3 – helicity,
Γ = σ31, σ32 – transversity

• Theoretically very appealing and intuitive!

• Differs from light-front PDFs by O

(

Λ2
QCD

P 2
3
,
m2

N

P 2
3

)

.

• The highly non-trivial aspect:
how to relate q̃(x, µ2, P3) to the light-front PDF
q(x, µ2) (infinite momentum frame)
⇒ Large Momentum Effective Theory (LaMET)
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Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergences
that need to be removed:
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Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergences
that need to be removed:

• standard logarithmic divergence w.r.t. the regulator, log(aµ),
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Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergences
that need to be removed:

• standard logarithmic divergence w.r.t. the regulator, log(aµ),

• power divergence related to the Wilson line; resums into a
multiplicative exponential factor, exp (−δm|z|/a+ c|z|)
δm – strength of the divergence, operator independent,
c – arbitrary scale (fixed by the renormalization prescription).
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Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergences
that need to be removed:

• standard logarithmic divergence w.r.t. the regulator, log(aµ),

• power divergence related to the Wilson line; resums into a
multiplicative exponential factor, exp (−δm|z|/a+ c|z|)
δm – strength of the divergence, operator independent,
c – arbitrary scale (fixed by the renormalization prescription).

Proposed renormalization programme described in:
C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen,
H. Panagopoulos, F. Steffens, “A complete non-perturbative renormalization prescription
for quasi-PDFs”, Nucl. Phys. B923 (2017) 394-415 (invited Frontiers Article)

Important insights also from the lattice perturbative paper:
M. Constantinou, H. Panagopoulos, “Perturbative Renormalization of quasi-PDFs”, Phys.
Rev. D96 (2017) 054506
→ mixing of Γ = γ3 and Γ = 1, important guidance to non-pert. renormalization!
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Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergences
that need to be removed:

• standard logarithmic divergence w.r.t. the regulator, log(aµ),

• power divergence related to the Wilson line; resums into a
multiplicative exponential factor, exp (−δm|z|/a+ c|z|)
δm – strength of the divergence, operator independent,
c – arbitrary scale (fixed by the renormalization prescription).

Proposed renormalization programme described in:
C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen,
H. Panagopoulos, F. Steffens, “A complete non-perturbative renormalization prescription
for quasi-PDFs”, Nucl. Phys. B923 (2017) 394-415 (invited Frontiers Article)

Important insights also from the lattice perturbative paper:
M. Constantinou, H. Panagopoulos, “Perturbative Renormalization of quasi-PDFs”, Phys.
Rev. D96 (2017) 054506
→ mixing of Γ = γ3 and Γ = 1, important guidance to non-pert. renormalization!

Non-perturbative renormalization scheme: RI’-MOM.
G. Martinelli et al., Nucl. Phys. B445 (1995) 81
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RI’-MOM renormalization conditions (for cases without mixing):
for the operator:

Z−1
q ZO(z)

1

12
Tr

[

V(p, z)
(

VBorn(p, z)
)−1

]∣

∣

∣

p2=µ̄2
0

= 1 ,

for the quark field:

Zq =
1

12
Tr

[

(S(p))−1 SBorn(p)
]

∣

∣

∣

p2=µ̄2
0

.

• momentum p in the vertex function is set to the RI′ renormalization scale µ̄0

• V(p, z) – amputated vertex function of the operator,

• VBorn – its tree-level value, VBorn(p, z)=iγ3γ5 e
ipz for helicity,

• S(p) – fermion propagator (SBorn(p) at tree-level).

This prescription handles all divergences that are present and applies the
necessary finite renormalization related to the lattice regularization.
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To relate the quasi-PDFs to the usual PDFs, one uses the fact that the IR region of
the distributions is untouched when going from a finite to an infinite momentum. In
other words, if q(x, µ) is the usual PDF defined through light-cone correlations,
then one should have:
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To relate the quasi-PDFs to the usual PDFs, one uses the fact that the IR region of
the distributions is untouched when going from a finite to an infinite momentum. In
other words, if q(x, µ) is the usual PDF defined through light-cone correlations,
then one should have:

q(x, µ) = qbare(x)
{

1 +
αs

2π
ZF (µ)

}

+
αs

2π

∫ 1

x

q(1)(x/y, µ)qbare(y)
dy

y
+O(α2

s),

q̃(x, µ, P3) = qbare(x)
{

1 +
αs

2π
Z̃F (µ,P3)

}

+
αs

2π

∫ 1

x/xc

q̃(1)(x/y, µ, P3)qbare(y)
dy

y
+O(α2

s),

where: qbare – bare distribution, ZF , Z̃F – wave function corrections, q(1), q̃(1) –
vertex corrections.
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To relate the quasi-PDFs to the usual PDFs, one uses the fact that the IR region of
the distributions is untouched when going from a finite to an infinite momentum. In
other words, if q(x, µ) is the usual PDF defined through light-cone correlations,
then one should have:

q(x, µ) = qbare(x)
{

1 +
αs

2π
ZF (µ)

}

+
αs

2π

∫ 1

x

q(1)(x/y, µ)qbare(y)
dy

y
+O(α2

s),

q̃(x, µ, P3) = qbare(x)
{

1 +
αs

2π
Z̃F (µ,P3)

}

+
αs

2π

∫ 1

x/xc

q̃(1)(x/y, µ, P3)qbare(y)
dy

y
+O(α2

s),

where: qbare – bare distribution, ZF , Z̃F – wave function corrections, q(1), q̃(1) –
vertex corrections.

Explicit formulae for 1-loop perturbative matching:

• transverse momentum cutoff scheme to MS matching
X. Xiong et al., PRD 90 (2014) 014051

• MS → MS matching W. Wang, S. Zhao, R. Zhu, 1708.02458

• RI→ MS matching I.W. Stewart, Y. Zhao, 1709.04933, Y.-S. Liu et al., 1807.06566

• treatment of the UV log divergence in wave function corrections T. Izubuchi et al.,
1801.03917, C. Alexandrou et al., 1803.02685, 1807.00232
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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• fermions: Nf = 2 twisted mass fermions + clover term

• gluons: Iwasaki gauge action, β = 2.1

β=2.10, cSW=1.57751, a=0.0938(3)(2) fm

483 × 96 aµ = 0.0009 mN = 0.932(4) GeV

L = 4.5 fm mπ = 0.1304(4) GeV mπL = 2.98(1)

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001

C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press, arXiv: 1807.00232
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The Wilson twisted mass fermion action for the 2 light (u, d quarks) is given in the
so-called twisted basis by: [R. Frezzotti, P. Grassi, G.C. Rossi, S. Sint, P. Weisz, 2000-2004]

Sl[ψ, ψ̄, U ] = a4
∑

x

χ̄l(x)
(

DW +m0,l + iµlγ5τ3
)

χl(x),

• DW – Wilson-Dirac operator,

• m0,l and µl – bare untwisted and twisted light quark masses,

• χl = (χu, χd) – 2-component vector in flavor space; chiral rotation of standard
one: ψ = eiγ5τ3ω/2χ
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The Wilson twisted mass fermion action for the 2 light (u, d quarks) is given in the
so-called twisted basis by: [R. Frezzotti, P. Grassi, G.C. Rossi, S. Sint, P. Weisz, 2000-2004]

Sl[ψ, ψ̄, U ] = a4
∑

x

χ̄l(x)
(

DW +m0,l + iµlγ5τ3
)

χl(x),

• DW – Wilson-Dirac operator,

• m0,l and µl – bare untwisted and twisted light quark masses,

• χl = (χu, χd) – 2-component vector in flavor space; chiral rotation of standard
one: ψ = eiγ5τ3ω/2χ

• Maximal twist: ω = π/2 by tuning the PCAC mass to zero ⇒ automatic
O(a)-improvement.
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Smomψ(x) =
1

1 + 6α



ψ(x) + α
±3
∑

j=±1

Uj(x)e
iξĵψ(x+ ĵ)





G. Bali et al., Phys. Rev. D93, 094515 (2016)
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1

1 + 6α



ψ(x) + α
±3
∑

j=±1

Uj(x)e
iξĵψ(x+ ĵ)





G. Bali et al., Phys. Rev. D93, 094515 (2016)
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50 iterations of (Gaussian) momentum smearing, α = 4
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For each gauge field configuration, we use:
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For each gauge field configuration, we use:

• 6 directions of Wilson line: ±x,±y,±z
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For each gauge field configuration, we use:

• 6 directions of Wilson line: ±x,±y,±z

• 16 source positions:

⋆ 1 high precision (HP) inversion

⋆ 16 low precision (LP) inversions
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For each gauge field configuration, we use:

• 6 directions of Wilson line: ±x,±y,±z

• 16 source positions:

⋆ 1 high precision (HP) inversion

⋆ 16 low precision (LP) inversions

• Bias from the LP inversions corrected using the Covariant
Approximation Averaging technique (CAA)
E. Shintani et al., Phys. Rev. D91, 114511 (2015)
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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Plot by Jeremy Green, talk in the Lattice PDFs workshop, Maryland, April 2018

ETMC Nf = 2 + 1 + 1 ensemble, a ≈ 0.094 fm, Mπ ≈ 363 MeV, 243 × 48
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Plot by Jeremy Green, talk in the Lattice PDFs workshop, Maryland, April 2018

ETMC Nf = 2 + 1 + 1 ensemble, a ≈ 0.094 fm, Mπ ≈ 363 MeV, 243 × 48

Excited states clearly manifested as bare ME going below zero.
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Plot by Jeremy Green, plenary talk in LATTICE 2018, July 2018
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Plot by Jeremy Green, plenary talk in LATTICE 2018, July 2018

Excited states clearly enhanced at smaller pion masses.

Many excited states at the physical point!
Need to be suppressed by a source-sink separation for which

one-state and two-state fits agree.
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ETMC Nf = 2 + 1 + 1 ensemble,
a ≈ 0.094 fm, Mπ ≈ 298 MeV, 243 × 48

Excited states clearly enhanced at larger boosts.
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Statistics:

• ts = 8a – 4320 measurements,

• ts = 9a – 8820 measurements,

• ts = 10a – 9000 measurements,

• ts = 12a – 72990 measurements.
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Statistics:

• ts = 8a – 4320 measurements,

• ts = 9a – 8820 measurements,

• ts = 10a – 9000 measurements,

• ts = 12a – 72990 measurements.

Increasing ts by 1 lattice spacing
worsens the signal by a factor 2-3!
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R(P ; ts) ≡
∑ts−a

τ=a
C3pt(P ;ts,τ)
C2pt(Pi;ts)

=

= C +M ts +O
(

e−(E1−E0)ts
)
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C2pt(P ; t) = |A0|
2e−E0t + |A1|

2e−E1t

C3pt(P ; ts, τ) = |A0|
2〈0|O|0〉e−E0ts +A∗

0A1〈1|O|0〉e−E1τe−E0(ts−τ)

+ A0A
∗
1〈0|O|1〉e−E0τe−E1(ts−τ) + |A1|

2〈1|O|1〉e−E1ts



Excited states – 2-state fits

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 25 / 54

C2pt(P ; t) = |A0|
2e−E0t + |A1|

2e−E1t

C3pt(P ; ts, τ) = |A0|
2〈0|O|0〉e−E0ts +A∗

0A1〈1|O|0〉e−E1τe−E0(ts−τ)

+ A0A
∗
1〈0|O|1〉e−E0τe−E1(ts−τ) + |A1|

2〈1|O|1〉e−E1ts

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0  5  10  15  20

R
e
 h

u
-d

z/a

sequential 2-state ts=8a-12a
simultaneous 2-state ts=8a-12a

sequential 2-state ts=8a-10a
simultaneous 2-state ts=8a-10a

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

 0  5  10  15  20

Im
 h

u
-d

z/a

sequential 2-state ts=8a-12a
simultaneous 2-state ts=8a-12a

sequential 2-state ts=8a-10a
simultaneous 2-state ts=8a-10a



Excited states – comparison

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 26 / 54

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0  2  4  6  8  10  12

R
e
 h

u
-d

z/a

ts=8a
ts=9a

ts=10a
ts=12a

summation
2-state

-0.6

-0.4

-0.2

0.0

0.2

 0  2  4  6  8  10  12

Im
 h

u
-d

z/a

ts=8a
ts=9a

ts=10a
ts=12a

summation
2-state



Excited states – comparison

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 26 / 54

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 0  2  4  6  8  10  12

R
e
 h

u
-d

z/a

ts=8a
ts=9a

ts=10a
ts=12a

summation
2-state

-0.6

-0.4

-0.2

0.0

0.2

 0  2  4  6  8  10  12

Im
 h

u
-d

z/a

ts=8a
ts=9a

ts=10a
ts=12a

summation
2-state

• ts = 8a clearly off, excited states totally uncontrolled
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states at the ∼10% level.
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states at the ∼10% level.
• Robust statements about excited states because of consistency between all methods.
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• ts = 8a clearly off, excited states totally uncontrolled
• ts = 9a, 10a also show some tension
• ts = 12a ≈ 1.1 fm seems to be the best justifiable choice, i.e. it should be safe from excited

states at the ∼10% level.
• Robust statements about excited states because of consistency between all methods.
• Careful analysis needs to be repeated when aiming for larger momenta (increased excited

states contamination!) or better precision.
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• ts = 8a, 10a clearly off
• ts = 12a ≈ 1.1 fm safe at the ∼10% level.
• Robust statements about excited states because of consistency between all methods.
• Careful analysis needs to be repeated when aiming for larger momenta (increased excited

states contamination!) or better precision.
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Reaching 2.2 GeV @ Ts ≈ 0.75 fm pretty cheap – O(1) million CPUh
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Going to 3 GeV @ Ts ≈ 0.75 fm feasible – O(10) million CPUh.

BUT: definitely too large excited states contamination
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• Elimination of excited states must not be compromised – reaching
really large momenta extremely difficult if one takes excited
states seriously.
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• Elimination of excited states must not be compromised – reaching
really large momenta extremely difficult if one takes excited
states seriously.

• Note that the log-linear extrapolation of the cost is likely to
underestimate this cost.
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• Elimination of excited states must not be compromised – reaching
really large momenta extremely difficult if one takes excited
states seriously.

• Note that the log-linear extrapolation of the cost is likely to
underestimate this cost.

• Momentum smearing technique is extremely useful, but it does
not kill the exponential signal-to-noise problem.



Conclusion from this

Outline of the talk

Introduction

Results

Lattice setup

TM fermions

Techniques

Computation setup

Bare ME

Dispersion relation

Renormalization

Matching

Matched PDFs

TMCs

Final PDFs

Systematics

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 32 / 54

• Elimination of excited states must not be compromised – reaching
really large momenta extremely difficult if one takes excited
states seriously.

• Note that the log-linear extrapolation of the cost is likely to
underestimate this cost.

• Momentum smearing technique is extremely useful, but it does
not kill the exponential signal-to-noise problem.

• It moves it to somewhat higher momenta:

⋆ without it, momentum 0.8-0.9 GeV at Ts ≈ 1.1 fm becomes
the borderline (tens of million CPUh),

⋆ with it, the same cost makes 1.4-1.5 GeV reachable.
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• Elimination of excited states must not be compromised – reaching
really large momenta extremely difficult if one takes excited
states seriously.

• Note that the log-linear extrapolation of the cost is likely to
underestimate this cost.

• Momentum smearing technique is extremely useful, but it does
not kill the exponential signal-to-noise problem.

• It moves it to somewhat higher momenta:

⋆ without it, momentum 0.8-0.9 GeV at Ts ≈ 1.1 fm becomes
the borderline (tens of million CPUh),

⋆ with it, the same cost makes 1.4-1.5 GeV reachable.

• Key aspect for the future: how to tackle the signal-to-noise
problem at safe source-sink separations.
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.

• Hence, we mildly smoothen the divergence by applying stout
smearing only to the Wilson line.
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.

• Hence, we mildly smoothen the divergence by applying stout
smearing only to the Wilson line.

• We test:

⋆ 5 stout smearing steps
⋆ 10 stout smearing steps
⋆ 15 stout smearing steps
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.

• Hence, we mildly smoothen the divergence by applying stout
smearing only to the Wilson line.

• We test:

⋆ 5 stout smearing steps
⋆ 10 stout smearing steps
⋆ 15 stout smearing steps

• This influences both bare matrix elements and the values of
Z-factors.
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.

• Hence, we mildly smoothen the divergence by applying stout
smearing only to the Wilson line.

• We test:

⋆ 5 stout smearing steps
⋆ 10 stout smearing steps
⋆ 15 stout smearing steps

• This influences both bare matrix elements and the values of
Z-factors.

• But: renormalized matrix elements should be independent of the
number of stout steps!
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.

• Hence, we mildly smoothen the divergence by applying stout
smearing only to the Wilson line.

• We test:

⋆ 5 stout smearing steps
⋆ 10 stout smearing steps
⋆ 15 stout smearing steps

• This influences both bare matrix elements and the values of
Z-factors.

• But: renormalized matrix elements should be independent of the
number of stout steps!

• Note: we do not apply it to the Dirac operator – potentially
dangerous procedure and difficult to check.
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Important self-consistency check for the renormalization procedure!
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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Nucleon momentum 10π
48

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
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Matching to light-front PDFs (unpolarized, helicity)
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The matching formula can be expressed as:

q(x, µ) =

∫ ∞

−∞

dξ

|ξ|
C

(

ξ,
µ

xP3

)

q̃

(

x

ξ
, µ, P3

)

C – matching kernel: [C. Alexandrou et al., arXiv:1803.02685 [hep-lat]]
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The matching formula can be expressed as:

q(x, µ) =

∫ ∞

−∞

dξ

|ξ|
C

(

ξ,
µ

xP3

)

q̃

(

x

ξ
, µ, P3

)

C – matching kernel: [C. Alexandrou et al., arXiv:1803.02685 [hep-lat]]

C

(

ξ,
ξµ

xP3

)

= δ(1− ξ) +
αs

2π
CF
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ln

ξ
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3
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]

+
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ln

x2P 2
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ξ2µ2
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]

+
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−1 + ξ2

1− ξ
ln

ξ

ξ − 1
− 1 +

3

2(1− ξ)

]

+

ξ < 0,

ι=0 for γ0 and ι=1 for γ3/γ5γ3.

Plus prescription at ξ=1:
∫

dξ

|ξ|

[

C

(

ξ,
ξµ

xP3

)]

+

q̃

(

x

ξ

)

=

∫

dξ

|ξ|
C

(

ξ,
ξµ

xP3

)

q̃

(

x

ξ

)

−q̃ (x)

∫

dξ C

(

ξ,
µ

xP3

)

.
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Alternative matching: [T. Izubuchi et al., Phys. Rev. D98 (2018) 056004]
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αs

2π
CF
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Alternative matching: [T. Izubuchi et al., Phys. Rev. D98 (2018) 056004]
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= δ(1− ξ) +
αs

2π
CF
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][1,∞]
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0 < ξ < 1

[
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ln
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2(1− ξ)
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+
αsCF

2π
δ(1− ξ)

(

3

2
ln

µ2

4y2P 2
3

+
5

2

)

violates particle number conservation:
∫

∞

−∞

dx q(x, µ) 6=
∫

∞

−∞

dx q̃(x, µ, P3) and

∫

∞

−∞

dξ C(ξ, ξµ/xP3) 6= 1,

which increases with growing P3 (around 8% at P3 = 10π/48).
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Alternative matching: [T. Izubuchi et al., Phys. Rev. D98 (2018) 056004]
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ln
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)

violates particle number conservation:
∫

∞

−∞

dx q(x, µ) 6=
∫

∞

−∞

dx q̃(x, µ, P3) and

∫

∞

−∞

dξ C(ξ, ξµ/xP3) 6= 1,

which increases with growing P3 (around 8% at P3 = 10π/48).

In our procedure, particle number is conserved. This amounts to a modification of
the MS scheme; modification decreases with growing P3.



Modification of the MS scheme
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We introduce a modified MS scheme (MMS) with an extra subtraction made outside the physical
region of the unintegrated vertex corrections.
This renormalizes the ξ-dependence for ξ > 1 and ξ < 0.
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We introduce a modified MS scheme (MMS) with an extra subtraction made outside the physical
region of the unintegrated vertex corrections.
This renormalizes the ξ-dependence for ξ > 1 and ξ < 0.

Z̃MMS
Γ
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αs

2π
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2
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1

ξ
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−
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We introduce a modified MS scheme (MMS) with an extra subtraction made outside the physical
region of the unintegrated vertex corrections.
This renormalizes the ξ-dependence for ξ > 1 and ξ < 0.

Z̃MMS
Γ
γ0

(ξ) = 1−
αs

2π
CF

3

2

(

−
1

ξ
θ(ξ − 1)−

1

1− ξ
θ(−ξ)

)

−
αsCF
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δ(1− ξ)

(
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2
ln
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+

5

2

)

In z-space:

ZMMS
Γ
γ0

(zµ) = 1−
αs

2π
CF

(

3

2
ln

(

1

4

)

+
5

2

)

+
3

2

αs

2π
CF

(

iπ
|zµ|

2zµ
− Ci(zµ) + ln(zµ)− ln(|zµ|)− iSi(zµ)

)

−
3

2

αs

2π
CF e

izµ

(

2Ei(−izµ)− ln(−izµ) + ln(izµ) + iπSign(zµ)

2

)

.
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We introduce a modified MS scheme (MMS) with an extra subtraction made outside the physical
region of the unintegrated vertex corrections.
This renormalizes the ξ-dependence for ξ > 1 and ξ < 0.

Z̃MMS
Γ
γ0

(ξ) = 1−
αs

2π
CF
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2

(

−
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)

−
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)

In z-space:

ZMMS
Γ
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2π
CF
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(
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)

−
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2
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(

2Ei(−izµ)− ln(−izµ) + ln(izµ) + iπSign(zµ)

2

)

.

The above has to modify the conversion factor, i.e. the conversion will be RI→ MS → MMS.
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We introduce a modified MS scheme (MMS) with an extra subtraction made outside the physical
region of the unintegrated vertex corrections.
This renormalizes the ξ-dependence for ξ > 1 and ξ < 0.

Z̃MMS
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+
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(
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)

−
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2
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CF e

izµ

(

2Ei(−izµ)− ln(−izµ) + ln(izµ) + iπSign(zµ)

2

)

.

The above has to modify the conversion factor, i.e. the conversion will be RI→ MS → MMS.
Consistency check: z → 0 limit:

ZMMS
Γ
γ0

(z → 0) = 1−
αsCF

2π

(

3

2
ln

(

µ2z2e2γE

4

)

+
5

2

)

= ZRatio
Γ
γ0

(zµ)



Modification of the MS scheme

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 43 / 54

We introduce a modified MS scheme (MMS) with an extra subtraction made outside the physical
region of the unintegrated vertex corrections.
This renormalizes the ξ-dependence for ξ > 1 and ξ < 0.

Z̃MMS
Γ
γ0

(ξ) = 1−
αs

2π
CF
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2
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−
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−
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−
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(

2Ei(−izµ)− ln(−izµ) + ln(izµ) + iπSign(zµ)

2

)

.

The above has to modify the conversion factor, i.e. the conversion will be RI→ MS → MMS.
Consistency check: z → 0 limit:

ZMMS
Γ
γ0

(z → 0) = 1−
αsCF

2π

(

3

2
ln

(

µ2z2e2γE

4

)

+
5

2

)

= ZRatio
Γ
γ0

(zµ)

Exactly cancels the divergence in ln(z) present in MS!
(consistency with: M. Constantinou, H. Panagopoulos, Phys. Rev. D96 (2017) 054506
and with the “Ratio” scheme of T. Izubuchi et al., Phys. Rev. D98 (2018) 056004)
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Recently we derived the matching formula for transversity PDFs (MS −→ MS):
[C. Alexandrou et al., arXiv:1807.00232 [hep-lat]]

δC

(

ξ,
ξµ

xP3

)

= δ(1− ξ) +
αs

2π
CF
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+
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ξ
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+
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)
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]

+

0 < ξ < 1,
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− 2ξ

1− ξ
ln

ξ

ξ − 1
+

2

1− ξ

]

+

ξ < 0,

Formula for the transverse momentum cutoff scheme derived in: [X. Xiong et al., Phys. Rev. D 90, 014051]
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Recently we derived the matching formula for transversity PDFs (MS −→ MS):
[C. Alexandrou et al., arXiv:1807.00232 [hep-lat]]
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]

+
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ln

ξ

ξ − 1
+

2
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]

+

ξ < 0,

Formula for the transverse momentum cutoff scheme derived in: [X. Xiong et al., Phys. Rev. D 90, 014051]

Similar modification of the conversion factor as above, i.e.:

• the conversion is RI→ MS → MMS,
• the matching is MMS → MS.
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Nucleon momentum 10π
48

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
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Matched PDFs

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 45 / 54

Nucleon momentum 10π
48

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001



Step 7

Outline of the talk

Introduction

Results

Lattice setup

TM fermions

Techniques

Computation setup

Bare ME

Dispersion relation

Renormalization

Matching

Matched PDFs

TMCs

Final PDFs

Systematics

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 46 / 54

The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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In the infinite momentum frame, nucleon mass does not matter, i.e.
mN/P3 = 0.

Here, we work with nucleon boosted to finite momentum P3 and we
need to correct for mN/P3 6= 0.

We use formulae derived in:
[J.W. Chen et al., Nucl.Phys. B911 (2016) 246-273, arXiv:1603.06664 [hep-ph]]

Important feature: particle number is conserved in nucleon mass
corrections.
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Nucleon momentum 10π
48

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
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Nucleon momentum 10π
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C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
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transversity
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Nucleon momentum 10π
48

unpolarized helicity

transversity

As expected, the effect is very small
(modification of MS only

in unphysical regions)



Momentum dependence of final PDF
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Nucleon momenta {6,8,10}π
48

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
+ effect from MMS

Unpolarized PDF
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Nucleon momenta {6,8,10}π
48

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
+ effect from MMS

Unpolarized PDF Helicity PDF
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Physical vs. non-physical pion mass – 135 vs. 375 MeV
unpolarized PDF

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
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Biggest challenge:
Reach large momenta at large source-sink separations



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!

• Very encouraging results and already agreement with pheno for a
range of x values.



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.

• We need to be slow and careful, go one step at a time.



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.

• We need to be slow and careful, go one step at a time.

• There will always be room for improvement of precision and given
the importance of the subject, a better precision will always be
desired.



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.

• We need to be slow and careful, go one step at a time.

• There will always be room for improvement of precision and given
the importance of the subject, a better precision will always be
desired.

• In the future: also other kinds of structure functions: GPDs,
TMDs, gluon PDFs etc.



Conclusions and prospects

Outline of the talk

Introduction

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Taipei – 27.11.2018 – 54 / 54

C. Alexandrou et al., Phys. Rev. Lett. 121 (2018) 112001
C. Alexandrou et al., Phys. Rev. D (Rapid Communications), in press,
arXiv: 1807.00232 [hep-lat]

• First computations of the full Bjorken-x dependence of
PDFs from first principles at a physical pion mass are
available!

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.

• We need to be slow and careful, go one step at a time.

• There will always be room for improvement of precision and given
the importance of the subject, a better precision will always be
desired.

• In the future: also other kinds of structure functions: GPDs,
TMDs, gluon PDFs etc.

Thank you for your attention!
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Standard Fourier transform defining qPDFs: q̃(x) = 2P3

∫ zmax

−zmax

dz
4π

eixzP3h(z)

can be rewritten using integration by parts as: [H.W. Lin et al., arXiv:1708.05301]

q̃(x) = h(z)
eixzP3

2πix

∣

∣

∣

zmax

−zmax

−

∫ zmax

−zmax

dz

2π

eixzP3

ix
h′(z).

Truncation: h(|z| ≥ zmax) = 0 is equivalent to neglecting the surface term.

aP3 =
10π
48

Oscillations ✓ Small-x ✗
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