Primordial Black Holes in Inflation

Kin-Wang Ng (吳建宏)

Institute of Physics & Institute of Astronomy and Astrophysics Academia Sinica, Taiwan

Annual Theory Meeting 2018 National Tsinghua University, Hsinchu Dec 17-20, 2018

Collaborators: Wolung Lee (NTNU) Shu-Lin Cheng (NTNU)

Primordial Black Holes

- Formed at high-density contrasts (δρ/ρ~0.5) over a wide range of scales or masses in the radiation-dominated Universe
- There have been stringent astrophysical and cosmological constraints on M_{PBH}
- 10M_☉PBHs could be the binary BHs observed by aLIGO gravity-wave detectors

Bird et al. 16., Clesse et al. 16, Sasaki et al. 16

• PBHs behave like cold dark matter

García-Bellido, Linde, Wands 96

• They, although being of baryonic origin, do not participate in big-bang nucleosynthesis

Astrophysical and Cosmological Constraints on PBHs

PBH Production in Inflation

- Single-field slow-roll inflation models, matter density perturbation ($\delta \rho / \rho \sim 10^{-5}$) too small
- Modified inflation potential to achieve blue-tilted matter power spectra or running spectral indices, leading to large density perturbation at the end of inflation, but mostly M_{PBH}<< M_☉ García-Bellido, Linde, Wands 96
- To boost M_{PBH}, hybrid inflation, double inflation, curvaton models by inflating small-scale density perturbation to the size of a stellar-mass to supermassive PBH Kawasaki, Kohri, Yokoyama, Yanagida....
- Inflation with an inflecton point Garcia-Bellido, Morales,...
- Trapped inflation Peloso, Unal, Ng+,...

Trapped axion Inflation

We consider a version of the trapped inflation driven by a pseudoscalar φ that couples to a U(1) gauge field A_{μ} :

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{\alpha}{4f} \varphi \tilde{F}^{\mu\nu} F_{\mu\nu} \right], \qquad (3)$$

$$\varphi = \phi(\eta) + \delta \varphi(\eta, \vec{x})$$

$$d\eta = dt/a$$

 $k/(aH) < 2|\xi|$

Spinoidal

instability

Under the temporal gauge, $A_{\mu} = (0, \vec{A})$, we decompose $\vec{A}(\eta, \vec{x})$ into its right and left circularly polarized Fourier modes, $A_{\pm}(\eta, \vec{k})$, whose equation of motion is then given by

$$\left[\frac{d^2}{d\eta^2} + k^2 \mp 2aHk\xi\right] A_{\pm}(\eta,k) = 0, \quad \xi \equiv \frac{\alpha}{2fH} \frac{d\phi}{dt}.$$
 (5)

$$\begin{split} &\frac{d^2\phi}{dt^2} + 3H\frac{d\phi}{dt} + \frac{dV}{d\phi} = \frac{\alpha}{f}\langle \vec{E}\cdot\vec{B}\rangle,\\ &3H^2 = \frac{1}{M_p^2}\left[\frac{1}{2}\left(\frac{d\phi}{dt}\right)^2 + V(\phi) + \frac{1}{2}\langle \vec{E}^2 + \vec{B}^2\rangle\right] \end{split}$$

$$\begin{split} \langle \vec{E} \cdot \vec{B} \rangle &\simeq -2.4 \cdot 10^{-4} \frac{H^4}{\xi^4} \, \mathrm{e}^{2\pi\xi}, \\ \left\langle \frac{\vec{E}^2 + \vec{B}^2}{2} \right\rangle &\simeq 1.4 \cdot 10^{-4} \frac{H^4}{\xi^3} \, \mathrm{e}^{2\pi\xi}. \end{split} \quad \frac{1}{2} \langle \vec{E}^2 + \vec{B}^2 \rangle = \int \frac{dk \, k^2}{4\pi^2 a^4} \sum_{\lambda = \pm} \left(\left| \frac{dA_\lambda}{d\eta} \right|^2 + k^2 |A_\lambda|^2 \right), \\ \langle \vec{E} \cdot \vec{B} \rangle &= -\int \frac{dk \, k^3}{4\pi^2 a^4} \frac{d}{d\eta} \left(|A_+|^2 - |A_-|^2 \right). \end{split}$$

Background

 $\beta \equiv 1 - 2\pi\xi \frac{\alpha}{f} \frac{\langle \vec{E} \cdot \vec{B} \rangle}{3H(d\phi/dt)}$

$$\frac{\text{Perturbation}}{\left[\frac{\partial^2}{\partial t^2} + 3\beta H \frac{\partial}{\partial t} - \frac{\vec{\nabla}^2}{a^2} + \frac{d^2 V}{d\phi^2}\right] \delta\varphi(t, \vec{x}) = \frac{\alpha}{f} \left(\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle\right)$$

$$\delta \varphi = \frac{\alpha}{3\beta f H^2} \left(\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle \right)$$

 $\Delta_{\zeta}^2(k) = \langle \zeta(x)^2 \rangle = \frac{H^2 \langle \delta \varphi^2 \rangle}{(d\phi/dt)^2} = \left[\frac{\alpha \langle \vec{E} \cdot \vec{B} \rangle}{3\beta f H (d\phi/dt)} \right]^2$

e.g. Trapped axion inflation with a steep potential Cheng, Lee, Ng 16

all rescaled by M_p

PBH Associated Gravitational Waves in Inflation

 $\left[\frac{\partial^2}{\partial \eta^2} + \frac{2}{a}\frac{da}{d\eta}\frac{\partial}{\partial \eta} - \vec{\nabla}^2\right]h_{ij} = 0 \qquad \text{Free gravitational wave equation}$

De Sitter vacuum fluctuations during inflation lead to almost scale-invariant primordial gravitational waves

$$\Delta_{\zeta^2} = \langle \zeta \zeta \rangle = (\delta \rho / \rho)^2 \sim 10^{-10}$$

 $\left[\frac{\partial^2}{\partial\eta^2} + \frac{2}{a}\frac{da}{d\eta}\frac{\partial}{\partial\eta} - \vec{\nabla}^2\right]h_{ij} = \mathbf{GT}_{ij}$

Sources due to transverse traceless part of 2nd density perturbation $\zeta\zeta$

$$\Delta_{\zeta^2} = \langle \zeta \zeta \rangle = (\delta \rho / \rho)^2 \sim 10^{-3}$$

Associated Gravitational Waves in Trapped Inflation

Production of PBHs realized in axion monodromy inflation with sinusoidal modulations

GWs associated with PBHs in modulated axion inflation

Broader spectrum of PBHs and GWs in other inflation models

How many and how big PBHs from Inflation

Broad vs narrow spectrum

Super-horizon curvature perturbation growth

∆N duration of super-horizon growth

At horizon-crossing, limited by a successful inflation

Super-horizon growth Casuality $\implies \eta > -6$ Cheng+ 18

Biggest PBH with $M_{BH} \sim 10-100 M_{\odot}$

