

NCTS Annual Theory Meeting, Dec 18th, 2018

Kai-Feng Chen National Taiwan University RECENT HIGHLIGHTS FROM THE LHC EXPERIMENTS

LHC 2018: Thanks for all the data

- LHC has produced 3 years of high luminosity collisions at 13 TeV and result in ~160 fb⁻¹ in total at the end of the 2018 operation.
 - In 2018 the maximum peak luminosity keeps around 2×10^{34} cm⁻² s⁻¹ with mean pileup interactions around 40.
 - Exceeded peak designed luminosity by a FACTOR OF TWO!
 - Thanks to the rapid turn-around between the fills, The availability of LHC is also much higher than the expectation, with >50% of the time in stable operation.

WILL TAKE A WHILE TO DIGEST ALL THE DATA!

Most of the analyses to date only use the data collected up to 2016, with some exceptional cases go to 2017. *Will have to wait a little bit longer!*

Higgs: What We Have Learned in Run-1?

We know its *existence*, and quite a few properties!

Continue to look for more: (un)expected decays/couplings, multi-Higgs, charged Higgs, anything heavier, etc.

Reminder: Higgs Production & Decay

Run-1 Legacy: CMS+ATLAS Combination

nature

Physics paper sets record with more

50

Detector teams at the Large Hadron Collider collisions

NATURE | NEWS

than 5,000 authors

Almost all of the properties of the newly discovered boson consist with the SM expectations:

> Global signal strength: $\mu = 1.09 \pm 007_{(stat)} \pm 0.04_{(expt)} \pm 0.03_{(thbgd)} \pm 0.07_{-0.06}_{-0.06}$

The Run-I Legacy Paper: JHEP 1608 (2016) 045 w/ 5153 authors, cited by >800 times already.

Search for ttH Production

A probe to the top-Higgs coupling:

- through the gluon fusion process, assumes no BSM particles running in the loop
- through the associated ttH production directly at the tree level.

M Good at Run-2: cross section increases by **3.9x**.

Higgs decay	Branching fraction	Reconstruct top pair in all possible				
H→bb	58%	channel, with $\dot{H} \rightarrow bb/\tau\tau$ in addition.				
Η→ττ	6.3%	Complex multilepton final state,				
H→ZZ	2.6%	look for 2-4 leptons + 2 jets				
H→WW	22%	(and b-tagged jet)				
Η→γγ	0.23%	Low branching fraction but with narrow $H \rightarrow \gamma \gamma$ peak.				

CMS ttH Results

CMS study of ttH production with combining of all accessible Higgs decays and full run1 + 2016 run2 data.

Observation of ttH production:

Ref. PRL 120 (2018) 231801

The found excess at Run-1 did not continue at Run-2; now the result is quite SM-like.

Combined result: $\mu = 1.26^{+0.31}_{-0.26}$ (7+8+13 TeV) obs. (exp.) significance: 5.2 σ (4.2 σ)

ATLAS ttH Results

- ATLAS measure ttH production with 13 TeV 2016 (and 2017) data, and combining with Run-1 samples for the discovery significance.
- Observation of ttH production. Mild excess but still agrees with SM expectations.

Ref. PLB 784 (2018) 173

 $\mu = 1.32^{+0.28}_{-0.26} \text{ (13 TeV only)}$ obs. (exp.) significance: 5.8 σ (4.9 σ) +Run1: 6.3 σ (5.1 σ)

An ATLAS ttH $(H \rightarrow \gamma \gamma)$ candidate with a yy pair, I electron, 4 jets (I b-tag jet) $M(\gamma\gamma) = 125.3 \text{ GeV}$

EXPERIM

Measurement of H→bb Decay

- The decay with the largest branching fraction but it is also a very difficult channel.
- Main challenge from the MASSIVE
 bb background from QCD
 processes, ~10³ times to the signal in the target mass region.
- Choose the production signature associated with a W or Z, a.k.a. the VH production to reduce the background.
- Meavily rely on b-tagging and multivariate analysis, too!

ATLAS H→bb Result

Ref. PLB 786 (2018) 59

Sgl. Strength modifiers

- ATLAS study of $H \rightarrow b\bar{b}$: Multivariate analysis in 0,1 and 2 lepton channels.
- Cross-checked with diboson VZ; result consists with SM (μ =1.20+0.20/-0.18).
- Combined with other production processes: observation of H→bb; combined with other Higgs decays: observation of VH production.

- Data

tť

-2

-1.5

-1

-0.5

log (S/B)

Z+jets

W+jets

Single top

Multijet

Diboson

VH, H \rightarrow bb (μ =1.16)

VH, H→bb (run1+2016+2017) $\mu = 0.98 + 0.22 = 0.21$ obs. (exp.) significance: 4.8σ (4.9σ) Combined with VBF/ggF/ttH, $H \rightarrow b\bar{b}$ $\mu = 1.01 \pm 0.20$ obs. (exp.) significance: 5.4σ (5.5σ) Combined w / other Run-2 VH analyses $\mu = 1.13^{+0.24}$ obs. (exp.) significance: 5.3σ (4.8σ)

CMS H→bb Result

- 3 reconstructed channels (0/1/2 leptons) with improved b-tagging and new b-jet energy regression.
- ♦ Cross checked with VZ(→ $b\bar{b}$), consistent with SM (µ=1.05±0.22).
- ♦ Nearly observation of VH production; combined with other processes confirm the observation of H→bb̄ with full Run1+2016(+2017) data sets.

Sgl. Strength modifiers

Ref. PRL 121 (2018) 121801

VH, H \rightarrow b \bar{b} (run1+2016+2017) μ =1.01 ± 0.22 obs. (exp.) significance: 4.8 σ (4.9 σ) Combined with other productions μ =1.04 ± 0.20 obs. (exp.) significance: 5.6 σ (5.5 σ)

A CMS ZH (H→bb) candidate event collected in 2017

An ATLAS WH ($W \rightarrow \mu \nu$, $H \rightarrow bb$) candidate event collected in 2017

Remark: these events are just "candidates", since there are still lots of background!

More Higgs Studies

How about Higgs coupling to the second generation?

𝔅 MS search of H→μ⁺μ⁻ with Run1+2016 data:

BF(H \rightarrow µ⁺µ⁻) < 6.4 × 10⁻⁴ or µ < 2.92 @ 95% C.L.

> Ref. arXiv:1807.06325 submitted to PRL

More Higgs Studies (cont.)

How about something more exotic?

> BF(H→ $\phi\gamma$) < 4.8 × 10⁻⁴ BF(H→ $\varrho\gamma$) < 8.8 × 10⁻⁴ BF(Z→ $\phi\gamma$) < 0.9 × 10⁻⁶ BF(Z→ $\varrho\gamma$) < 2.5 × 10⁻⁵

Ref. JHEP 07 (2018) 127

CMS search of H→invisible with 2016 data:

BF(H→invisible) < 26% and constraints to Higgsportal models of DM

> Ref. arXiv:1809.05937 submitted to PLB

Combination @ 13 TeV

 Combination of all Higgs production and decay channels at 13 TeV and check the overall consistency of the couplings:

Ref. ATLAS-CONF-2018-031

ATLAS global strength: $\mu=1.13^{+0.09}_{-0.08}$

arXiv:1809.10733, sub. to EPJC

CMS global strength: $\mu = 1.17 \pm 0.10$

Results are in agreement with the SM still!

TASK

Discovery of the boson itself Observation of ggF production Observation of $H \rightarrow ZZ^*$ decay Observation of $H \rightarrow \gamma \gamma$ decay Observation of $H \rightarrow WW^*$ decay Observation of VBF production Observation of $H \rightarrow \tau \tau$ decay Observation of ttH production Observation of $H \rightarrow bb$ decay Observation of VH production H→µµ decay ????

What's the next?

Higgs Checklist

The Higgs Boson is still pretty much SM-like so far!

And the excesses fade away with more data ...

- Only 6 years since the discovery we already observed / tested many Higgs decays and properties!
- W However the Higgs boson is still very unique and requires a lot of further tests, in particular those properties associated with electroweak symmetry breaking...

Top Physics @ LHC

- **M** Precision measurement of top cross section.
 - Top (pair/single) production rate at high center of mass energy.

g

0000

Top cross section at LHC

is ~0.8 nb, not too far

from Y(4S) at B-factory

(1.2 nb)!

00000

g 70000

g 00000

q

a

- A Large top production rate at LHC A TOP QUARK FACTORY
 - Use top quark as a calibration source (*e.g., a very clean source of b-jet*).
 - High precision determination of top quark mass.
 - Test of spin/polarization, asymmetries, etc.
 - Probing electroweak couplings and top rare decays.
- New physics heavier than the top quark
 - Heavy new particles decay with (high-p_T) top in the final state.

>120 M top quark pairs have been produced in LHC Run-2!

State of Arts: tī Production

Best single channel measurements at 13 TeV: Ref. PLB 761 (2016) 136 ATLAS eµ w / 3.2 fb⁻¹ 818 ±8(stat) ±27(syst) ±19(lumi) pb Ref. CMS-PAS TOP-I7-00I CMS eµ w / 36 fb⁻¹ 803 ±2(stat) ±25(syst) ±20(lumi) pb

NNLO+NNLL calculation: $(m_{top} = 172.5 \text{ GeV})$

Must go differential!

 $832 \pm 29_{(scale)} \pm 35_{(PDF)} \pm 23_{(mass)} pb$

Experimental precision (*totally systematic dominant*!) reached ~4%; theory precision is around 6%.

tt Differential Cross Sections

State of Arts: Top Mass

ATLAS+CMS Preliminary m_{top} summary, $\sqrt{s} = 7-13$ TeV November 2018 LHC*top*WG World comb. (Mar 2014) [2] total stat stat total uncertainty mton ± total (stat ± syst) √s Ref. LHC comb. (Sep 2013) LHCtopWG $173.29 \pm 0.95 \; \textbf{(0.35 \pm 0.88)}$ 7 TeV [1] World comb. (Mar 2014) $173.34 \pm 0.76 \ (0.36 \pm 0.67)$ 1.96-7 TeV [2] ATLAS, I+jets 172.33 ± 1.27 (0.75 ± 1.02) 7 TeV [3] 173.79 ± 1.41 (0.54 ± 1.30) ATLAS, dilepton 7 TeV [3] ATLAS, all jets 175.1 ± 1.8 (1.4 ± 1.2) 7 TeV [4] ATLAS, single top $172.2 \pm 2.1 \ (0.7 \pm 2.0)$ 8 TeV [5] 172.99 ± 0.85 (0.41 ± 0.74) ATLAS, dilepton 8 TeV [6] ATLAS, all jets $173.72 \pm 1.15 (0.55 \pm 1.01)$ 8 TeV [7] ATLAS, I+jets 172.08 ± 0.91 (0.39 ± 0.82) 8 TeV [8] ATLAS comb. (Oct 2018) 172.69 ± 0.48 (0.25 ± 0.41) 7+8 TeV [8] $173.49 \pm 1.06 \ (0.43 \pm 0.97)$ CMS, I+jets 7 TeV [9] 172.50 ± 1.52 (0.43 ± 1.46) CMS, dilepton 7 TeV [10] CMS, all jets 173.49 ± 1.41 (0.69 ± 1.23) 7 TeV [11] CMS, I+jets 172.35 ± 0.51 (0.16 ± 0.48) 8 TeV [12] 172.82 ± 1.23 (0.19 ± 1.22) CMS, dilepton 8 TeV [12] CMS, all jets 172.32 ± 0.64 (0.25 ± 0.59) 8 TeV [12] CMS, single top 172.95 ± 1.22 (0.77 ± 0.95) 8 TeV [13] CMS comb. (Sep 2015) $172.44 \pm 0.48 (0.13 \pm 0.47)$ 7+8 TeV [12] CMS, I+jets 172.25 ± 0.63 (0.08 ± 0.62) 13 TeV [14] CMS, dilepton 172.33 ± 0.70 (0.14 ± 0.69) 13 TeV [15] CMS, all jets 172.34 ± 0.79 (0.20 ± 0.76) 13 TeV [16] [13] EPJC 77 (2017) 35 [14] arXiv:1805.01428 arXiv:1403 4427 B Fur Phys. J C75 (2015) 33 [15] CMS PAS TOP-17-001 [16] CMS PAS TOP-17-008 165 170 175 180 185 m_{top} [GeV]

"Classical methods" are all systematic dominant already!

Alternative methods (e.g. with kinematical endpoint, b-hadron lifetime, etc) are not yet very accurate, but can have some potential improvement with the upcoming statistics.

Ref. EPJC 78 (2018) 891

ATLAS 7+8 TeV combine 172.69 ± 0.25 ± 0.41 GeV

Ref. arXiv:1810.01772, submitted to EPJC

CMS 7+8 TeV combine 172.44 ± 0.13 ± 0.47 GeV

Ref. PRD 93 (2016) 072004

α_s, m_t^{pole} & PDF

- New result from CMS: based on triple-differential measurements of tt cross section in m(tt), y(tt), and # of additional jets at 13 TeV:
 - Extract the strong coupling strength α_s and top pole mass with external PDFs.
 - Or a simultaneous fit to PDFs,
- **HERA** α_s , and pole m_t the t \overline{t} data **only** have a significant impact on the gluon PDF at large x!

Ref. CMS-PAS-TOP-18-004

Observation of tZq

- Single top quark in association with a Z boson is observed with CMS 2016+2017 77 fb⁻¹ data.
- Based on a very clean trilepton+b-jet events + BDT analysis for background discrimination with $|M(\ell^+\ell^-)-M_Z| < 15$ GeV.

CMS Preliminary

l tZa

tt/tX

• Data

WZ

Xγ^(*)

Nonprompt e/u

tīZ

Events / 0.13

Data/Pred

00

Ref. CMS-PAS-TOP-18-008

agree with NLO calculation: 94.2 ±3.1 fb CMS Preliminary 77.4 fb⁻¹ (13 TeV) Data tZq

tZq Production and Others

ATLAS search of tZq with 2016 data. Look for 3-leptons + 2 jets (1-b-tagged);

final discriminant with NN.

Just a little bit shy from 50!

 $\sigma = 600 \pm 170 \pm 140 \text{ fb}$ obs. (exp.) significance: 4.2σ (5.4σ)

Ref. PLB 780 (2018) 557

 $\sigma = 115 \pm 17 \pm 30 \text{ fb}$ obs. significance: 4.4σ

Ref. PRL 121, 221802 (2018)

- CMS search of single $t+\gamma$ with 2016 data.
- \ll Look for $\mu + \gamma + 2$ jets (1-b-tagged); final discriminant with BDT.

Top Spin Correlations

- Spins of top pairs are strongly correlated at the production:
 - Low M(tt): RR/LL dominate
 - High M(tt): RL/LR dominate
- Top quark decays before hadronization; spin information transferred to daughter particles.
- SM-extended models can modify spin polarization and correlation of top quarks though *new mediator* or *new heavy particle decay to top*.
 - An excellent probe of NP!

Excess of Deviation!?

- ATLAS spin correlation analysis with top decay pair decays from 13 TeV 2016 data:
 - Very clean dileptonic tī sample (eµ) used.
 - Check the $\Delta \phi$ between the two leptons; no needs of kinematic reconstruction.
 - Extract the fraction of SM-like spin correlation (f_{SM}) from fits to the unfold parton level data.

Ref.ATLAS-CONF-2018-027

M(tt) region	$f_{\rm SM}$	Sig. (inc. TH unc.)			
<450 GeV	$1.11 \pm 0.04 \pm 0.13$	0.85σ (0.84σ)			
450-550 GeV	$1.17 \pm 0.09 \pm 0.14$	1.00σ (0.91σ)			
550-800 GeV	$1.60 \pm 0.24 \pm 0.35$	1.43σ (1.37σ)			
>800 GeV	2.2±1.8±2.3	0.41σ (0.40σ)			
Inclusive	$1.250 \pm 0.026 \pm 0.063$	3.70σ (3.20σ)			
22	1	11 110 - 11			

3.20 deviation w.r.t. the NLO prediction

Adding more "N" might help?

SM LO

SM NLO

SM LO + A 300 GeV

0.4

0.3

SM tīj LO p_{⊤i} ≥ 85 GeV

ATLAS 13 TeV

0.5

 ϕ / π

0.6

0.7

0.9

0.8

ATLAS 13 TeV

0.50

0.45

0.40

40/q 0.35

0.30

0.25

0.20

0.50

0.45

0.40

1/a da/dø

0.30

0.25

0.20

0.1

0.2

SM LO
 SM NLO

Ref. Talk by Rene Poncelet

It seems that the recent **NNLO** calculations improve the description

A general comment is ∆n also useful!

0.1

0.2

0.3

0.4

0.5

 ϕ / π

0.6

0.7

0.8

0.9

https://indico.cern.ch/event/746611/ The question seems answered: the deviation See the contributions at recent LHC TOP WG Meeting!

0.50

0.45

0.30

0.25

0.4

SM LO

SM NLO

 $\Omega r = \frac{ATLAS 13 TeV}{adding} a 300$

GeV pseudoscalar

mediator

Or simply require

in the tt+jet

Talk by J.A. Aguilar-Saavedra

IHEP 09 (2018) 116

different kinematics

- SM ttj LO[∎]p_{⊤i} ≥ 85

SM LO + A 100 GeV

Μ

30

CMS Results

- CMS measures op quark polarization and spin correlations using 2016 13 TeV data.
- Parton-level differential cross sections which are sensitive to the spin-dependent parts tt production density matrix are measured.

Constraint to Chromomagnetic Dipole Moment also provided.

No significant deviations, seem to agree with the NLO predictions.

Ref. CMS-PAS-TOP-18-006

$\cos \phi$ of $\ell^+ \ell^-$ at rest frame

Wrap up: the Standard Model

Excellent agreement throughout 9 orders of magnitudes; SM is getting stronger still.

Start to measure the SM process below 1 pb

Wrap up: Beyond the SM...

SIMPLY **STRONGER** LIMITS...

	0.5 1	1.5		2		2.5	3	3.5				ATLAS Preliminary
						Media	ator Ma	uss [TeV]]		vi = 13 TeV	√s = 7, 8, 13 TeV Reference
	*****	Dimensional and	24 pm 1-3 pm	Yes .	36.1 36.1	d (Die, Ballingen) d (Die, Ballingen)		0.43	8.71	1.55	m(C)-1000art m(c)-m(C)-100art	1712.00900
clusive Searches	23.2-40		2-6 jats	'Yes	36.1	;			Forbitten	0.05-1.6	HC-3000HT	1712.00500
	23.2-40113 ²	3 4.30	4 (arts 2 (arts	Yes	36.1 36.1	1				1.85	m(C)=800 Gelf m(c)=800 Gelf	1796.00701 1905.11361
	23.2-mm ¹⁰ 27 ²	21.0	2.01 (etc. 4 (etc.	Yes	36.1 36.1	2			0.96	1.6	m(i ²) -400 Gelf m(j)-m(²)-200 Gelf	1798.00794
2	20.2-stl	$\frac{0.1 e_F}{2 e_F}$	2.5 4 pm	Yes	36.1 36.1	;				1.25	m(1)-300.0wT m(2)-m(1)-300.0wT	1711.01901 1796.00791
	$b_1b_1, b_2{\rightarrow} ab_1^2/d_1^2$		Multiple Multiple Multiple		36.1 36.1 36.1	1.4.4	Forbidden	Forbulber Forbulber	6.8 0.36-0.62 0.7	~1	460-000 data 840/0-1 400-000 data 840/0-46 -2010/4-400-000 data 840/0-1	1706.06064, 1711.82801 1706.06066 1794.00121
Y ¹ per aparta direct productor	$\tilde{s}_1\tilde{s}_2,\tilde{s}_1\tilde{s}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	R Fortunate			6.7		m(C)=00.0w1 m(C)=200.0w1	1708-04180, 1711-11500, 1706-05047 1708-04180, 1711-11500, 1706-05047
	$i_i i_i$, $i_i \rightarrow WM_1^2 \text{ or } d_1^2$ $i_i i_i$, HAP	021.0	0-2 jets/1-2-h Multiple Multiple	Yes	36.1 36.1 36.1	6 5 6	Partnether		1.0 0.845 0.845	=	mil)=1044 (=1505e/Lmil)=mil)=5564/L + 5, =5005e/Lmil)=mil)=5564/L + 5,	1008.08076,1200.04180,1711.11520 1206.04183,1711.11520 1206.04183,1711.11520
	i, i_1 , Web Tempered LSP $i_1 i_2, i_2 \rightarrow (\tilde{t}_1^{-1} / H), i \rightarrow (\tilde{t}_2^{-1})$		Mutiple 2c	Yes	36.1 36.1	4 5 5		2.46	8.40-6.04	~	ן איז	1706-04145, 1711-11020 1805-01640 1805-01640
	he had a t	0 1-2 + #	mone (at	Yes .	36.1	in and a second		6.43	0.32-0.86		HELDHOLD THE	1711.00001
	ET in water	201.0	-	765	36.1	6.6			1.6		nj ²)-0	1403.0294, 1808.0200
	110 com	ен, ур (ССочей)ф	21	100	20.3	12.12 8.17	0.28				NO-NO-NO-NO-N	1712-08119
×¥	$R_1^* R_1^* / R_2^* , R_1^* {\rightarrow} trajer_1, R_2^* {\rightarrow} trajer_2, R_2^* {\rightarrow} trajer_3, R_2^* {\rightarrow} trajer_3$	6) Zr		Yes	36.1	22 1	1.22		0.76	with m	m(1)=4, m(1,1)=4,5(m(1))=m(1) (1)=100 Get(m(1,1)=4,5(m(1))=m(1))	1708-07975
~ 6	$l_{1,0}l_{1,0},l\rightarrow O_1^{H}$	2×.4 2×.4	21	Yes Yes	36.1 36.1	2 8.10		6.0			$\begin{array}{c} m(\tilde{r}_{1}^{n}) = 0 \\ m(\tilde{r}_{1} = m(\tilde{r}_{1}^{n}) = 0 \end{array}$	1603.02762 1712.06719
	88,8-40,00	0 6.e.p	2.56	Yes Yes	36.1 36.1	A 0.13	0.33		0.29-0.88		$\begin{array}{c} 8P(F_1^n\rightarrow in2)=1\\ 8P(F_1^n\rightarrow 2D)=1 \end{array}$	1806.34000 1804.30802
2.	Deat 757; prot., torg-load i	Disapp. trk	1 jet	Yes	36.1	5		0.46			Pure Mino Pure Hippsine	1712-32118 A51, Ph/15 PUB-2017-019
목종	Stable j Fi-hadron	SMP			3.2	1				1.0		1404.05129
25	Metastable (R hadron, (c	Multiple		32.8	a pravent with	2.442			1.6	2.4 m//Celli Gell	1710.04901.1004.04520
3.4	GMSB, IC-ryC, long-lived IC	89		766	20.3	10 C		0.44		_	hostColline, SPSEmodel	1408.5542
	W.41-marchechler.	04804.1471(01)	re .	-	20.3					1.4	6 (27)(C) = 1000 mm, m(C)(21 mm	1004.00142
	UPV pports, + X, is, -require (pr	10,00,00			3.2	h.				1.8	Appendia H., Appendia M.	1607.06079
	$E_1T_1/R_2 \rightarrow WW(2)/(\ell)rr$		d large d'uni	796	20.1	ALCOLOGICAL STR. S.	1100.040		6.42	1.10	HOCH THE CASE	1004 20002
2	2012 - 466 (114) - 466		Multiple		36.1	a le des ses			1.0	8 2.8	mill)-201 GeV; biro-Bur	#1.45.00MF-2018-008
5	$\underline{M},\underline{2}:=\underline{M}_{1}/\underline{2}=\underline{M}_{1}^{2},\overline{k}_{1}^{2}=\underline{M}_{1}$		Multiple		36.1	8 9C-10.040				1.0 2.1	milli-200 Gerc time-the	#1LA5-CONF-2018-005
	$K, \delta \rightarrow K_1^0, K_1^0 \rightarrow d \alpha$		Multiple		36.1	1. 10-10-0.140		0.95	1.8	15	m(C)=200 Carl; time-the	ATLAS-CONF-2018-008
	S.S. S. and S.		2 (495 - 2.5		36.7	A Sec. NO		8.42 0	190		March 1997	1710.07171
_	2211 U-188	eep	19		36.1					641.0	Pro- water and	1110.00044
*Only i phen aimpi	a selection of the available omena is shown. Many of lified models, c.f. refs. for	mass limits on the limits are but he assumptions	new states used on I made.	or	1	10-1		SU	SY_		Mass scale [TeV]	1
							_					

Resonances to heavy quarks

40 fb

50 fb

8 TeV

13 TeV

Z'(1.2%) → tt

Z'(10%) → tt

 $W' \rightarrow tb (M_v < M_W)$

 $W' \rightarrow tb (M_{v>}M_{W'})$

aKK → t

 $W' \rightarrow tb$

Excited quarks

1.81 🔽

1.79 🔽

2

LeptoQuark mass (TeV)

2.5

33

t* → tg S=3/2

t* → ta S=1/2

 $b^* \rightarrow tW (K_1=1)$

 $b^* \rightarrow tW$ (K_B=1

 $b^* \rightarrow tW (K_R=1)$

 $t^* \rightarrow tq (K_LK_R=1)$

VLO

20 fb

35 fb

25 fb

7 fb

35 fb

Vector-like

 $Q \rightarrow qW$

 $T \rightarrow tH$

T → tZ

T → bW

B → bH

B → bZ

B → tW

 $X5/3 \rightarrow tW$

X5/3 → tW

T → bW

t → lep c_{wb}=1.5

t → had _{Cwb}=1.5 T → tH

C_{Wb}=1.

CWb=1.0

Scalar LQ

.07641)

LQ (v b) x 2

LQ (v t) x 2

0

0.5

Lepto quark

1

1.5

Vector LQ (LQ model used: 1801.

 $T \rightarrow tH \stackrel{t \rightarrow lep}{c_{2t}=2.5}$

 $T \rightarrow tH \stackrel{t \rightarrow had}{c_{2t}=2.5}$

T → tZ cwb=1.5

T → tZ

B → bZ

T → bW

Y→ tH

 $\mathsf{T} \to \mathsf{t}\mathsf{H}$

0

Wrap up: Beyond the SM...(cont.)

LHC Outlook & Plan

Not too much time to prepare!

- HL-LHC is just ahead of us, expected to collect 3000 fb⁻¹ of data; maximize the reach for the searches and for precision measurements.
- All experiments plan to upgrade the detectors during either 2019-2020 or 2024-2026 for HL-LHC environment (*tolerance with a much higher pile-up, aiming for a higher precision, etc*).
 - → LHC will operate till ~2037; only ~5% of the collisions delivered so far!

Summary

M LHC continue to explore the Terascale regime!

- ◆ On the Higgs boson: this year the ttH production and B→bb decay are finally observed with new 13 TeV data. The boson is very consistent with Standard Model expectations, still.
- On the Top quark: high quality measurements are carried out by the LHC experiments. Precise measurements require precise calculations for a better understanding/modeling of the data.
- Measurements of SM processes show good agreement with predictions. No sign of new physics so far and the left space of SM-extended models is squeezed.

Backup Slídes