Discrete Gauge Anomalies Revisited

Chang-Tse Hsieh

Kavli IPMU & Institute for Solid States Physics, UTokyo

NCTS Annual Theory Meeting 2018

Dec. 18, 2018

Ref: C.-T. Hsieh, arXiv:1808.02881 (2018)

Acknowledgement

Shinsei Ryu (U of Chicago)

Edward Witten (IAS)

Yuji Tachikawa (Kavli IPMU)

Hitoshi Murayama (UC Berkeley/Kavli IPMU)

Kazuya Yonekura (Kyushu U)

Miguel Montero (ITP, Utrecht U)

Outline

- Review of discrete gauge anomalies
- Anomalies revisited: Modern perspective and reformulation
 Example: Z_n symmetry
- Role of symmetry extensions in discrete anomalies
- Conclusion

Outline

- Review of discrete gauge anomalies
- Anomalies revisited: Modern perspective and reformulation
 Example: Z_n symmetry
- Role of symmetry extensions in discrete anomalies
- Conclusion

Anomalies in chiral gauge theories

- Cancellation of gauge anomalies in a chiral theory such as the *standard model* — is a fundamental constraint on a consistent quantum field theory.
- A U(1) chiral gauge theory is anomalous if the anomaly cancellation condition

Purely gauge :
$$\sum_{\text{left}} q_L^3 - \sum_{\text{right}} q_R^3 = 0$$

Mixed gauge and grav : $\sum_{\text{left}} q_L - \sum_{\text{right}} q_R = 0$

Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with **discrete symm**?

>In this case, there are only global (non-perturbative) anomalies, and one can not use a "usual method" to calculate them

>In a paper by Krauss and Wilczek (1989), they also mentioned

PHYSICAL REVIEW LETTERS

Discrete Gauge Symmetry in Continuum Theories

Lawrence M. Krauss^(a) and Frank Wilczek^(b)

VOLUME 62, NUMBER 11 PHYSICAL RI

mention two caveats. First, there are discrete symmetries—those associated with global anomalies that cannot be consistently grand identification of such anomalies is a difficult but well developed art. into which we shall not enter nere. Second, it is not quite true that the identifications we envisage in field space are

a difficult but well developed art!

Q: While anomalies of cont. symm are well understood, how about the case of gauge anomalies associated with **discrete symm**?

- For example, how do we couple Weyl fermions *consistently* to a (topological) Z_n gauge theory in 4d?
- >In some cases, we might be able to write down such a theory as

$$\int \sum_{i} \overline{\psi}_{i} (i\partial \!\!\!/ + q_{i}A) \psi_{i} + \frac{in}{2\pi} \int B \wedge dA + \frac{ipn}{4\pi} \int B \wedge B$$

[Kapustin-Seiberg JHEP (2014)]

Previous works

- There have been several attempts to tackle this problem, such as the works by Ibáñez-Ross, Banks-Dine, Csáki-Murayama, Araki *et al.*, etc.
- Let's review some of these works

Ibáñez-Ross

Their argument [Ibáñez-Ross PLB (1991)]

U(1) anomaly cancel. cond.

 Z_n anomaly cancel. cond. =

charge constraints on massive states through SSB of U(1)

The result (a *necessary* cond.):

$$\sum_{i} q_i^3 = pn + r \frac{n^3}{8}, \quad p, r \in \mathbb{Z}; \ p \in 3\mathbb{Z} \text{ if } n \in 3\mathbb{Z},$$
$$\sum_{i} q_i = p'n + r' \frac{n}{2}, \quad p', r' \in \mathbb{Z}.$$

Contribution from Dirac and Majorana masses, respectively

Banks-Dine

Comments on Ibanez-Ross [Banks-Dine PRD (1992)]

- Only the linear constraint should be satisfied
- Can be understood in terms of **instantons** (at low energy)

- The nonlinear (cubic) constraint might be too restrictive and might not be required for consistency of the low energy theory
- Not solely from the low energy considerations and would depend on assumptions about UV embedding theories

Csáki-Murayama

Argument by *'t Hooft anomaly matching*. Two types of discrete anomalies are involved [Csáki-Murayama NPB (1998)]

- For Type I anomalies, the matching conditions have to be always satisfied *regardless of* the details of the massive bound state spectrum.
- The Type II anomalies have to be also matched *except* if there are **fractionally charged** massive bound states in the theory.

Motivation

 The Type I anomaly (linear constraint) is actually the mixed anomaly btw Z_n and gravity (i.e. Spin(4) spacetime symm of fermions)

• The **full anomalies** of $\text{Spin}(4) \times \mathbb{Z}_n$ should correspond to both Type I & II anomalies. But could we compute it *without* referring to any UV embedding theory with cont. symm?

I.e., could we determine discrete anomalies from *first principles*?

Outline

- Review of discrete gauge anomalies
- Anomalies revisited: Modern perspective and reformulation
 Example: Z_n symmetry
- Role of symmetry extensions in discrete anomalies
- Conclusion

This work

- We study discrete gauge anomalies in (3+1)d chiral fermion theories from a more modern perspective, based on
- 1. the concept of symmetry-protected topological (SPT) phases
- 2. a *refined* definition of global anomalies by Witten (2016)
- In particular, we give a purely low energy description of discrete gauge anomalies as gauge symmetries in many situations are *emergent* [Witten NatPhys (2018)]

A cosmic string associated to a \mathbb{Z}_n symm

This work

- We focus on the simplest case that the discrete internal symmetries are **cyclic** groups. I.e, the *full* symmetry group of fermions is $\frac{\text{Spin}(4) \times \mathbb{Z}_n}{\text{spacetime internal}}$
- Some of the discussions in this work can also be found in recent papers I. García-Etxebarria & M. Montero, arXiv:1808.00009 and S. Monnier & G. Moore arXiv:1808.01334

• Consider a set of left-handed Weyl ferm $\Psi = \{\psi_i\}$ with

 \mathbb{Z}_n symm: $\psi_i \to e^{2\pi i s_i/n} \psi_i, \quad s_i \in \mathbb{Z}_n$

The anomalies of $\text{Spin}(4) \times \mathbb{Z}_n$ are computed as follows:

- 1. We formulate the above theory on a manifold endowed with both a **spin structure** and a \mathbb{Z}_n **structure**
- Then, we compute the global anomalies of the resulting theory, based on Dai-Freed Theorem for fermion partition functions [Dai-Freed JMP (1994), Witten RMP (2016)]

- Let *M* be a 4-manifold endowed with a spin $\times \mathbb{Z}_n$ structure.
- Let X be a 5-manifold w/ boundary $\partial X = M$ s.t. the spin× \mathbb{Z}_n structure on M extends over X.
- Then the Dai-Freed theorem gives a definition of the part. func. of fermions in the rep. *R* of Z_n on *X*:

$$Z_{\Psi}(X) = |Z_{\Psi}(M)| \exp(-2\pi i \eta_R(X))$$

"eta-invariant" of the Dirac op on X

• In order to have a purely 4d theory, the part. func. must not depend on how the theory extends in one dimension higher

• Anomaly-free condition: $\exp(-2\pi i\eta_R(X^*)) = 1$

for any closed X^* endowed with a spin× \mathbb{Z}_n structure

• Actually, $\exp(-2\pi i \eta_R(X))$ is an invertible TQFT part func (a cobordism invariant) on a (class of) 5d closed manifold with an associated structure [Witten 15, 16]

X is bordant to Y if $\partial W = X \sqcup Y$

• Actually, $\exp(-2\pi i \eta_R(X))$ is an invertible TQFT part func (a cobordism invariant) on a (class of) 5d closed manifold with an associated structure [Witten 15, 16]

 $X (w/a \operatorname{spin} \times \mathbb{Z}_n \operatorname{str})$ is bordant to $Y (w/a \operatorname{spin} \times \mathbb{Z}_n \operatorname{str})$ if $\partial W = X \sqcup Y$

• Actually, $\exp(-2\pi i \eta_R(X))$ is an invertible TQFT part func (a cobordism invariant) on a (class of) 5d closed manifold with an associated structure [Witten 15, 16]

Any 5d X (w/ a spin× \mathbb{Z}_n str) is bordant to $X_1 \sqcup X_1 \sqcup \cdots X_2 \sqcup X_2 \sqcup \cdots$ (w/ their spin× \mathbb{Z}_n strs) generators

- Actually, $\exp(-2\pi i \eta_R(X))$ is an invertible TQFT part func (a cobordism invariant) on a (class of) 5d closed manifold with an associated structure [Witten 15, 16]
- By evaluating $\exp(-2\pi i \eta_R(X))$ in generators X_l and X_2 , we found the anomaly of Spin(4)× \mathbb{Z}_n can be represented by

$$\alpha_R := (\eta_R(X_1) \mod \mathbb{Z}, \ \eta_R(X_2) \mod \mathbb{Z}) \quad \text{CTH, 1808.02881}$$
$$= \left(\frac{1}{6n} \left(n^2 + 3n + 2\right) \sum_i s_i^3 \mod \mathbb{Z}, \begin{array}{c} \frac{2}{n} \sum_i s_i \mod \mathbb{Z} \\ \prod_i s_i & \text{mod } \mathbb{Z} \\$$

- Actually, $\exp(-2\pi i \eta_R(X))$ is an invertible TQFT part func (a cobordism invariant) on a (class of) 5d closed manifold with an associated structure [Witten 15, 16]
- By evaluating $\exp(-2\pi i \eta_R(X))$ in generators X_1 and X_2 , we found the anomaly of Spin(4)× \mathbb{Z}_n can be represented by

$$\alpha_R := (\eta_R(X_1) \mod \mathbb{Z}, \ \eta_R(X_2) \mod \mathbb{Z}) \quad \text{CTH, 1808.02881}$$
$$= \left(\frac{1}{6n} \left(n^2 + 3n + 2\right) \sum_i s_i^3 \mod \mathbb{Z}, \quad \frac{2}{n} \sum_i s_i \mod \mathbb{Z}\right)$$

• Therefore, the anomaly cancellation condition should be

$$(n^2 + 3n + 2) \sum_i s_i^3 = 0 \mod 6n,$$

 $2 \sum_i s_i = 0 \mod n.$

• In the presence of both chiralities, the cancel cond becomes

$$(n^2 + 3n + 2) \Delta s_3 = 0 \mod 6n, \quad 2\Delta s_1 = 0 \mod n$$

where $\Delta s_3 := \sum_L s_L^3 - \sum_R s_R^3$ and $\Delta s_1 := \sum_L s_L - \sum_R s_R$

• Let's see some examples:

$$\underline{n=2}: \quad 12\Delta s_3 = 0 \mod 12, \quad 2\Delta s_1 = 0 \mod 2$$

=> any rep of \mathbb{Z}_2 is anomaly free!

$$\underline{n=3}: \quad 20\Delta s_3 = 0 \mod 18, \quad 2\Delta s_1 = 0 \mod 3$$

=> a (nontrivial) Z₃ anomaly-free rep: 9 left-handed ferm with $s_{L,i}=1$

$$\underline{n = 4}: \quad 30\Delta s_3 = 0 \mod 24, \quad 2\Delta s_1 = 0 \mod 4$$

=> a (nontrivial) \mathbb{Z}_4 anomaly-free rep: 4 left-handed ferm with $s_{L,i}=2$

- The anomaly-free conditions we derived basing on the Dai-Freed theorem have similar forms as the the Ibáñez-Ross cond
 Only linear terms and cubic terms of the Z_n charges are involved
- However, our result should be a *necessary and sufficient* cond for consistently gauging a Z_n symm of a chiral ferm theory, while the Ibáñez-Ross cond is in principle a *necessary* cond

Dai-Freed + Cobordism theory

Ibáñez-Ross (Csáki-Murayama)

$$(n^2 + 3n + 2) \sum_i s_i^3 = 0 \mod 6n,$$

 $2 \sum_i s_i = 0 \mod n.$
 $\sum_i q_i^3 = pn + r \frac{n^3}{8},$
 $\sum_i q_i = p'n + r' \frac{n}{2}.$

- The anomaly-free conditions we derived basing on the Dai-Freed theorem have similar forms as the the Ibáñez-Ross cond
 Only linear terms and cubic terms of the Z_n charges are involved
- However, our result should be a *necessary and sufficient* cond for consistently gauging a Z_n symm of a chiral ferm theory, while the Ibáñez-Ross cond is in principle a *necessary* cond

Dai-Freed + Cobordism theory

Ibáñez-Ross (Csáki-Murayama)

3

$$(n^2 + 3n + 2) \sum_i s_i^3 = 0 \mod 6n,$$

 $2 \sum_i s_i = 0 \mod n.$
 $\sum_i q_i^3 = pn + r \frac{n^5}{8}$
 $\sum_i q_i = p'n + r' \frac{n}{2}$

Outline

- Review of discrete gauge anomalies
- Anomalies revisited: Modern perspective and reformulation
 Example: Z_n symmetry
- Role of symmetry extensions in discrete anomalies
- Conclusion

Role of symm extensions in discrete anomalies

- We know that the Ibanez-Ross cond. are subject to the issue of symm extensions [Banks-Dine 92], which is also crucial in our situation discrete anomalies can in general change or even disappear when symm are extended.
- This is the essential difference btw the anomaly cancel. cond. of a cont. symm and the one of a discrete symm:

Indep of the normalization of U(1) charges

Sensitive to symm extensions, e.g. a lift from \mathbb{Z}_n to \mathbb{Z}_{ln}

• For example, let's consider the following symm extension

$$1 \to \mathbb{Z}_2 \to \operatorname{Spin} \times \mathbb{Z}_8 \to \operatorname{Spin} \times \mathbb{Z}_4 \to 1$$

• Take a set of \mathbb{Z}_4 charges $R = \{1, 1, 2\}$, which is anomalous. When \mathbb{Z}_4 is extended to \mathbb{Z}_8 w/ $R' = \{2, 2, 4\}$, the anomaly is gone ("trivialized")

$$\alpha_{R} = \left(\frac{1}{6 \cdot 4} \left(4^{2} + 3 \cdot 4 + 2\right) \left(1^{3} + 1^{3} + 2^{3}\right) = \frac{1}{2} \mod \mathbb{Z}, \quad \frac{2}{4} (1 + 1 + 2) = 0 \mod \mathbb{Z}\right)$$

$$\downarrow$$

$$\alpha_{R'} = \left(\frac{1}{6 \cdot 8} \left(8^{2} + 3 \cdot 8 + 2\right) \left(2^{3} + 2^{3} + 4^{3}\right) = 0 \mod \mathbb{Z}, \quad \frac{2}{8} (2 + 2 + 4) = 0 \mod \mathbb{Z}\right)$$

• For example, let's consider the following symm extension

 $1 \to \mathbb{Z}_2 \to \operatorname{Spin} \times \mathbb{Z}_8 \to \operatorname{Spin} \times \mathbb{Z}_4 \to 1$

- This means three left-handed ferm w/ Z₄ charges {1, 1, 2} cannot consistently couple to a Z₄ gauge field, but can couple to a Z₈ gauge field (with rescaled Z₈ charges {2, 2, 4})
- On the other hand, the linear anomaly $\frac{2}{n} \sum_{i=1}^{n} s_i \mod \mathbb{Z}$ (present for a single ferm w/ a unit \mathbb{Z}_4 charge) can *never* be trivialized upon any symm extension

 \blacktriangleright A \mathbb{Z}_n symm w/ non-vanishing linear anomaly cannot be gauged!

In summary:

> For any consistent chiral gauge theory w/ a **definite full symm group**:

full symm group (e.g.
$$Spin(4) \times \mathbb{Z}_8$$
) is known
massless + massive (topological)

The discrete charges of the massless Weyl ferm must *strictly* satisfy the *whole* anomaly cancel cond

In summary:

➤ If only the (effective) symm on the massless ferm is known:

In some situations—with the knowledge of "anomalies"—we can predict the existence of massive particles carrying "fractional" charges

Outline

- Review of discrete gauge anomalies
- Anomalies revisited: Modern perspective and reformulation
 Example: Z_n symmetry
- Role of symmetry extensions in discrete anomalies
- Conclusion

Conclusion

- We *revisit* discrete gauge anomalies in chiral fermion theories in 3 + 1 dimensions from a more modern perspective based on the concept of SPT phases.
- Focusing on the simplest case that the internal symm are **cyclic** groups, a *reformulation* of the "discrete anomaly cancellation" conditions, first proposed by Ibáñez and Ross in 1991, is given.
- The role of symmetry extensions in discrete anomalies is clarified in a formal fashion, respecting the viewpoint in the previous work by Banks and Dine.

Thank You!