Hidden Valley Search Meets Cosmological Constraint

Lingfeng Li (Hong Kong U. of Sci. and Tech.) and Yuhsin Tsai (U. of Maryland)

arXiv: 1812.XXXXX or 1901.XXXX?

Dec. 2018, NCTS Annual Theory Meeting: Particles, Cosmology and Strings

What's in the dark?

Standard Model

U(1) SU(2)L SU(3)c leptons quarks Higgs

Hidden Sector

Hidden Force dark photon? dark QCD?

- Cosmology **can** tell us where and how to look for dark hadrons at a collider.
- We consider the heavy mediator case (mediator mass >~ dark hadron masses)

 η_d : The pseudoscalar meson (Lightest dark hadron)

 χ_d : The scalar meson

 ω_{d} : The vector meson

 G_{0++} : The dark glueball

Thermal History

Sensitive to:

- Decay length (kinematic decoupling time)
- ω_d-η_d mass difference Δm (when freeze out happens).

The analytical form is not always precise

Different Models of Hadron Decays

Dark Photon Portal (A Decaying Vector)

SM Higgs Portal (A Decaying Scalar)

Dark Photon Portal Models Vector and Pseudoscalar Decay

Vector Decay: Fast, tree level process

- Still large range of possibility
- Can be out of collider reach if we do not consider the pseudoscalar decay.

 $\Gamma_{\eta_{d} \to f\bar{f}} = \frac{9\alpha_{D}^{2}m_{\eta_{d}}^{3}}{8\pi^{3}f_{\eta_{d}}^{2}} \left[\frac{\alpha}{2\pi} \epsilon^{2} \left(\frac{m_{f}}{m_{\eta_{d}}} \right)^{2} \left(\frac{m_{\eta_{d}}}{m_{Z_{d}}} \right)^{2} \right]^{2}. \quad \Gamma_{\eta_{d} \to 4f} = \frac{9\alpha_{D}^{2}m_{\eta_{d}}^{3}}{8\pi^{3}f_{\eta_{d}}^{2}} \left[\frac{\alpha}{2\pi} \epsilon^{2} \left(\frac{m_{\eta_{d}}}{2m_{Z_{d}}} \right)^{4} \right]^{2}$ Pseudoscalar Decay: Slow, $either 2 body (when Z_{D} is heavy)$ $or 4 body (lighter Z_{D})$ dominanted

- Lifetime longer than ~ 1 sec,
- Introduces severe constraints during the BBN era See [1512.02647 & 1805.09345]

Possible Decay Length

Wide range of possible lifetime

Dark Photon Portal Models

Higgs Portal Models: Scalar Hadrons Decay

• Scalar Glueball:

Mass ~ 7Λ

Decay is loop induced at a higher scale (M), longer lifetime

• Scalar (χ_d) meson

Mass ~ 2x fermion mass

Decay much faster

- Short cτ (< 10 cm)
- Heavier mass
 - (>~15 GeV)
- Hadronic Decays

LLP Detection at Hadron Colliders Exotic Z decay from Z_D mixing:

(Not thoroughly discussed, see [1710.07635 & 1712.07237])

Higgs portal: Exotic Higgs decay

LLP Detection at Hadron Colliders

LHCb:

- Sensitive to small length scale (<~1 cm)
- Good at LLP $\rightarrow \mu\mu/\pi\pi/KK$, etc.

CMS & ATLAS:

- Sensitive to wider range of decay length
- Larger luminosity and coverage
- Larger SM backgrounds

LLPs from Z_D -Z mixing: Exotic Z \rightarrow dark hadron BR.

 m_{Z_d} [GeV] Green Shade: Chance to decay inside the LHCb VELO >10%

Gray Shade: Chance to decay inside the LHC Trackers >10%

DV($\mu\mu$) + X: probe exotic BR down to O(10-6) at LHCb and comparable bounds ATLAS/CMS after run III, for ct ~ 1 cm

See [1808.03057 & 1806.07396]

LLPs from Higgs Portal Models: Higg Exotic Decays Displaced vertexes of dijets and Preshout decay length.

Hidden Strong Dynamics

Some numerical results for this scenario when lifetime is short (still in work)

An related alternative scenario in Hsin-Chia's talk on Thursday.

Some results from [1708.05389]
see also [1502.05409 & 1503.00009]

STAY TUNED!

LHCb can give the leading bound for short length (~1cm) cases

Dinner Time!

Take Home Message:

• Cosmological constraints for hidden valley models can be stronger than often considered.

• Interesting predictions about future LLP searches, in the short length scale.

Backup Slides

Thermal History

$$Y_{l}(T) \simeq \frac{Y_{l}^{eq}(\hat{T})}{Y_{h}^{eq}(\hat{T})} Y_{h}^{eq}(T)$$
$$\propto \exp\left(\frac{\Delta m T_{dec}}{T^{2}}\right) \exp\left(-\frac{m_{h}}{T}\right)$$

Sensitive to h decay length Γ (related to T_{dec}) and Δm (related to freeze out temperature).

Analytical Spoiler:

Reasonable form but Numerical results

BBN Constraint

Taken from [1709.01211]

Estimate the Decay Chance in Valid Detector Volumes

LHCb VELO:

- Distance: 0.1-22 mm
- Pseudorapidity coverage: 2-5

LHC Tracking system:

- Distance: 1-30 cm
- Pseudorapidity coverage [-3,3]
- Z/h exotic decay estimated from MG5 simulations.

Estimate the di-muon LLP reach

- Z production rate at LHC: ~50 nb
- Luminosity: 15 fb⁻¹ at LHCb and 300 fb⁻¹ at

ATLAS/CMS

 Background for DV(µµ) estimated as ~25

- Assume the DV(µµ) reconstruction efficiency ~0.5
- The $\omega_{\rm d}\,{\rightarrow}\,\mu\mu$ BR ~10%
- Needed #signal ~10

 \Rightarrow BR(Z \rightarrow 2q_d) \sim O(10⁻⁶)

At LHC main detectors, the situation is more complicated due to MET triggering efficiency and background estimation. Reprojected from references.

Tell Emerging Jets from Ordinary Jets (Preliminary)

