Anisotropic Holography and Inverse Catalysis

Dimitrios Giataganas

National Center for Theoretical Sciences (NCTS), Taiwan

Talk given for: NCTS Annual Theory Meeting, December 19, 2018

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
Outline				

2 The Theory

O Phase Transitions

4 Universal Properties

5 Conclusions

The Theory

Phase Transitions

Universal Propertie

Conclusions

Briefly on AdS/CFT

• Gauge/Gravity duality: A way to map quantum questions to gravity geometric questions and answer them.

• The initial AdS/CFT correspondence: $\mathcal{N} = 4$ sYM on flat space $\Leftrightarrow AdS_5 \times S^5$, is the harmonic oscillator of the gauge/gravity dualities.

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions

• Since the discovery of the initial correspondence, there is an extensive research aiming to construct more realistic gauge/gravity dualities (confinement, no susy, temperature, quarks...).

✓ This talk: Anisotropic theories in Gauge/Gravity correspondence.

Why? Attempts for a first Realization of Nature

The existence of strongly coupled anisotropic systems.

- The expansion of the plasma along the longitudinal beam axis at the earliest times after the collision results to momentum anisotropic plasmas.
- Strong Magnetic Fields in strongly coupled theories.
- New interesting phenomena in presence on such fiels, i.e. inverse magnetic catalysis.

eg: (Bali, Bruckmann, Endrodi, Fodor, Katz, Krieg et al. 2011)

• Anisotropic low dimensional materials in condensed matter.

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
Why?	More:			

• Weakly coupled vs strongly coupled anisotropic theories.

(Dumitru, Strickland, Romatschke, Baier,...)

- Top-down supergravity Black hole solutions that are AdS in UV flowing to Lifshitz-like in IR :
 - \star Fixed scaling parameter z for such anisotropic solutions?

(Azeyanagi, Li, Takayanagi, 2009; Mateos, Trancanelli, 2011;...)

* New flows to alternative IR fixed points?

• (Striking Features! Several Universality Relations for the isotropic theories are violated in aniso!

Shear viscosity η over entropy density *s*: takes parametrically low values wrt degree of anisotropy $\frac{\eta}{s} < \frac{1}{4\pi}!$ (Rebhan, Steineder 2011; D.G. 2012; Jain, Samanta, Trivedy 2015; D.G., Gursoy, Pedraza, 2017)

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
Reminding	g Slide:			

• The anisotropic hyperscaling violation metric

$$ds^{2} = u^{-rac{2 heta}{d}} \left(-u^{2z} \left(dt^{2} + dy_{i}^{2}
ight) + u^{2} dx_{i}^{2} + rac{du^{2}}{u^{2}}
ight)$$

exhibits a critical exponent z and a hyperscaling violation exponent θ .

- $\theta = 0, \ z = 1 \Rightarrow AdS.$
- $\theta = 0 \Rightarrow$ scale invariant theory.
- In general no scale invariance.

$$t \to \lambda^z t, \qquad y \to \lambda^z y, \qquad \mathbf{x} \to \lambda \mathbf{x}, \qquad u \to \frac{u}{\lambda} \ , \qquad ds \to \lambda^{\frac{\theta}{d}} ds \ .$$

A Theory with Phase Transitions in One Page:

- How the Field Theory looks like?
 - \checkmark 4d *SU*(*N*) Strongly coupled anisotropic gauge theory.
 - ✓ Its dynamics are affected by a scalar operator O_{Δ} (~ *TrF*²).
 - ✓ Anisotropy is introduced by another operator $\tilde{\mathcal{O}} \sim \theta(x_3) TrF \wedge F$ with a space dependent coupling.
- The gravity dual theory is an Einstein-Axion-Dilaton theory in 5 dimensions with a non-trivial potential.
 - ✓ A "backreacting" scalar field depending on spatial directions, the axion; and a non-trivial dilaton.
 - ✓ Solutions are non-trivial RG flows: Conformal fixed point in the UV ⇒ Anisotropic (Hyperscaling Lifshitz-like) in IR.
- The vacuum state confines color and there exists a phase transition at finite T_c above which a deconfined plasma state arises.

(D.G., Gursoy, Pedraza, 2017)

Introduction The Theory Phase Transitions Universal Properties

How is Anisotropy introduced? A Pictorial Representation:

- For the Lifshitz-like IIB Supergravity solutions
 - $ds^{2} = u^{2z}(dx_{0}^{2} + dx_{i}^{2}) + u^{2}dx_{3}^{2} + \frac{du^{2}}{u^{2}} + ds_{S^{5}}^{2}.$

Introduction of additional branes:

(Azeyanagi, Li, Takayanagi, 2009)

• Which equivalently leads to the following AdS/CFT deformation.

• $dC_8 \sim \star d\chi$ with the non-zero component $C_{x_0x_1x_2S^5}$.

Introduction The Theory Phase Transitions Universal Properties Conclusions

An Anisotropic Theory

The generalized Einstein-Axion-Dilaton action with a potential for the dilaton and an arbitrary coupling between the axion and the dilaton:

$$S = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 + V(\phi) - \frac{1}{2} Z(\phi) (\partial \chi)^2 \right].$$

The eoms read

$$\begin{split} R_{\mu\nu} &- \frac{1}{2} R g_{\mu\nu} = \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi + \frac{1}{2} Z(\phi) \partial_{\mu} \chi \partial_{\nu} \chi - \frac{1}{4} g_{\mu\nu} (\partial \phi)^2 - \frac{1}{4} g_{\mu\nu} Z(\partial \chi)^2 + \frac{1}{2} g_{\mu\nu} V(\phi) , \\ \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi \right) &= \frac{1}{2} \partial_{\phi} Z(\phi) (\partial \chi)^2 - V'(\phi) , \\ \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \chi \right) &= 0 . \end{split}$$

Where

$$V(\phi) = 12\cosh(\sigma\phi) + \left(rac{m(\Delta)^2}{2} - 6\sigma^2
ight)\phi^2, \qquad Z(\phi) = e^{2\gamma\phi} \;.$$

(*Gursoy, Kiritsis, Nitti, 2007; (Gubser, Nellore), Pufu, Rocha 2008a,b)* Remark: For $\sigma = 0, \gamma = 1, m(\Delta) = 0$ the action and the solution of eoms, are reduced of IIB supergravity.

Dimitris Giataganas

Phase Transitions

Universal Propertie

Conclusions

A Solution : The RG Flow

Introduction The Theory Phase Transitions Universal Properties Conclusion Axion-Dilaton Coupling and Potential, rule the Scaling Coefficients

• The values of (θ, z) dependence on (γ, σ)

$$z=rac{4\gamma^2-3\sigma^2+2}{2\gamma(2\gamma-3\sigma)}\;,\qquad heta=rac{3\sigma}{2\gamma}\;.$$

- Special case: ($\sigma = 0, \gamma = 1$) supergravity truncated action with a single solution ($\theta = 0, z = 3/2$). (Mateos, Trancanelli, 2011)
- The scaling factors z and θ are determined by the constants in the Axion-Dilaton Coupling and the Potential. This is the reason that in the particular setup the supergravity solutions have them fixed.

We have obtained the theories, are they physical and stable?

✓ Energy Conditions Analysis:

$${}^{\vee}T_{\mu
u}N^{\mu}N^{
u}\geq 0 \;, \quad N^{\mu}N_{\mu}=0 \;.$$

AND

₩

✓ Local Thermodynamical Stability Analysis: Specific Heat, Chemical potential...

YES!

1

The blue region is the acceptable for the theory parameters.

The Theory

Phase Transitions

Universal Propertie

Conclusions

Confinement/Deconfinement Phase transitions

- Competition for dominance between different gravitational backgrounds.
- The free energy of the theories vs the temperature T for different anisotropy $(\alpha/j=0,1,3)$:

- Horizontal Axis: Confining Phase.
- Upper Branch: Black hole A:Deconfining Plasma Phase.
- Lower Branch: Black hole B:Deconfining Plasma Phase.
- $\alpha/j \simeq 2$: A critical value above which a richer structure in the phase diagram exist.

Dimitris Giataganas

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions

• The Critical Temperature of the theories vs the anisotropy gives:

• The T_c is reduced in presence of anisotropies of the theory.

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
A Proposal				

- The *Tc*(α) decrease with α, resembling the phenomenon of inverse magnetic catalysis where the confinement-deconfinement temperature decreases with the magnetic field B.
- No charged fermionic degrees of freedom in our case; our plasma is neutral.
- Our findings suggest that the anisotropy could be a cause of lower T_c , together with the charge dynamics caused by the magnetic field in inverse magnetic catalysis.

Universal Results: η/s in Theories with Broken Symmetry

Consider a finite T theory:

 $ds^{2} = g_{tt}(u)dt^{2} + g_{11}(u)(dx_{1}^{2} + dx_{2}^{2}) + g_{33}(u)dx_{3}^{2} + g_{uu}(u)du^{2}$

- The Shear Viscosity is obtained by the two-point function of the energy momentum tensor.
- The anisotropic viscosity violates the isotropic "bound" of $1/4\pi$:

Frictionless Anisotropic Plasma.

Dimitris Giataganas

Strongly-coupled Anisotropic Theories

Langevin Dynamics and Brownian Motion

Langevin coefficients κ : Consider a heavy quark ($M \gg T$) moving along the " $\|$ " direction in a strongly coupled plasma.

The Macroscopic Langevin equation:

 $\dot{p}_i(t) = -\eta_D p_i(t) + \xi_i(t) ,$

p: the momentum of the particle, η_D : the friction coefficient, ξ : the random force.

$$ig \langle \xi_{\parallel,\perp}(t) ig
angle = 0 \,, \qquad ig \langle \xi_{\parallel,\perp}(t) \xi_{\parallel,\perp}(t') ig
angle = \kappa_{\parallel,\perp} \delta(t\!-\!t') \,, \qquad ig \langle p_{\parallel,\perp}^2 ig
angle = 2\kappa_{\parallel,\perp} \mathcal{T}$$

• For any holographic theory in the deconfined phase the stochastic nature of the particle obtained by the string Fluctuations and then Quantization in the holographic space:

(deBoer, Hubeny, Rangamani, Shigemori, 2009; Tong, Wong 2013)

A Universal Inequality for Isotropic Theory: $\kappa_{\parallel} \ge \kappa_{\perp}$ for any isotropic strongly coupled plasma! Can be inverted in the anisotropic theories: $\kappa_{\parallel} \ge <\kappa_{\perp}$.

(Gursoy, Kiritsis, Mazzanti, Nitti, 2010; D.G, Soltanpanahi, 2013a,b; D.G., Lee, Yeh 2018)

The Theory

Phase Transitions

Universal Properties

Conclusions

Baryons in Theories with External Fields

• The quark distribution for baryons in theories with anisotropic dynamics:

- Baryon on the transverse plane and Baryon on the plane that the field lies. (D.G. 2018)
- System of fundamental F1 strings with a vertex Dp-brane, in an anisotropic gravity theory.
- Similar effect on Q-distribution, for speeding baryons in strong coupled isotropic plasma. (Athanasiou, Liu, Rajagopal 2008)

Dimitris Giataganas

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
Conclusions				

- ✓ Observation: In strongly coupled theories many phenomena are more sensitive to the presence of the anisotropy than the source that triggers it.
- ✓ Confining Anisotropic theories with confinement /deconfinement phase transition. (1st construction in the literature)
- ✓ The phase transitions occur at lower critical Temperature as the anisotropy is increased = Inverse Anisotropic Catalysis!
- ✓ Several Universal Isotropic relations are anisotropically violated. E.g. The shear viscosity over entropy density ratio, takes values parametrically lower than $1/4\pi$, as $\sim (T/\alpha)^{2-2/z}$.

Special case: IIB Supergravity

Remark:

The ten dimensional action gives our generalized model, when the internal space is an S^5 supported by fluxes and $\sigma = 0, \gamma = 1, \Delta = 4$:

$$S = \frac{1}{2\kappa_{10^2}} \int d^{10}x \sqrt{-g} \left[R + 4\partial_M \phi \partial^M \phi - e^{2\phi} \left(\frac{1}{2} F_1^2 + \frac{1}{4 \cdot 5!} F_5^2 \right) \right], \ F_1 := d\chi \,.$$

where M = 0, ..., 9 and F_1 is the axion field-strength. The equations of motion for the background are:

$$\begin{split} & R + 4g^{MN} \left(\nabla_M \nabla_N \phi - \partial_M \phi \partial_N \phi \right) = 0 \,, \\ & R_{MN} + 2\nabla_M \nabla_N \phi + \frac{1}{4} g_{MN} e^{2\phi} \partial_P \chi \partial^P \chi - \frac{1}{2} e^{2\phi} \left(F_M F_N + \frac{1}{48} F_{MABCD} F_N^{ABCD} \right) = 0 \,\,. \end{split}$$

plus the Bianchi identities and self duality constraints. The axion field equation is satisfied trivially for linear axion.

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
An exact	solution			

The potential and the axion-dilaton coupling

$$V(\phi) = 6e^{\sigma\phi}, \qquad Z(\phi) = e^{2\gamma\phi}.$$

A Lifshitz-like anisotropic hyperscaling violation background which may accommodate a black hole

$$ds_s^2 = \alpha^2 C_R e^{\frac{\phi(u)}{2}} u^{-\frac{2\theta}{3z}} \left(-u^2 (f(u) dt^2 + dx_i^2) + C_Z u^{\frac{2}{z}} dx_3^2 + \frac{du^2}{f(u) \alpha^2 u^2} \right) ,$$

where

$$\begin{split} f(u) &= 1 - \left(\frac{u_h}{u}\right)^{3+(1-\theta)/z} , \qquad e^{\frac{\phi(u)}{2}} = u^{\frac{\sqrt{\theta^2 + 3z(1-\theta) - 3}}{\sqrt{6z}}} , \\ C_R &= \frac{(3z-\theta)(1+3z-\theta)}{6z^2} , \qquad C_Z = \frac{z^2}{2(z-1)1+3z-\theta} , \\ z &= \frac{4\gamma^2 - 3\sigma^2 + 2}{2\gamma(2\gamma - 3\sigma)} , \qquad \theta = \frac{3\sigma}{2\gamma} . \end{split}$$

Introduction The Theory Phase Transitions Universal Properties Conclusions

Null Energy Condition

• The averaged radial acceleration between two null geodesics is

 $A_r = -4\pi T_{\mu\nu} N^{\mu} N^{\nu} ,$

if it is negative the null geodesics observe a non-repulsive gravity on nearby particles along them.

• This imposes the Null Energy Condition

 $T_{\mu
u}N^{\mu}N^{
u}\geq 0 \ , \quad N^{\mu}N_{\mu}=0 \ ,$

leading to the following constrains:

- For the Lifshitz-like space $z \ge 1$.
- For the Hyperscaling violation anisotropic metric in 3+1-dim spacetime and anisotropic in 1-dim reads

 $(z-1)(1- heta+3z)\geq 0\;,\ heta^2-3+3z(1- heta)\geq 0\;.$

Additional conditions from thermodynamics?

ntroduction The Theory Phase Transitions Universal Properties **Conclusions**

Local Thermodynamic Stability

• The necessary and sufficient conditions for local thermodynamical stability in the canonical ensemble are

$$c_{\alpha} = T\left(\frac{\partial S}{\partial T}\right)_{\alpha} \ge 0 , \qquad \Phi' = \left(\frac{\partial \Phi}{\partial \alpha}\right)_{T} \ge 0$$

 c_{α} is the specific heat: increase of the temperature leads to increase of the entropy.

 Φ' is derivative of the potential: the system is stable under infinitesimal charge fluctuations.

- In the GCE these conditions should be equivalent of having no positive eigenvalues of the Hessian matrix of the entropy with respect to the thermodynamic variables. (*Gubser, Mitra 2001*)
- In the IR the positivity of the specific heat imposes

 $c_{\alpha} = 1 - \theta + 2z \ge 0$

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions
η/s for o	ur theories			

• Shear Viscosity over Entropy Density

$$egin{aligned} \eta_{ij,kl} &= -\lim_{\omega o 0} rac{1}{\omega} \mathrm{Im} \int dt dx e^{i\omega t} \langle T_{ij}(t,x), T_{kl}(0,0)
angle \ s &= rac{2\pi}{\kappa^2} A \;. \end{aligned}$$

The two-point function is obtained by calculating the response to turning on suitable metric perturbations in the bulk.

• The relevant part of the perturbed action is mapped to a Maxwell system with a mass term.

$$S = rac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(-rac{1}{4g_{eff}^2} F^2 - rac{1}{4} m^2(u) A^2
ight) \, ,$$

where

$$m^2(u) = Z(\phi + \frac{1}{4}\log g_{33})\alpha^2 , \quad \frac{1}{g_{eff}^2} = g_{33}^{3/2}(u) , \quad A_\mu = \frac{\delta g_{\mu 3}}{g_{33}}$$

• The shear viscosity over entropy ratio for arbitrary (z, θ) .

• The ratio depends on the temperature at $\alpha/T \gg 1$ as

$$4\pi \frac{\eta_{\parallel}}{s} = \frac{g_{11}}{g_{33}} \sim \left(\frac{T}{\tilde{\alpha}|1+3z-\theta|}\right)^{2-\frac{2}{z}}$$

• The range of the temperature power is $[0, \infty)$.

Probing the Theory: Energy Loss of Heavy Quark

 A Heavy Quark with mass M >> T undergoes a Brownian motion in the plasma. (deBoer, Hubeny, Rangamani, Shigemori, JHEP 2009; DG, Lee, Yeh, JHEP

2018)

• The momentum evolves according to the macroscopic Langevin equations

$$\dot{p}_i(t) = -\eta_D p_i(t) + \xi_i(t)$$
,

p: the momentum of the particle, η_D : the friction coefficient, ξ : the random force:

 $ig \langle \xi_{\parallel,\perp}(t) ig
angle = 0 \,, \quad ig \langle \xi_{\parallel,\perp}(t) \xi_{\parallel,\perp}(t') ig
angle = \kappa_{\parallel,\perp} \delta(t\!-\!t') \,, \quad ig \langle p_{\parallel,\perp}^2 ig
angle = 2\kappa_{\parallel,\perp} \mathcal{T}$

 $(\parallel, \perp) = ($ direction of the quark motion, transverse plane). $\kappa =$ mean squared momentum per unit of time \mathcal{T} .

The Theory

Phase Transitions

Universal Propertie

Conclusions

Brownian Motion of Heavy Quarks

- The response function $\chi(\omega)$ of the quark to an external force \propto two point correlator of a string fluctuations divided by the applied force.
- For any theory of the form

$$ds^2 = u^{a_0}f(u) + u^{a_i}dx_i^2 + rac{du^2}{u^{a_u}f(u)} \; ,$$

the string fluctuations along x_1 close to the boundary are

$$\frac{\partial}{\partial u} \left(\frac{g_{11}\sqrt{-g_{00}}}{\sqrt{g_{uu}}} \delta x_1' \right) - \frac{g_{11}\sqrt{g_{uu}}}{\sqrt{g_{00}}} \delta \ddot{x}_1^2 = 0$$

and can be found by the monodromy patching method

$$\delta x_{1\omega}(u) = c_1 \left(1 + i\omega c_0 g_{11}(u_h) + \frac{i\omega g_{11}(u_h)}{2\kappa\nu} u^{-2\kappa\nu} \right), \quad \nu := \frac{a_0 + 2a_1 + a_u - 2}{2(a_0 + a_u - 2)}.$$

Dimitris Giataganas

Strongly-coupled Anisotropic Theories

NCTS

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions

- The reason for the unified formula is that the solution of fluctuations is of Bessel type with order ν .
- The diffusion coefficient

$$D = T \lim_{\omega \to 0} (-i \ \omega \chi(\omega)) \sim T^{2(1-\nu)}$$
.

 Fluctuation-Dissipation theorem holds along each direction; The noise is white; Self energy and thermal mass of the particle depend on the properties and direction of the system... (D.G., Lee, Yeh 2018)

Introduction	The Theory	Phase Transitions	Universal Properties	Conclusions

Parts of the Theory Timeline-Related bibliography:

Non-Confining Anisotropic Theories:

(Azeyanagi, Li, Takayanagi, 2009; Mateos, Trancanelli, 2011; Jain, Kundu, Sen, Sinha, Trivedi, 2015;...) Confining Anisotropic Theories: (D.G., Gursoy, Pedraza, 2017)

Similar ideas in different context. For example: (Gaiotto, Witten 2008; Chu, Ho, 2006; Choi, Fernadez, Sugimoto 2017;...)