December 17–20, 2018 Annual Theory Meeting @ Physics Division, NCTS

DETERMINATION OF HIGGS COUPLINGS TO WEAK BOSONS

Cheng-Wei Chiang National Taiwan University

"My friend, we are in the peculiar position of not knowing what questions to ask. We are like little children playing cache-cache in the dark. We stretch out our hands and grope about."

— Hercule Poirot in The ABC Murders

AN EXTENDED HIGGS SECTOR

- The SM Higgs mechanism offers an elegant and minimal framework that achieves the required EWSB. But it does not forbid an extended Higgs sector.
- Other than usual symmetries, we have no guiding principles in constructing the scalar sector:
 - representations of scalar bosons

cf. 3 generations of fermions and 3 gauge interactions

- numbers of scalar bosons
- extra symmetries (discrete/continuous/gauged)
- required by new physics (neutrino mass, DM, EWBG, SUSY, etc)
- For weak gauge bosons in such cases,
 - masses may involve different origins
 - couplings may be enhanced or weakened

LHC RUN-I DATA

RECENT RUN-11 DATA

Parameter	ATLAS	CMS	Average
$\overline{\kappa_W}$	1.07 ± 0.10	$1.12^{+0.13}_{-0.19}$	1.08 ± 0.08
κ_Z	1.07 ± 0.10	0.99 ± 0.11	1.03 ± 0.07

ATLAS+CMS 2018

- Concentrate on the central values.
- κ_W and/or κ_Z may be greater than 1.
- κ_W and κ_Z may be different. (CMS alone and central values only, by ~10%)
- What kind of Higgs sector features these properties?
- How different can κ_W and κ_Z be?

EXPECTED COUPLING PRECISION

 All Higgs couplings will be determined by HL-LHC + ILC to O(1) or sub percent level (particularly hVV couplings).

HIGGS EXTENSIONS

Higgs extensions are subject to a stringent constraint

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00040 \pm 0.00024 \qquad \text{PDG 2014}$$

In models with an extended Higgs sector, at tree level

$$\rho_{\text{tree}} = \frac{\sum_{i} v_i^2 \left[T_i (T_i + 1) - Y_i^2 \right]}{\sum_{i} 2Y_i^2 v_i^2}$$

HIGGS EXTENSIONS

Higgs extensions are subject to a stringent constraint

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00040 \pm 0.00024 \qquad \text{PDG 2014}$$

In models with an extended Higgs sector, at tree level

$$\rho_{\text{tree}} = \frac{\sum_{i} v_i^2 \left[T_i (T_i + 1) - Y_i^2 \right]}{\sum_{i} 2Y_i^2 v_i^2}$$

• If only one new $SU(2)_L$ rep is added to the SM, $\rho_{tree} = 1$ gives the following possibilities, under $(SU(2)_L, U(1)_Y)$:

(0,0) - real singlet, → interacting mainly with h_{SM}

(1/2,1/2) – doublet,

a popular choice (e.g., 2HDM)

(3,2) – septet,

(25/2, 15/2), (48,28), (361/2,209/2), etc.

HIGGS EXTENSIONS

Higgs extensions are subject to a stringent constraint

$$\rho \equiv \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} = 1.00040 \pm 0.00024 \qquad \text{PDG 2014}$$

In models with an extended Higgs sector, at tree level

$$\rho_{\text{tree}} = \frac{\sum_{i} v_i^2 \left[T_i (T_i + 1) - Y_i^2 \right]}{\sum_{i} 2Y_i^2 v_i^2}$$

- One can also choose to add a custodial symmetric rep (n,n) (n ∈ N) under (SU(2)_L,SU(2)_R) with vacuum alignment.
 - generalized Georgi-Machacek (GM) model Logan, Rentala 2015
 - n = 3 is the original GM model

9HVV IN SOME MODELS

Model	Higgs	$\kappa_V = g_{HVV}/g_{h_{\rm SM}VV}$	κ_W/κ_Z
rHSM	h	$\cos lpha$	1
2HDM	h	$\sin(\beta - \alpha)$	1
	H	$\cos(\beta - \alpha)$	1
$\overline{\mathrm{GM}}$	h	$\sin\beta\cos\alpha - \sqrt{\frac{8}{3}}\cos\beta\sin\alpha$	1
	H_1^0	$\sin \beta \sin \alpha + \sqrt{\frac{8}{3}} \cos \beta \cos \alpha$	1
all normalized	 	0	
correspondin values	H_5^0	$ \kappa_W = -\frac{\cos \beta}{\sqrt{3}} \text{ and } \kappa_Z = \frac{2\cos \beta}{\sqrt{3}} $	(-1/2)

2HDM:
$$\tan \beta = \frac{v_u}{v_d}$$
 and GM: $\tan \beta = \frac{v_\phi}{2\sqrt{2}v_\Delta}$

RECENT RUN-II DATA

Parameter	ATLAS	CMS	Average
$\overline{\kappa_W}$	1.07 ± 0.10	$1.12^{+0.13}_{-0.19}$	1.08 ± 0.08
κ_Z	1.07 ± 0.10	0.99 ± 0.11	1.03 ± 0.07

ATLAS+CMS 2018

- Concentrate on the central values.
- √ κ_W and/or κ_Z may be greater than 1.
- κ_W and κ_Z may be different. (CMS alone and central values only, by ~10%)
- How much can $\kappa_W = \kappa_Z$ be violated by radiative corrections?
 - model-dependent

1-LOOP RESULTS

 $\Delta \hat{\kappa}_V \equiv \hat{\kappa}_W - \hat{\kappa}_Z$

- Lighter dots satisfy theoretical constraints (unitarity, stability, perturbativity, and oblique parameters [S and T]).
- Darker dots further satisfy Higgs signal strengths from LHC Run-I (20 channels).
- Other types of 2HDM are expected to have a similar result as 2HDM-I.
- It is possible to discriminate among the rHSM, 2HDMs and GM model.
- $\Delta \kappa_V \sim O(1\%)$ and may be observable.

EXOTIC HIGGS MULTIPLETS

- At least two active Higgs multiplets (X₁, X₂, ...) larger than doublet are required, in addition to SM doublet Φ.
 - consider simplest case with N = 2
- Suppose their quantum numbers are (T₁, Y₁) and (T₂, Y₂).
- The VEV of a complex (real) X_a is denoted by $v_a/\sqrt{2}$ (v_a).
- To have $\rho_{\text{tree}} = 1$, the new VEVs have to satisfy

$$r \equiv \frac{v_2^2}{v_1^2} = -\frac{T_1(T_1+1) - 3Y_1^2}{T_2(T_2+1) - 3Y_2^2}$$

with the total VEV

$$v^2 = v_{\Phi}^2 + \xi^2 v_1^2$$
 with $\xi^2 \equiv 4 \left(Y_1^2 + r Y_2^2 \right)$

Define the mixing angle (analogous to 2HDM)

$$\tan \beta = \frac{v_{\Phi}}{\xi v_1}$$

EXOTIC HIGGS MULTIPLETS

- Tree-level unitarity of scattering processes requires that $T_a \le 7/2$ (4) for a complex (real) scalar in the N=1 case.
 - used here as a conservative bound Hally, Logan, Pilkington 2012
- In certain scenarios (often those with larger SU(2)
 Less),
 electroweak couplings develop Landau poles below the
 Planck scale.
 - always g at a lower scale than g'
- There could be accidental global U(1)'s associated with phase rotations of X₁ and X₂.
 - at least one unwanted massless NG boson after EWSB
- Discard such scenarios, but otherwise impose no custodial symmetry on the Higgs potential.

VIABLE SCENARIOS

_	EW quantum #'s			CWC,Yagyu 2018		
=	T_1, Y_1	$\geq (T_2, Y_2)$	\overline{r}	ξ^2	$\overline{v_1^{\max}}$	
GM model w/o	(1,1)	(1,0)	1/2	4	118	
custodial symmetr	(3/2,1/2)	(1,1)	3	13	$\overline{65}$ de	manding $y_t < \sqrt{4\pi}$
I5 scenarios allowed	(3/2, 3/2)	(1,0)	3/2	9		electroweak scale
	(3/2, 3/2)	(3/2,1/2)	1	10	75	lower bound on ve
	(2,0)	(1,1)	6	24	48	
	(2,0)	(3/2, 3/2)	2	18	56 ₂	cases with r < 1
	(2,1)	(1,1)	3	16	59 ₂	cases with $r = 1$
	(2,1)	(3/2, 3/2)	1	13	65	I cases with $r > I$
	(2,2)	(2,1)	2	24	48	
	(5/2, 1/2)	(1,1)	8	33	41	
	(5/2, 1/2)	(3/2, 3/2)	8/3	25	47	
	(5/2, 3/2)	(1,1)	2	17	57	
	(5/2, 3/2)	(3/2, 3/2)	2/3	15	61	
septet at most	(3,0)	(1,1)	12	48	34	
	(3,0)	(3/2, 3/2)	4	36	39	

NEUTRAL HIGGS MIXING

Neutral components of Φ, X₁, and X₂ mix in a general way:

orthogonal rotation matrix

 Since only Φ couples to SM fermions, the scale factor for Yukawa couplings is universally given by

$$\kappa_F = \frac{R_{11}}{s_\beta} \quad \Rightarrow \quad R_{11} = \kappa_F s_\beta$$

mixing matrix element R_{11} in terms of κ_F and β .

PREDICTION OF KWAND KZ

For W and Z:

$$\kappa_{W} = s_{\beta}R_{11} + c_{\beta} \frac{2[T_{1}(T_{1}+1) - Y_{1}^{2}]R'}{\xi}c_{\theta}$$

$$+ c_{\beta}\sqrt{r} \frac{2[T_{2}(T_{2}+1) - Y_{2}^{2}]R'}{\xi}s_{\theta}$$

$$\kappa_{Z} = s_{\beta}R_{11} + c_{\beta} \frac{4Y_{1}^{2}R'}{\xi}c_{\theta} + c_{\beta}\sqrt{r} \frac{4Y_{2}^{2}R'}{\xi}s_{\theta}$$

$$R' \equiv \sqrt{1 - R_{11}^{2}}$$

• Custodial relation $\kappa_W = \kappa_Z$ occurs when $\tan \theta = -\sqrt{r}$, a special mixing angle related to the ratio of exotic VEV's.

NUMERICAL RESULT

- Take first scenario as an example.
- Correlation plot for $\kappa_F = 0.9$ (dashed) and 1.0 (solid) with $v_1 = 10$ (red), 20 (green) and 40 GeV (blue), by scanning all mixing angle θ .
- The dark (light) gray band indicates $|\kappa_Z \kappa_W| \le 5\%$ (10%).
- The purple cross marks current data.
- Blue region allowed by current data of $\kappa_{W,Z}$ at 1σ level.
- Except for the limit where κ_F is SM-like, there generally exist upper and lower bounds on v_{Δ} .

The ratio

$$\lambda_{WZ} \equiv g_{HWW}/g_{HZZ}$$

for the SM Higgs boson is +1 at tree level.

- This may not be true for exotic Higgs bosons.
 - e.g., -1/2 for H_{5}^{0} in the GM model
- For the 125-GeV Higgs,

$$-1.10 \lesssim \lambda_{WZ} \lesssim -0.73$$
 or $0.72 \lesssim \lambda_{WZ} \lesssim 1.10$ (Run-I)

$$-1.39 \lesssim \lambda_{WZ} \lesssim -0.97$$
 or $0.92 \lesssim \lambda_{WZ} \lesssim 1.37$ (Run-II, 35.9/fb)

- a two-fold ambiguity in such measurements
- With 3/ab, the HL-LHC is anticipated to achieve

$$|\delta \kappa_W / \kappa_W| \le 5\%$$
 , $|\delta \kappa_Z / \kappa_Z| \le 4\%$

 $\Rightarrow |\delta \lambda_{WZ}/\lambda_{WZ}| \leq 6.4\%$

assuming that the central values remain SM-like.

SOLVING THE AMBIGUITY

- How can we experimentally determine this ratio, including its sign?
- It can be measured in the differential distribution of H → ZZ* → 4ℓ due to the interference between amplitudes at tree and one-loop levels, which are proportional to the HZZ and HWW couplings, respectively.

Chen, Lykken, Spiropulu, Stolarski, Vega-Morales 2016

FIG. 1. Schematic representation of the hVV contributions to the $h \to 4\ell$ amplitude where $V_{1,2} = Z, \gamma$ and $\ell, \ell' = e, \mu$.

 However, this is more technically involved due to issues such as gauge invariance, scheme/scale dependence.

SOLVING THE AMBIGUITY

- How can we experimentally determine this ratio, including its sign?
- We propose to consider e+e- \rightarrow W+W-H process (conceptually much simpler than Chen et al), where a desirable interference occurs among the tree-level amplitudes and allows us to experimentally fix λ_{WZ} .

CWC, He, Li 2018

- H here is not limited to SM-like Higgs boson
- Use 125-GeV Higgs as an explicit example

$$a$$
 \overline{a}
 $W^ H$
 W^+

$$\sigma_{\text{prod}} = \kappa_W^2 \left[\sigma_W + \lambda_{WZ}^{-1} \sigma_{WZ} + \lambda_{WZ}^{-2} \sigma_Z \right]$$

CROSS SECTION @ ILC

- Cross section of e+e- → W+W-H as a function of colliding energy for different polarization schemes.
 - preferring 500-GeV ILC with

$$P(e^-,e^+) = (-0.8,+0.3)$$

1306.6352 [hep-ex]

peak position may change for a different Higgs boson

• We consider the above scheme with an integrated luminosity L = 4 /ab:

$$\sigma_{\text{prod}} = \kappa_W^2 \left[\sigma_W + \lambda_{WZ}^{-1} \sigma_{WZ} + \lambda_{WZ}^{-2} \sigma_Z \right]$$

$$\sigma_W = 13.54 \text{fb}, \quad \sigma_Z = 1.015 \text{fb}, \quad \sigma_{WZ} = -2.555 \text{fb}$$

- $\sigma_{\text{W}} > \sigma_{\text{Z}}$ by one order of magnitude
- destructive interference if λ_{WZ} is positive

THE $e^+e^- \rightarrow W^+W^-H \rightarrow jj\ell^\pm\nu bb$ Process

- Consider e+e-→W+W-H, with one
 W→ℓv, the other W→jj, and H→bb.
- 5σ discovery achieved with L = (600/fb, 300/fb, 450/fb) for (BP1, BP2, BP3), respectively.
- BP1 requires the largest luminosity due to the smallest cross section from destructive interference.
- Assume SM-like Hff couplings.
- H→WW* scenario also considered.
 see our paper

signal significance as a function of L

BP1:
$$\kappa_W = 1$$
, $\kappa_Z = 1$ (SM)

BP2:
$$\kappa_W = 1, \ \kappa_Z = -1$$

BP3:
$$\kappa_W = 1, \ \kappa_Z = 0.$$

THE $e^+e^- \rightarrow W^+W^-H \rightarrow jj\ell^\pm\nu bb$ Process

- Contours of signal significance for L = 4/ab.
- Discoverable for $|\kappa_W| \approx 0.6$, irrespective of the value of λ_{WZ} .
- More sensitive to scenarios with $|\lambda_{WZ}| \lesssim 0.4$ as σ_{WZ} becomes less important than σ_{Z} . $(\lambda_{WZ} \rightarrow 0) \iff \kappa_{Z} \rightarrow \infty$
- By combining this cross section $0.0 \ 0.5 \ 1.0 \ 1.5 \ 2.0$ measurement and measurement of $1 \ \text{kW}$ at HL-LHC, it is straightforward to determine $1 \ \text{kW}$ (magnitude and sign) at a high precision.
- Similar processes at LHC under study.

SUMMARY

- Knowledge of $\kappa_{W,Z}$ is crucial for our understanding of EWSB and the Higgs sector.
- Current data show some hint of "non-standard" кw,z:
 - (1) either one could be greater than 1; and
 - (2) they could be different from each other.
 - exhausted simplest Higgs sectors with such features
 - give quantitative predictions about their values
- It is experimentally possible determine magnitudes and relative sign of κ_{W,Z} through interference in e+e-→HW+Wprocess.
 - possibility at LHC being studied now