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• Gravity theories are with dimensionful couplings:  
non-renormalizable, UV divergent at some loop order

• Can supersymmetry help make gravity UV finite? 

• More symmetries, more restriction on counter terms,  
better UV behavior  
➡ maximal SUSY+ gravity:  
 !    SUGRA   a perturbatively UV-finite theory?

• Some signs: UV-finiteness at ! -loop 4-point, ! .

4D 𝒩 = 8

L L < 5

Motivation

Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Roiban, Rozowsky



• critical dimension: characterizes the UV behavior  
the dimension where the UV div. first appears  
 
             !    .

• Interestingly,   !  . 

• KLT relation: tree level scattering amplitudes  
 
           !  
 
all loops UV finite  !  all loops UV finite

𝒜 | ℓ ≫ ki
leading

∼ ∫ (dℓDc)Lℓ−x, Dc =
x
L

DL, 𝒩=4 SYM
c = DL, 𝒩=8 SUGRA

c , L < 5

(𝒩 = 4 SYM)2 ∼ (𝒩 = 8 SUGRA)

??

Motivation

Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Roiban, Rozowsky



• the next target:  
5-loop 4-point scattering amplitude of !  
 
 
 

• check the UV behavior: explicit computation  
 
Lagrangian formalism (almost undoable, hard)  
 
On-shell methods (more efficient, no so hard)

𝒩 = 8 SUGRA

Motivation



On shell methods

Symmetries

Modern on-shell approach: 

recycle known info. 

no gauge redundancy 

efficiency 

lower-point  
trees

higher-point  
trees

loops

Lagrangian : non-trivial
Quantization: non-trivial

Lagrangian formalism: 

compute case by case 

gauge redundancy  

complication

recursion relation
analyticity

unitarity cut

building blocks
on-shell amplitudes

building blocks
sorts of Feynman propagators 

and vertices



On shell methods

tree amplitudes: symmetries + analyticity

loop amplitudes: tree amp. + unitarity



On shell methods

!  
 

!

S = 1 + iT , S S† = 1

⇒ 2 Im T = T T†

results from !  part of propagators: 
taking imaginary part is taking the cuts,

(putting the relevant propagators on-shell)

iϵ the product  
of sub-amplitudes. 

Unitarity Cut

recursively apply cuts to a loop amplitude,
(cuts on a loop amplitude)=(a product of tree amplitudes)

Generalized Unitarity Cut Bern, Dixon, Dunbar, Kosower 



On shell methods

guiding principle:  
a correct loop amp.  needs  
to satisfy all unitarity cuts



On shell methods

How to reconstruct a loop integral:

Design an ansatz,  
the ansatz is required to satisfy all unitarity cuts.

The size of ansatz for SUGRA is usually  
too large to be controlled.

Color-kinematic duality is helpful.

Tree level: KLT ⟺ color-kinematic duality



On shell methods

Idea: loop version of KLT 
two copies of !  give !

spectrum: !

𝒩 = 4 SYM 𝒩 = 8 SUGRA

(𝒩 = 4 SYM) ⊗ (𝒩 = 4 SYM) = (𝒩 = 8 SUGRA)

• the size of ansatz for !  is more accessible, 
less combinatorial possibilities.  
 
 

• represent the ansatz by cubic diagrams, each 
cubic vertex is a color factor   !  . 
 

𝒩 = 4

fabc

![cubic vertices]𝒩=4 = M, [cubic vertices]𝒩=8 = M2

![propagators]𝒩=4 = [propagators]𝒩=8
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use cubic diagrams to represent the basis of our loop integrand 

fa1b1a6

fa2a5b1

fa4b4b5

fb2b5b6

fb7b6b8

fb3b7a5

fb8a6b4

fa3b2b3

fa1b1a6
…fa2a5b1

ℓ2
5ℓ2

6… [Y(1)k1 ⋅ k2 + Y(2)ℓ2
5 + Y(3)ℓ2

6 + …]
ck : color factor

parameters determined by unitarity cuts

=
cknk

ℓ2
5ℓ2

6…

fixed by graph nk : kinematic factor
the part needs an ansatz

On shell methods



Color-Kinematic Duality

• For a given diagram with color factor !  , 
there must exist !  and !  such that !  by 
Jacobi identity

• If we can find a representation, where ! ’s satisfy the 
same algebraic eqs. as ! ’s, we can get 

ci = ∏qi
fqi

cj ck ci + cj + ck = 0

ni
ci

!A𝒩=4 = ∑
i

∫ dℓD
1 …dℓD

L
cini

Pαi

!M𝒩=8 = ∑
i

∫ dℓD
1 …dℓD

L
ñinck

i

Pαi

Bern, Carrasco, Johansson 



Color-Kinematic Duality

!A𝒩=4 ci→ni M𝒩=8

color-kinematic duality

works in ! -loop, !L L < 5

ck rep. is still unavailable for !  L = 5



Generalized Double Copy

• a given diagram with color factor !  , 
there must exist !  and !  such that !  
by Jacobi identity, but, in general, ! .

• ! , on a cut  

ci = ∏ fqi

cj ck ci + cj + ck = 0
ni + nj + nk ≠ 0

ni + nj + nk ≡ J…

![(the result of a 𝒩 = 8 cut) − ∑
i

n2
i

Pαi
]

cut
= g(J…, inverse pp.)

No more ansatz…
For an arbitrary known !  rep.:𝒩 = 4 SYM

Bern, WMC, Carrasco, Johansson, Roiban, PRL

naive double copy cut discrepancy

!A𝒩=4 = ∑
i

∫ dℓD
1 …dℓD

L
cini

Pαi



Systematic organization of cuts

N1max-cut

max-cut

N2max-cut

Nkmax cut: k uncut propagator

cut propagator

cubic diagrammax-cut and Nmax-cut  
automatically works

because of KLT 

N3max-cut

just works  
no additional  

contact term needed

works by adding a local contact term



Systematic organization of cuts

N1max-cut

max-cut

N2max-cut

Nkmax cut: k uncut propagator

cut propagator

cubic diagram

N3max-cut

the two non-local terms include  
some duplicated information



• complete result satisfies all max-cut, N1max-cut, N2max-cut: P2 = I 0 +   I i
2

X

i

• N3 contact terms: I i
3|cut  = ( N3max-cut-i ) - ( P 2 |cut )   I i

3|cut    ⟹    I i
3

off-shell

• We need to work level by level in order to make every contact term local 

• N2 contact terms: I i
2|cut  = ( N2max-cut-i ) - ( I 0 |cut )   I i

2|cut    ⟹    I i
2

off-shell

• complete result satisfies all max-cut,…, N3max-cut: P3 = I 0 +   I i
2 +   I i

3
X

i

X

i

divergences but, as wewill discuss in Sec. IV, it is such that it
that does not increase the number of integrals that must be
evaluated. Furthermore, as we note in Sec. VI, inD ¼ 22=5
the contact term contributions all cancel after IBP reduction,
leaving a completely ultraviolet finite result.
To confirm our construction, we have performed the

standard checks of verifying cuts beyond those needed for
the construction, such as all nonsingular cuts at the N4MC
and N5MC levels. We have confirmed that our improved
N ¼ 4 super-Yang-Mills integrand generates exactly the
same ultraviolet divergence in the critical dimension Dc ¼
26=5 as obtained in Ref. [28] using the earlier representation
of the amplitude. To carry out this check we followed the
same procedure explained in that paper for extracting the
ultraviolet divergence, using the same integral identities.

B. Improved N = 8 supergravity integrand

Armed with the new five-loop four-point integrand of
N ¼ 4 super-Yang-Mills theory we now proceed to the
construction of the corresponding improved integrand of
N ¼ 8 supergravity, following the generalized double-
copy construction [27] outlined in Sec. II. Our construction
essentially follows the same steps as in Ref. [28], so we will
not repeat the details. We obtain a set of contact terms,
organized according to levels, which correct the naive
double copy to an integrand for the N ¼ 8 supergravity
amplitude. As a consequence of the improved term-by-term
ultraviolet behavior of the gauge-theory amplitude, the
individual terms of the resulting supergravity integrand are
also better behaved at large loop momenta.
The difference with the construction in Ref. [28] is

related to the existence of the diagrams with doubled
propagators in the super-Yang-Mills amplitude, such as
(0: 430), (0: 547) and (0: 708) of Fig. 7. Unlike the gauge-
theory construction, here we can avoid needing to identify
and skip cuts with ill-defined values. To this end we notice
that, since the maximal cuts of these diagrams vanish, they
contribute only contact terms even in the naive double
copy. We may therefore simply set to zero these diagrams in
the naive double copy and recover their contributions
directly as contact terms at the relevant level. For the same
reason we can also set to zero in the naive double copy
other diagrams with vanishing maximal cuts. The consis-
tency of this reasoning is checked throughout the calcu-
lation by the absence of ill-defined cuts as well as by the
locality of all contact term numerators. Had the latter not be
the case it would imply the violation of some lower-level
cuts. This in turn would have meant that some term we set
to zero contributed more than merely contact terms to the
amplitude. The net effect is that we can build the complete
integrand by using cuts through the N6MC level, just as in
the previous construction [28], and there is no need to go
beyond this, except to verify the completeness of the result.
As discussed in Sec. II, the cuts of the supergravity

amplitude can be computed in terms of the BCJ

discrepancy functions of the full gauge-theory amplitude
rather than from the discrepancy functions of the amplitude
with the doubled-propagator diagrams set to zero. It turns
out that the cuts touching the doubled-propagator diagrams
are sufficiently simple to be efficiently evaluated using KLT
relations on the cuts. The completeness of the construction
is guaranteed by verifying all (generalized) unitarity cuts.
The complete amplitude is given by a sum over the 752

diagrams of the naive double copy and the 85,926 contact
term diagrams,

M5-loop
4 ¼ i

!
κ
2

"
12

stuMtree
4

X6

k¼0

X

S4

XTk

i¼1

Z Y9

j¼5

dDlj

ð2πÞD

×
1

Si

N ðkÞ
iQ

20−k
mi¼5 l

2
mi

; ð3:3Þ

where Mtree
4 is the four-point N ¼ 8 supergravity tree

amplitude and u ¼ −s − t. Here Tk is the total number
of diagrams at level k; they are given in Table I. The
diagram count at each level differs somewhat from the
earlier construction [28] because here we include all the
daughter diagrams that arise collapsing propagators of any
of the 752 parent diagrams of the naive double copy instead
of those obtained only from the first 410 diagrams. The
parent-level diagrams are obtained from the improved
representation of the N ¼ 4 super-Yang-Mills four-point
amplitude through the double-copy substitution (2.4) and
setting to zero the numerators of the diagrams shown in
Fig. 10. The contact terms are generated using the proce-
dures summarized above; examples corresponding to the
cuts in Fig. 3 are shown in Fig. 11. We collect the results for
all diagrams, numerators N ðkÞ

i and symmetry factors, Si, at
each level in the plain-text Mathematica-readable ancillary
files [33].
A striking property of the supergravity contact terms,

which is obvious from Table I, is that most of them vanish.
The precise number of vanishing diagrams depends on the
particular starting point used in the naive double copy and

TABLE I. The number of diagrams at each contact-diagram
level as well as the number of diagrams at each level with
nonvanishing numerators.

Level No. Diagrams No. Nonvanishing Diagrams

0 752 649
1 2,781 0
2 9,007 1,306
3 17,479 2,457
4 22,931 2,470
5 20,657 1,335
6 13,071 256
total 86,678 8,473

ULTRAVIOLET PROPERTIES OF N ¼ 8 … PHYS. REV. D 98, 086021 (2018)

086021-13

• For N=8 5-loop, the result is

Bern, WMC, Carrasco,,Edison, Johansson, 
Parra-Martine, Roiban, Zeng

Contact Term Approach 



• check N7max-cuts and N8max-cuts to make sure everything is correct

• small external momenta expansion to extract UV divergence
see Beneke, Vladimirov, 

Marcus, Sagnotti, Smirnov

second order
k · `

(`2 + k · `+ . . . ) no contribution in the first order

(k · `)(k · `)
(`2 + k · `+ . . . )2

⇠ 1

`2
) Dc =

24

5
critical dim. is raised

As another test of our approach, we also recovered the leading divergence of N = 4 super-

Yang–Mills theory in its five-loop critical dimension, D = 26/5, originally found in [32].

Starting from our improved N = 4 super-Yang–Mills integrand of Section III, extracting

the leading divergence in terms vacuum integrals and then substituting their expressions in

terms of master integrals, we obtain

A(5)
4

∣∣∣
leading

=
144

5
g12stAtreeN3

c

(

N2
c + 48

(
1

4
+

1

2
+

1

4

))

×
(
t f̃a1a2bf̃ ba3a4 + s f̃a2a3bf̃ ba4a1

)
. (6.8)

The f̃abc are the group structure constants, as normalized below Eq. (2.1), and the s and

t are the usual Mandelstam invariants. Here Atree ≡ Atree(1, 2, 3, 4) is the color-ordered

tree amplitude with the indicated ordering of external legs. This reproduces the result of

Ref. [32], providing a nontrivial check of both our gauge-theory integrand construction and

IBP reductions methods.

Interestingly, the thirteen master integrals in Fig. 20 that have vanishing coefficients in

Eq. (6.8) violate a “no-one-loop-triangle” rule.8 Indeed, diagrams (e)-(p) contain one-loop

triangle subdiagrams while diagram (d) contains a loop momentum-dependent numerator

in one-loop box subdiagrams, which upon expanding and reducing of that one-loop subin-

tegral also leads to triangle subintegrals. Another interesting feature of these results is that

the relative factors of the subleading-color term are given by the symmetry factors of the

corresponding integrals. In the next section, we will show that these observations are part

of a more general pattern.

Extracting the leading ultraviolet terms for N = 8 supergravity in D = 24/5 follows the

same strategy. After reducing the vacuum integrals obtained from our improved integrand

to the basis of master integrals we find

M(5)
4

∣∣∣
leading

= −16× 629

25

(κ
2

)12
(s2 + t2 + u2)2stuM tree

4

(
1

48
+

1

16

)

. (6.9)

This is the same result as obtained in the previous section by assuming that only vacuum

diagrams with maximal-cuts contribute, and proves that Eq. (5.7) is complete. As in the

case of the reduction of the expansion of the four-point five-loop N = 4 super-Yang–Mills

8 When counting the number of propagators around a loop, each dot should be counted as well.

49

first order

Mð5Þ
4 jD¼22=5

leading ¼ 0: ð6:7 Þ

With our new integrand there are few potential contribu-
tions because the naive double-copy terms are manifestly
ultraviolet finite in D ¼ 22=5 and only the contact terms
give potential contributions. A similar check is performed
for the earlier form of the integrand in Ref. [28], but that
case only confirms the cancellation of the vacuum diagrams
with the maximum imposed.

As another test of our approach, we also recovered the
leading divergence of N ¼ 4 super-Yang-Mills theory in
its five-loop critical dimension, D ¼ 26=5, originally
found in [32]. Starting from our improved N ¼ 4
super-Yang-Mills integrand of Sec. III, extracting the
leading divergence in terms of vacuum integrals and then
substituting their expressions in terms of master integrals,
we obtain

ð6:8Þ

The f̃abc are the group structure constants, as normalized
below Eq. (2.1), and the s and t are the usual Mandelstam
invariants. Here Atree ≡ Atreeð1; 2; 3; 4Þ is the color-
ordered tree amplitude with the indicated ordering of

external legs. This reproduces the result of
Ref. [32], providing a nontrivial check of both our
gauge-theory integrand construction and IBP reductions
methods.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 20. The sixteen master integrals to which any five-loop vacuum integrals inN ¼ 4 super-Yang-Mills with up to two dots can be
reduced. The dots represent repeated propagators. The labels of the diagrams match those of Fig. 15 . We shall refer to the corresponding
integrals either through their graph or as IðaÞ, IðbÞ, etc.

ZVI BERN et al. PHYS. REV. D 98, 086021 (2018)
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M(5)
4

���
k!0

⇠
Z

(d`Dc�2✏)5
`10

(`2)16
) 5Dc � 22 = 0 ) Dc =

22

5

leading log divergence

Bern, WMC, Carrasco,,Edison, Johansson, Parra-Martine, Roiban, ZengThe results

Five-loop results



• the critical dimensions start to be different between N=8 SUGRA 
and N=4 SYM at five-loop, but the SUGRA is still finite at ! .

• The result suggests the existence of !  operator at ! .

• !  operator is responsible for 7-loop div. at ! .

• UV-divergence at 7-loop? need to compute 6-loop first.

• Some consistent patterns for vacuum diagrams from higher loop 
to lower loop, useful for obtaining higher loop result? 

D = 4

D8R4 D = 24/5

D8R4 D = 4

Main Results



Thank you!


