UV Behavior of $\mathcal{N} = 8$ Supergravity at Five Loops

Wei-Ming Chen

陳韋名

(NTHU)

NCTS-Kyoto U Joint Meeting Sep 5th

based on Phys.Rev. D98 no.8, 086021 (1804.09311) Phys.Rev. D96 no.12, 126012 (1708.06807) Phys.Rev.Lett. 118 no.18, 181602 (1701.02519)

With Bern,, Carrasco,, Edison, Johansson, Parra-Martine, Roiban, Zeng

Motivation

- Gravity theories are with dimensionful couplings: non-renormalizable, UV divergent at some loop order
- Can supersymmetry help make gravity UV finite?
- More symmetries, more restriction on counter terms, better UV behavior
 maximal SUSY+ gravity:

4*D* $\mathcal{N} = 8$ SUGRA a perturbatively UV-finite theory?

• Some signs: UV-finiteness at *L*-loop 4-point, L < 5.

Motivation

• critical dimension: characterizes the UV behavior the dimension where the UV div. first appears

$$\mathscr{A}|_{\ell \gg k_i} \sim \int (d\ell^{D_c})^L \ell^{-x}, D_c = \frac{x}{L}$$
.

• Interestingly, $D_c^{L, \mathcal{N}=4 \text{ SYM}} = D_c^{L, \mathcal{N}=8 \text{ SUGRA}}$, L < 5.

Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Roiban, Rozowsky

• KLT relation: tree level scattering amplitudes

 $(\mathcal{N} = 4 \text{ SYM})^2 \sim (\mathcal{N} = 8 \text{ SUGRA})$

all loops UV finite $\xrightarrow{??}$ all loops UV finite

Motivation

• the next target: 5-loop 4-point scattering amplitude of $\mathcal{N} = 8$ SUGRA

• check the UV behavior: explicit computation

Lagrangian formalism (almost undoable, hard)

On-shell methods (more efficient, no so hard)

tree amplitudes: symmetries + analyticity

loop amplitudes: tree amp. + unitarity

Generalized Unitarity Cut

Bern, Dixon, Dunbar, Kosower

recursively apply cuts to a loop amplitude, (cuts on a loop amplitude)=(a product of tree amplitudes)

guiding principle: a correct loop amp. needs to satisfy all unitarity cuts

How to reconstruct a loop integral:

Design an ansatz, the ansatz is required to satisfy all unitarity cuts.

The size of ansatz for SUGRA is usually too large to be controlled.

Color-kinematic duality is helpful.

Tree level: KLT \iff color-kinematic duality

Idea: loop version of KLT two copies of $\mathcal{N} = 4$ SYM give $\mathcal{N} = 8$ SUGRA

spectrum: ($\mathcal{N} = 4$ SYM) \otimes ($\mathcal{N} = 4$ SYM) = ($\mathcal{N} = 8$ SUGRA)

• the size of ansatz for $\mathcal{N} = 4$ is more accessible, less combinatorial possibilities.

[cubic vertices]_{N=4} = M, [cubic vertices]_{N=8} = M²

 $[propagators]_{\mathcal{N}=4} = [propagators]_{\mathcal{N}=8}$

• represent the ansatz by cubic diagrams, each cubic vertex is a color factor f_{abc} .

use cubic diagrams to represent the basis of our loop integrand

parameters determined by unitarity cuts

Color-Kinematic Duality

Bern, Carrasco, Johansson

$$A^{\mathcal{N}=4} = \sum_{i} \int d\ell_{1}^{D} \dots d\ell_{L}^{D} \frac{c_{i} n_{i}}{P_{\alpha_{i}}}$$

- For a given diagram with color factor $c_i = \prod_{q_i} f_{q_i}$, there must exist c_j and c_k such that $c_i + c_j + c_k = 0$ by Jacobi identity
- If we can find a representation, where n_i's satisfy the same algebraic eqs. as c_i's, we can get

$$M^{\mathcal{N}=8} = \sum_{i} \int d\ell_{1}^{D} \dots d\ell_{L}^{D} \frac{\tilde{n}_{i} n_{i}^{ck}}{P_{\alpha_{i}}}$$

Color-Kinematic Duality

color-kinematic duality

$$A^{\mathcal{N}=4} \xrightarrow{c_i \to n_i} M^{\mathcal{N}=8}$$

works in *L*-loop, L < 5

ck rep. is still unavailable for L = 5

Generalized Double Copy

No more ansatz...

For an arbitrary known $\mathcal{N} = 4$ SYM rep.:

$$A^{\mathcal{N}=4} = \sum_{i} \int d\ell_{1}^{D} \dots d\ell_{L}^{D} \frac{c_{i} n_{i}}{P_{\alpha_{i}}}$$

- a given diagram with color factor $c_i = \prod f_{q_i}$, there must exist c_j and c_k such that $c_i + c_j + c_k = 0$ by Jacobi identity, but, in general, $n_i + n_j + n_k \neq 0$.
- $n_i + n_j + n_k \equiv J_{\dots}$, on a cut

Bern, WMC, Carrasco, Johansson, Roiban, PRL

(the result of a
$$\mathcal{N} = 8 \text{ cut}$$
) $-\sum_{i} \frac{n_i^2}{P_{\alpha_i}} \Big|_{cut} = g(J_{\dots}, \text{ inverse pp.})$

naive double copy

cut discrepancy

Systematic organization of cuts

Systematic organization of cuts

Contact Term Approach

- We need to work level by level in order to make every contact term local off-shell
- N² contact terms: $I_2^i|_{cut} = (N^2 \text{max-cut-}i) (I_0|_{cut}) I_2^i|_{cut} \implies I_2^i$
- complete result satisfies all max-cut, N¹max-cut, N²max-cut: $P_2 = I_0 + \sum_i I_2^i$
- N³ contact terms: $I_3^i|_{cut} = (N^3 \text{max-cut-}i) (P_2|_{cut}) I_3^i|_{cut} \implies I_3^i$
- complete result satisfies all max-cut,..., N³max-cut: $P_3 = I_0 + \sum_i I_2^i + \sum_i I_3^i$
- For $\mathcal{N}=8$ 5-loop, the result is

Bern, WMC, Carrasco, Edison, Johansson,

Parra-Martine, Roiban, Zeng

Level	No. Diagrams	No. Nonvanishing Diagrams
0	752	649
1	2,781	0
2	9,007	1,306
3	17,479	2,457
4	22,931	2,470
5	20,657	1,335
6	13,071	256
total	86,678	8,473

Five-loop results

- check N⁷max-cuts and N⁸max-cuts to make sure everything is correct
 - small external momenta expansion to extract UV divergence

The results

Bern, WMC, Carrasco,,Edison, Johansson, Parra-Martine, Roiban, Zeng

first order

$$\mathcal{M}_{4}^{(5)}\Big|_{k\to 0} \sim \int (d\ell^{D_c-2\epsilon})^5 \frac{\ell^{10}}{(\ell^2)^{16}} \stackrel{\checkmark}{\Rightarrow} 5D_c - 22 = 0 \Rightarrow D_c = \frac{22}{5}$$

leading log divergence

second order

$$\mathcal{M}_4^{(5)}|_{\text{leading}}^{D=22/5} = 0$$

no contribution in the first order

$$\frac{(k \cdot \ell)(k \cdot \ell)}{(\ell^2 + k \cdot \ell + \dots)^2} \sim \frac{1}{\ell^2} \Rightarrow D_c = \frac{24}{5}$$

 $k \cdot \ell$

 $\frac{1}{(\ell^2 + k \cdot \ell + \dots)}$

critical dim. is raised

see Beneke, Vladimirov,

Marcus, Sagnotti, Smirnov

$$\mathcal{M}_{4}^{(5)}\Big|_{\text{leading}} = -\frac{16 \times 629}{25} \left(\frac{\kappa}{2}\right)^{12} (s^2 + t^2 + u^2)^2 stu M_{4}^{\text{tree}} \left(\frac{1}{48} \left(\frac{1}{48} + \frac{1}{16} \left(\frac{1}{16}\right)\right)^2 + \frac{1}{16} \left(\frac{1}{16} + \frac{1}{16} \left(\frac{1}{16}\right)^2\right)^2 \right)$$

Main Results

- the critical dimensions start to be different between $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM at five-loop, but the SUGRA is still finite at D = 4.
- The result suggests the existence of $D^8 R^4$ operator at D = 24/5.
- $D^{8}R^{4}$ operator is responsible for 7-loop div. at D = 4.
- UV-divergence at 7-loop? need to compute 6-loop first.
- Some consistent patterns for vacuum diagrams from higher loop to lower loop, useful for obtaining higher loop result?

