Non-relativistic hybrid geometry and gravitational gauge fixing term

East Asia Joint Workshop on Fields and Strings 2019 12th Taiwan String Theory Workshop

28 Oct 2019 @ NTHU

Shuichi Yokoyama

Yukawa Institute for Theoretical Physics

Ref.Aoki-SY-YoshidaPRD (2019) no.12, 126002 arXiv:1902.02578Aoki-Balog-SY-YoshidaarXiv:1910.11032

Holography

Bulk

[Denes Gabor '47] ['t Hooft '93, Susskind '94]

Q: Possible to realize?

A: Yes, by flow equation approach!

Flow equation

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

2. describes a non-local course-graining of an operator.

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

2. describes a non-local course-graining of an operator.

Consider a CFT_d which contains a primary scalar $\varphi \langle \phi(x_1)\phi(x_2) \rangle = \frac{1}{x_{12}^{2\Delta}}$ **General flow equation** $x_{12} := x_1 - x_2$ $\frac{\partial \phi(x;\eta)}{\partial \eta} = -\frac{\delta S_f(\phi)}{\delta \phi(x)}\Big|_{\phi(x) \to \phi(x;\eta)} \qquad \phi(x;0) = \phi(x)$

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

2. describes a non-local course-graining of an operator.

Consider a CFT_d which contains a primary scalar $\varphi \langle \phi(x_1)\phi(x_2) \rangle = \frac{1}{x_{12}^{2\Delta}}$ Free flow equation $x_{12} := x_1 - x_2$

$$\frac{\partial \phi(x;\eta)}{\partial \eta} = \partial^2 \phi(x;\eta). \quad \phi(x;0) = \phi(x)$$

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

2. describes a non-local course-graining of an operator.

Consider a CFT_d which contains a primary scalar $\varphi \langle \phi(x_1)\phi(x_2) \rangle = \frac{1}{x_{12}^{2\Delta}}$ Free flow equation $x_{12} := x_1 - x_2$

$$\frac{\partial \phi(x;\eta)}{\partial \eta} = \partial^2 \phi(x;\eta). \quad \phi(x;0) = \phi(x)$$

The solution:

$$\phi(x;\eta) = \int d^d y \, K(x-y;\eta) \phi(y). \qquad K(x-y;\eta) = \frac{e^{-(x-y)^2/4\eta}}{(4\pi\eta)^{d/2}}$$

➡ Reminiscent of the block spin transformation!?

Block spin v.s. Flowed operator

Block spin v.s. Flowed operator

1. was introduced to help numerics of lattice QCD. cf. def of stress energy tensor

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06] [Luscher '10,'13]

2. describes a non-local course-graining of an operator.

Consider a CFT_d which contains a primary scalar $\varphi \langle \phi(x_1)\phi(x_2) \rangle = \frac{1}{x_{12}^{2\Delta}}$ Free flow equation $x_{12} := x_1 - x_2$

$$\frac{\partial \phi(x;\eta)}{\partial \eta} = \partial^2 \phi(x;\eta). \quad \phi(x;0) = \phi(x)$$

The solution:
$$\phi(x;\eta) = \int d^d y \, K(x-y;\eta) \phi(y).$$
 $K(x-y;\eta) = \frac{e^{-(x-y)^2/4\eta}}{(4\pi\eta)^{d/2}}$

<u>Claim</u>: Contact singularity in 2pt function is resolved.

[Albanese et al. (APE) '87] [Narayanan-Neuberger '06]

•
$$\langle \phi(x_1;\eta_1)\phi(x_2;\eta_2)\rangle = \frac{1}{\eta_+^{\Delta}}F(\frac{x_{12}^2}{\eta_+};1)$$
 $\eta_+ := \eta_1 + \eta_2$

$$F(v;1) = \frac{1}{(4\pi)^{\frac{d}{2}}} \int_0^1 du (1-u)^{d/2 - \Delta - 1} e^{-vu/4} u^{\Delta - 1} \qquad \frac{d-2}{2} \le \Delta < \frac{d-1}{2}$$

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17] [Aoki-SY '17]

Def.

(Dimensionless normalized operator)

$$\sigma(x;\eta) := \frac{\phi(x;\eta)}{\sqrt{\langle \phi(x;\eta)^2 \rangle}}$$

NOTE:

 $\langle \sigma(x;\eta)\sigma(x;\eta)\rangle = 1$

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

"Operator renormalization"

<u>Def.</u> (Dimensionless normalized operator)

 $\sigma(x;\eta) := \frac{\phi(x;\eta)}{\sqrt{\langle \phi(x;\eta)^2 \rangle}}$

<u>NOTE</u>: $\langle \sigma(x;\eta)\sigma(x;\eta)\rangle = 1$

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

"Operator renormalization"

<u>Def.</u> (Metric operator and induced metric)

$$\hat{g}_{MN}(x;\eta) := \frac{\partial \sigma(x;\eta)}{\partial z^M} \frac{\partial \sigma(x;\eta)}{\partial z^N} \qquad g_A$$

$$g_{MN}(z) := \langle \hat{g}_{MN}(x;\eta) \rangle_{CFT}$$

 $z^M = (x^{\mu}, \tau) \text{ with } \tau \propto \sqrt{\eta}$

<u>Comment</u>: An induced metric can be interpreted as the **information metric**. [Aoki-SY '17]

<u>Def.</u> (Dimensionless normalized operator)

 $\sigma(x;\eta) := \frac{\phi(x;\eta)}{\sqrt{\langle \phi(x;\eta)^2 \rangle}}$

<u>NOTE</u>: $\langle \sigma(x;\eta)\sigma(x;\eta)\rangle = 1$

[Aoki-Kikuchi-Onogi '15] [Aoki-Balog-Onogi-Weisz '16,'17]

"Operator renormalization"

<u>Def.</u> (Metric operator and induced metric)

$$\hat{g}_{MN}(x;\eta) := \frac{\partial \sigma(x;\eta)}{\partial z^M} \frac{\partial \sigma(x;\eta)}{\partial z^N} \qquad g_{MN}(z) := \langle \hat{g}_{MN}(x;\eta) \rangle_{CFT}$$
$$z^M = (x^\mu, \tau) \text{ with } \tau \propto \sqrt{\eta}$$

<u>Comment</u>: An induced metric can be interpreted as the **information metric**. [Aoki-SY '17] In the current case,

$$\begin{split} \langle \sigma(x_1;\eta_1)\sigma(x_2;\eta_2)\rangle &= \left(\frac{2\sqrt{\eta_1\eta_2}}{\eta_+}\right)^{\Delta} G\left(\frac{x_{12}^2}{\eta_+}\right), \quad G(u) := F(u;1)/F(0;1) \\ g_{\mu\nu}(z) &= \delta_{\mu\nu}\frac{\Delta}{\tau^2}, \quad g_{\tau\tau}(z) = \frac{\Delta}{\tau^2} \qquad \tau := \sqrt{-\Delta\eta/G'(0)} \\ \Rightarrow \quad ds^2 &= \Delta\frac{dx^2 + d\tau^2}{\tau^2}. \end{split}$$

Smearing = Extra direction

Non-relativistic Hybrid geometry

[Aoki-SY-Yoshida '19]

PRD (2019) no.12, 126002

Consider NRCFT_d with a complex scalar primary field O(x,t)

$$\left\langle O(\vec{x}_1, t_1) O^{\dagger}(\vec{x}_2, t_2) \right\rangle = \frac{1}{t_{12}^{\Delta_{\mathcal{O}}}} f(\frac{\vec{x}_{12}^2}{2t_{12}}),$$

Consider NRCFT_d with a complex scalar primary field O(x,t)

$$\left\langle O(\vec{x}_1, t_1) O^{\dagger}(\vec{x}_2, t_2) \right\rangle = \frac{1}{t_{12}^{\Delta_{\mathcal{O}}}} f(\frac{\vec{x}_{12}^2}{2t_{12}}),$$

Introduce one extra direction x⁻

$$\left\langle O(\vec{x}_1, x_1^+, x_1^-) O^{\dagger}(\vec{x}_2, x_2^+, x_2^-) \right\rangle = \frac{1}{(x_{12}^+)^{\Delta_{\mathcal{O}}}} f\left(x_{12}^- + \frac{\vec{x}_{12}^2}{2x_{12}^+}\right). \qquad x^+ = t$$

Consider NRCFT_d with a complex scalar primary field O(x,t)

$$\left\langle O(\vec{x}_1, t_1) O^{\dagger}(\vec{x}_2, t_2) \right\rangle = \frac{1}{t_{12}^{\Delta_{\mathcal{O}}}} f(\frac{\vec{x}_{12}^2}{2t_{12}}),$$

Introduce one extra direction x⁻

$$\langle O(\vec{x}_1, x_1^+, x_1^-) O^{\dagger}(\vec{x}_2, x_2^+, x_2^-) \rangle = \frac{1}{(x_{12}^+)^{\Delta_{\mathcal{O}}}} f\left(x_{12}^- + \frac{\vec{x}_{12}^2}{2x_{12}^+}\right). \qquad x^+ = t$$

Smear this operator O by a free **NR flow equation**:

$$\frac{\partial \phi(x;\eta)}{\partial \eta} = (2i\bar{m}\partial_{-} + 2\partial_{+}\partial_{-} + \vec{\partial}^{2})\phi(x;\eta), \quad \phi(x;0) = O(x)$$

$$x := (x^{\mu}) = (\vec{x}, x^+, x^-)$$

Consider NRCFT_d with a complex scalar primary field O(x,t)

$$\left\langle O(\vec{x}_1, t_1) O^{\dagger}(\vec{x}_2, t_2) \right\rangle = \frac{1}{t_{12}^{\Delta_{\mathcal{O}}}} f(\frac{\vec{x}_{12}^2}{2t_{12}}),$$

Introduce one extra direction x⁻

$$\left\langle O(\vec{x}_1, x_1^+, x_1^-) O^{\dagger}(\vec{x}_2, x_2^+, x_2^-) \right\rangle = \frac{1}{(x_{12}^+)^{\Delta_{\mathcal{O}}}} f\left(x_{12}^- + \frac{\vec{x}_{12}^2}{2x_{12}^+}\right). \qquad x^+ = t$$

Smear this operator O by a free **NR flow equation**:

$$\frac{\partial \phi(x;\eta)}{\partial \eta} = (2i\bar{m}\partial_{-} + 2\partial_{+}\partial_{-} + \vec{\partial}^{2})\phi(x;\eta), \quad \phi(x;0) = O(x)$$

$$x := (x^{\mu}) = (\vec{x}, x^{+}, x^{-})$$

$$\leftrightarrow \quad \phi(x;\eta) = \int d^{D}y K(x-y;\eta)O(y) \qquad K(x;\eta) = \exp\left[-i\bar{m}x^{-}\right] \frac{e^{\frac{-2x^{+}x^{-}-\vec{x}^{2}}{4\eta}}}{\sqrt{4\pi\eta}^{D}}$$

NOTE: Contact singularity is generically resolved thanks to a new term.

Holographic geometry for NR CFT

<u>Def.</u> Induced (holographic) metric $ds^{2} = \frac{1}{2} (\langle \partial_{M} \sigma^{\dagger} \partial_{N} \sigma \rangle + \langle \partial_{M} \sigma \partial_{N} \sigma^{\dagger} \rangle) dx^{M} dx^{N}$

where σ is the normalized flowed field whose 2pt function is given by

$$\left\langle \sigma(x_1;\eta_1)\sigma^{\dagger}(x_2;\eta_2) \right\rangle = \left(\frac{4\eta_1\eta_2}{\eta_+^2}\right)^{\Delta_{\mathcal{O}}/2} G\left(\frac{2(x_{12}^+ + 2i\bar{m}\eta_+)x_{12}^- + (\vec{x}_{12})^2}{\eta_+}, \frac{x_{12}^+}{\eta_+}\right)$$

Holographic geometry for NR CFT

<u>Def.</u> Induced (holographic) metric $ds^{2} = \frac{1}{2} (\langle \partial_{M} \sigma^{\dagger} \partial_{N} \sigma \rangle + \langle \partial_{M} \sigma \partial_{N} \sigma^{\dagger} \rangle) dx^{M} dx^{N}$

where σ is the normalized flowed field whose 2pt function is given by

$$\left\langle \sigma(x_1;\eta_1)\sigma^{\dagger}(x_2;\eta_2) \right\rangle = \left(\frac{4\eta_1\eta_2}{\eta_+^2}\right)^{\Delta_{\mathcal{O}}/2} G\left(\frac{2(x_{12}^+ + 2i\bar{m}\eta_+)x_{12}^- + (\vec{x}_{12})^2}{\eta_+}, \frac{x_{12}^+}{\eta_+}\right)$$

RESULT

$$ds^{2} = \frac{-G^{(0,2)}(\vec{0})}{4\eta^{2}} (dx^{+})^{2} + 2\left(\frac{-G^{(1,0)}(\vec{0}) - 2i\bar{m}G^{(1,1)}(\vec{0})}{\eta}\right) dx^{+} dx^{-} + 4\bar{m}^{2}G^{(2,0)}(\vec{0})(dx^{-})^{2} + \frac{\Delta\mathcal{O}}{4\eta^{2}} d\eta^{2} + \frac{-\delta_{ij}G^{(1,0)}(\vec{0})}{\eta} dx^{i} dx^{j}$$

$$-\Delta_{\mathcal{O}} = (2d+2)G^{(1,0)}(\vec{0}) + 8i\bar{m}G^{(1,1)}(\vec{0}) + 2i\bar{m}G^{(0,1)}(\vec{0}),$$

1) If G is a general function $\rightarrow \text{Lifshitz}_{d+1} \times \mathbb{R}$ with Z=2 2) $G^{(2,0)}(\vec{0}) = G^{(1,1)}(\vec{0}) = 0 \rightarrow \text{Schrodinger}_{d+2} \rightarrow \mathbb{NR}$ hybrid geometry

Q: GR system for NR hybrid geometry?

[Aoki-Balog-SY-Yoshida]

arXiv:1910.11032

GR system to realize NR hybrid?

$$ds^{2} = \Delta_{\mathcal{O}} \left[-\alpha \frac{(dx^{+})^{2}}{\tau^{4}} + \frac{d\tau^{2} + d\vec{x}^{2} + 2(1+\beta)dx^{+}dx^{-}}{\tau^{2}} + \gamma(dx^{-})^{2} \right].$$
$$\alpha = \frac{\Delta_{\mathcal{O}} G^{(0,2)}(\vec{0})}{4G^{(1,0)}(\vec{0})^{2}}, \quad \beta = \frac{2i\bar{m}G^{(1,1)}(\vec{0})}{G^{(1,0)}(\vec{0})}, \quad \gamma = \frac{4\bar{m}^{2}G^{(2,0)}(\vec{0})}{\Delta_{\mathcal{O}}}$$

Field contents?

GR system to realize NR hybrid?

$$ds^{2} = \Delta_{\mathcal{O}} \left[-\alpha \frac{(dx^{+})^{2}}{\tau^{4}} + \frac{d\tau^{2} + d\vec{x}^{2} + 2(1+\beta)dx^{+}dx^{-}}{\tau^{2}} + \gamma(dx^{-})^{2} \right].$$
$$\alpha = \frac{\Delta_{\mathcal{O}} G^{(0,2)}(\vec{0})}{4G^{(1,0)}(\vec{0})^{2}}, \quad \beta = \frac{2i\bar{m}G^{(1,1)}(\vec{0})}{G^{(1,0)}(\vec{0})}, \quad \gamma = \frac{4\bar{m}^{2}G^{(2,0)}(\vec{0})}{\Delta_{\mathcal{O}}}$$

Boundary

Field contents?

Bulk

 $U(1)_{\rm F} \text{ global action}$ $\sigma(x;\eta) \to \sigma(x;\eta)' = e^{i\lambda}\sigma(x;\eta)$ $U(1)_{\rm F} \text{ invariant operators}$ $A_M := \frac{1}{2}(i\partial_M\sigma^{\dagger}\sigma - i\sigma^{\dagger}\partial_M\sigma)$ $\left(A_-(z) = 4\bar{m}G^{(1,0)}(\vec{0}), \quad A_+(z) = \frac{i\Delta G^{(0,1)}(\vec{0})}{2G^{(1,0)}(\vec{0})\tau^2}, \right)$ $\hat{g}_{MN} = \frac{1}{2}(\partial_M\sigma^{\dagger}\partial_N\sigma + \partial_N\sigma^{\dagger}\partial_M\sigma)$

\rightarrow Einstein-Maxwell-Higgs system

$$S = \int d^{D+1}x \sqrt{-g} \left(\frac{1}{2\kappa^2} (R - 2\Lambda) - \frac{1}{4} g^{\mu\nu} g^{\rho\sigma} F_{\mu\rho} F_{\nu\sigma} - g^{\mu\nu} D_\mu \Phi^{\dagger} D_\nu \Phi - V(|\Phi|) \right)$$

 \rightarrow Einstein-Maxwell-Higgs system + gravitataional gauge fixing term!!

$$S = \int d^{D+1}x \sqrt{-g} \left(\frac{1}{2\kappa^2} (R - 2\Lambda) - \frac{1}{4} g^{\mu\nu} g^{\rho\sigma} F_{\mu\rho} F_{\nu\sigma} - g^{\mu\nu} D_\mu \Phi^{\dagger} D_\nu \Phi - V(|\Phi|) + \frac{-1}{2\xi} (\mathbf{g}^{--})^2 \right)^2$$

- We investigated holographic geometry for **NRCFT** employing **NR** flow equation.
- We obtained a new geometry interpolating the Schrodinger and Lifshitz geometries (=NR hybrid geometry) as a general holographic space of NRCFT.
- We showed that NR hybrid geometry is realized by Einstein-Maxwell-Higgs system with gravitational gauge fixing term.

- We investigated holographic geometry for NRCFT employing NR flow equation.
- We obtained a new geometry interpolating the Schrodinger and Lifshitz geometries (=NR hybrid geometry) as a general holographic space of NRCFT.
- We showed that NR hybrid geometry is realized by Einstein-Maxwell-Higgs system with gravitational gauge fixing term.

Future directions

- Dynamics in the bulk? For excited states? working in progress [Aoki-Balog-SY]
- Locality in the bulk? Bulk causality?
 cf. [Hamilton-Kabat-Lifshitz-Lowe '06]
- 1-loop calculation of dual gravity (higher-spin)?

cf. [Giombi-Klebanov '02]...

• Finite temperature? BH?

Thank you!

- We investigated holographic geometry for NRCFT employing NR flow equation.
- We obtained a new geometry interpolating the Schrodinger and Lifshitz geometries (=NR hybrid geometry) as a general holographic space of NRCFT.
- We showed that NR hybrid geometry is realized by Einstein-Maxwell-Higgs system with gravitational gauge fixing term.

Future directions

- Dynamics in the bulk? For excited states? working in progress [Aoki-Balog-SY]
- Locality in the bulk? Bulk causality?
 cf. [Hamilton-Kabat-Lifshitz-Lowe '06]
- 1-loop calculation of dual gravity (higher-spin)?

cf. [Giombi-Klebanov '02]...

• Finite temperature? BH?

Thank you!

GR system to realize NR hybrid? $\begin{bmatrix} (dx^{+})^{2} & d\tau^{2} + d\vec{x}^{2} + 2(1 + \beta)dx^{+}dx^{-} \end{bmatrix}$

cf. [Balasubramanian-McGreevy '10]

\rightarrow Einstein-Maxwell-Higgs system

$$S = \int d^{D+1}x \sqrt{-g} \left(\frac{1}{2\kappa^2} (R - 2\Lambda) - \frac{1}{4} g^{\mu\nu} g^{\rho\sigma} F_{\mu\rho} F_{\nu\sigma} - g^{\mu\nu} D_{\mu} \Phi^{\dagger} D_{\nu} \Phi - V(|\Phi|) \right)$$