Monster Anatomy

SUNGJAY LEE Korea Institute for Advanced Study

JHEP **1907** 026 (arXiv:1811.12263), and arXiv:1911.XXXXX in collaboration with Jin-Beom Bae(Oxford), Kimyeong Lee(KIAS),

Jeff Harvey(Chicago), and Brandon Rayhaun(Stanford)

East Asia Joint Workshop on Fields and Strings 2019 October 30th, 2019

Introduction

Mckay and Thompson made a remarkable observation between a modular object and Monster group M

[1] modular object: j-function

$$j(\tau) = \frac{12^3 E_4^3(\tau)}{E_4^3(\tau) - E_6^2(\tau)} \qquad E_4(q) = 1 + 240q + 2160q^2 + 6720q^3 + \mathcal{O}(q^4)$$
$$E_6(q) = 1 - 504q - 16632q^2 - 122976q^3 + \mathcal{O}(q^4)$$
$$(q = e^{2\pi i\tau})$$

- invariant under SL(2,Z) under which

$$\tau \to \frac{a\tau + b}{c\tau + d} \qquad \qquad \left[\begin{array}{c} a, b, c, d \in \mathbb{Z} \\ ad - bc = 1 \end{array} \right]$$

 partition function of a (chiral) RCFT with c=24, conjectured to describe the quantum theory of gravity in AdS3

Introduction

Mckay and Thompson made a remarkable observation between a modular object and Monster group M

[2] Monster group: the largest sporadic finite group of order

 $2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71 \simeq 8 \times 10^{53}$

[3] Monster Moonshine

$$\begin{aligned} &= \mathbf{1} \oplus \mathbf{196883} \\ &j(\tau) - 744 = \frac{1}{q} + \overline{196884q} + \underline{21493760}q^2 + \mathcal{O}(q^3) \\ &= \mathbf{1} \oplus \mathbf{196883} \oplus \mathbf{21296876} \end{aligned}$$

each coefficient of the above expansion can be expressed as a sum of dimensions of the irreducible representation of the monster group M.

Introduction

There exists a derivation of the Monster moonshine from an explicit construction of the c=24 chiral CFT based on the Leech lattice and Z_2 orbifold [Frenkel,Lepowsky,Meurman]

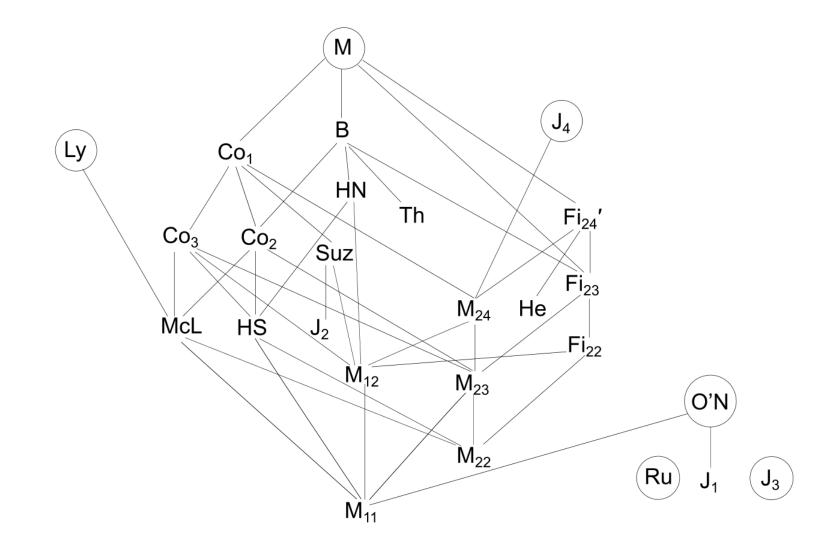
GOAL Generalize the moonshine phenomena for a different sporadic group

- To the end, we need to find a relation between a modular object other than j-function and sporadic group other than the monster group M.

e.g. Mathieu moonshine [1] modular object: the elliptic genus on K3
 [Eguchi,Ooguri,Tachikawa]
 [2] sporadic group: Mathieu group M₂₄

Sporadic Groups

Diagram of 26 sporadic simple groups, showing subquotient relationships.



Sporadic Groups

name	order	factorization
Mathieu group M11	7920	$2^4 \cdot 3^2 \cdot 5 \cdot 11$
Mathieu group M ₁₂	95040	$2^6 \cdot 3^3 \cdot 5 \cdot 11$
Janko group J_1	175560	$2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$
Mathieu group M22	443520	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$
Janko group $J_2 = HJ$	604800	$2^7 \cdot 3^3 \cdot 5^2 \cdot 7$
Mathieu group M_{23}	10200960	$2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
Higman-Sims group HS	44352000	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$
Janko group J_3	50232960	$2^7 \cdot 3^5 \cdot 5 \cdot 17 \cdot 19$
Mathieu group M24	244823040	$2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23$
McLaughlin group McL	898128000	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$
Held group He	4030387200	$2^{10} \cdot 3^3 \cdot 5^2 \cdot 7^3 \cdot 17$
Rudvalis Group Ru	145926144000	$2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29$
Suzuki group Suz	448345497600	$2^{13} \cdot 3^7 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$
O'Nan group O'N	460815505920	$2^9 \cdot 3^4 \cdot 5 \cdot 7^3 \cdot 11 \cdot 19 \cdot 31$
Conway group Co3	495766656000	$2^{10} \cdot 3^7 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$
Conway group Co2	42305421312000	$2^{18} \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11 \cdot 23$
Fischer group Fi22	64561751654400	$2^{17} \cdot 3^9 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13$
Harada-Norton group HN	273030912000000	$2^{14} \cdot 3^6 \cdot 5^6 \cdot 7 \cdot 11 \cdot 19$
Lyons Group Ly	51765179004000000	$2^8 \cdot 3^7 \cdot 5^6 \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$
Thompson Group Th	90745943887872000	$2^{15} \cdot 3^{10} \cdot 5^3 \cdot 7^2 \cdot 13 \cdot 19 \cdot 31$
Fischer group Fi23	4089470473293004800	$2^{18} \cdot 3^{13} \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$
Conway group Co1	4157776806543360000	$2^{21} \cdot 3^9 \cdot 5^4 \cdot 7^2 \cdot 11 \cdot 13 \cdot 23$
Janko group J_4	86775571046077562880	$2^{21} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11^3 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$
Fischer group Fi ²⁴	1255205709190661721292800	$2^{21} \cdot 3^{16} \cdot 5^2 \cdot 7^3 \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$
baby monster group B	4154781481226426191177580544000000	$2^{41} \cdot 3^{13} \cdot 5^6 \cdot 7^2 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47$
monster group M	80801742479451287588645990496171075700575436800000000	$2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71$

Any conformal field theory in 2 dimensions have two copies of infinite dimensional symmetry algebras, left and right moving Virasoro algebras

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0} \quad (m \in \mathbb{Z})$$

- We focus on parity-preserving CFTs with $c_l = c_r = c$

One can decompose the Hilbert space of a given CFT into representations of the Virasoro algebras degeneracy

> $\mathcal{H} = \bigoplus_{h, \bar{h} \geq 0} \overline{d_{h, \bar{h}}} V_h^l \otimes V_{\bar{h}}^r$ representation of Virasoro algebra

Torus Partition Function CFT on a circle at $T = \frac{1}{2\pi\tau_2}$ $Z(\tau, \bar{\tau}) = \operatorname{Tr}_{\mathcal{H}} \left| e^{-2\pi\tau_2 H} e^{-2\pi i \tau_1 J} \right|$ $L_0^l - c/24 = (H - J)/2$ $= \operatorname{Tr}_{\mathcal{H}} \left| q^{L_0^l - \frac{c}{24}} \bar{q}^{L_0^r - \frac{c}{24}} \right|$ $L_0^r - c/24 = (H+J)/2$ $=\sum_{h,\bar{h}} d_{h,\bar{h}} \operatorname{Tr}_{V_{h}^{l}} \left[q^{L_{0}^{l} - \frac{c}{24}} \right] \operatorname{Tr}_{V_{\bar{h}}^{r}} \left[q^{L_{0}^{r} - \frac{c}{24}} \right] \qquad \mathcal{H} = \bigoplus_{h,\bar{h} \ge 0} d_{h,\bar{h}} V_{h}^{l} \otimes V_{\bar{h}}^{r}$ $=\chi_h(\tau)$ $=\bar{\chi}_{\bar{h}}(\tau)$ Virasoro characters - when c>1, $\chi_0(\tau) = q^{-\frac{c}{24}} \prod_{n=2} \frac{1}{1-q^n}$ $\chi_h(\tau) = q^{h - \frac{c}{24}} \prod_{1 \le j \le n} \frac{1}{1 - q^n} \quad (h \neq 0)$

Torus Partition Function CFT on a circle at $T = \frac{1}{2\pi\tau_2}$

$$Z(\tau,\bar{\tau}) = \sum_{h,\bar{h}} d_{h,\bar{h}} \chi_h(\tau) \bar{\chi}_{\bar{h}}(\bar{\tau})$$

Torus partition function is invariant under the modular transformation SL(2,Z), generated by T and S

[1] invariance under T requires states of integer spin

$$Z(\tau,\bar{\tau}) = \operatorname{Tr}\left[q^{L_0 - \frac{c}{24}}\bar{q}^{\bar{L}_0 - \frac{c}{24}}\right] \xrightarrow{\tau \to \tau + 1} \operatorname{Tr}\left[e^{2\pi i J}q^{L_0 - \frac{c}{24}}\bar{q}^{\bar{L}_0 - \frac{c}{24}}\right]$$

[2] invariance under S then leads to strong constraints on the spectrum $d_{h,\bar{h}}$

$$Z(\tau,\bar{\tau}) = Z(-\frac{1}{\tau},-\frac{1}{\bar{\tau}}) \qquad (\chi_h(-\frac{1}{\tau}) = \sum_{h' \ge \frac{c-1}{24}} S(h,h')\chi_{h'}(\tau))$$

Modular Bootstrap
$$Z(\tau, \bar{\tau}) = Z(-\frac{1}{\tau}, -\frac{1}{\bar{\tau}})$$

[1] when c < 1, this consistency condition can be solved analytically. Those CFTs are classified and known as minimal models (m+1,m) with central charge [Zamolodchiov]... $c = 1 - \frac{6}{m(m+1)}$

[2] when c > 1, one consequence of the constraint is that any unitary CFTs have infinite number of Virasoro primaries. However, it is extremely to difficult to solve it.

Rational CFT is a special type of CFT with a finite number of conformal primaries, which

implies that

$$Z(\tau,\bar{\tau}) = \sum_{i,j=0}^{n-1} M_{ji} \underline{f}_i(\tau) \overline{f}_j(\bar{\tau})$$

conformal character w.r.t. an extended

chiral algebra that includes Virasoro alg.

When the partition function Z takes the above form, both central charge c and conformal weight h are rational [Anderson, Moore]

- e.g. Monster CFT with c=24: a single character RCFT

Virasoro characters

 $Z(\tau, \bar{\tau}) = |j(\tau) - 744|^2$ $f_0^{\mathbb{M}}(\tau) = j(\tau) - 744$ $= \chi_0(\tau) + 196883\chi_2(\tau) + 21296876\chi_3(\tau) + \cdots$

Note that, since the partition function is modular invariant, the conformal characters should be weight 0 vector-valued modular functions,

$$f_i(\tau + 1) = \sum_{j=0}^{n-1} T_{ij} f_j(\tau)$$

$$S^2 = (ST)^3 = C \quad C^2 = 1$$

$$f_i(-\frac{1}{\tau}) = \sum_{j=0}^{n-1} S_{ij} f_j(\tau)$$

Conformal characters thus satisfy nth-order Modular Linear Differential Equation (MLDE).

 $\left[D_{\tau}^{n} + \sum_{k=0}^{n-1} \phi_{k}(\tau) D_{\tau}^{k}\right] f(\tau) = 0$ $i\pi$

$$D_{\tau} = \partial_{\tau} - \frac{\imath \pi}{6} p E_2(\tau)$$

 $\phi_k(\tau)$: modular form of weight 2(n-k)

p: weight of a modular form on which the covariant derivative D acts

MLDE is invariant under the modular transformation SL(2,Z), which implies that n independent solutions are vector-valued modular functions.

From the fact that the conformal characters have poles only at $\tau = i\infty$, one can show that n independent solutions can be expanded in powers of q as follows

$$f_i(\tau) = q^{h_i - \frac{c}{24}} \sum_m^\infty a_m q^m \qquad (a_m \in \mathbb{Z})$$
$$\sum_{i=0}^{n-1} \left(h_i - \frac{c}{24} \right) - \frac{n(n-1)}{12} = -\frac{l}{6}$$
$$(l \in \{0, 2, 3, 4, 6, 8, 9, 10, 12, ...\})$$

Remark use MLDEs to search for and classify possible characters of a new RCFT [Mathur,Mukhi,Sen]

Example: Ising model

[1] Ising model has the identity operator and two primaries of h=1/2, 1/16

$$\chi_{0}(\tau) = \frac{1}{2} \left[\sqrt{\frac{\vartheta_{3}(\tau)}{\eta(\tau)}} + \sqrt{\frac{\vartheta_{4}(\tau)}{\eta(\tau)}} \right] = q^{-\frac{1}{24} \cdot \frac{1}{2}} \left(1 + q^{2} + q^{3} + 2q^{4} + \cdots \right)$$
$$\chi_{\epsilon}(\tau) = \frac{1}{2} \left[\sqrt{\frac{\vartheta_{3}(\tau)}{\eta(\tau)}} - \sqrt{\frac{\vartheta_{4}(\tau)}{\eta(\tau)}} \right] = q^{\frac{1}{2} - \frac{1}{24} \cdot \frac{1}{2}} \left(1 + q + q^{2} + q^{3} + \cdots \right)$$
$$\chi_{\sigma}(\tau) = \frac{1}{\sqrt{2}} \sqrt{\frac{\vartheta_{2}(\tau)}{\eta(\tau)}} = q^{\frac{1}{16} - \frac{1}{24} \cdot \frac{1}{2}} \left(1 + q + q^{2} + 2q^{3} + \cdots \right)$$

Example: Ising model

[2] Three characters are solutions to the MLDE below

$$\left[(q\frac{d}{dq})^3 - \frac{1}{2}E_2(\tau)(q\frac{d}{dq})^2 + (\frac{1}{24}E_2(\tau)^2 - \frac{25}{768}E_4(\tau))(q\frac{d}{dq}) + \frac{23}{55296} \right] f(\tau) = 0$$

[3] Modular matrices S and T are given by

$$S = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \sqrt{\frac{1}{2}} \\ \frac{1}{2} & \frac{1}{2} & -\sqrt{\frac{1}{2}} \\ \sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} & 0 \end{pmatrix} \qquad T = e^{-\frac{2\pi i}{48}} \begin{pmatrix} 1 & & \\ & e^{\frac{2\pi i}{2}} \\ & & e^{\frac{2\pi i}{16}} \end{pmatrix}$$

Example: Ising model

[4] Modular invariant partition function becomes

$$Z(\tau,\bar{\tau}) = \left|\chi_0(\tau)\right|^2 + \left|\chi_\epsilon(\tau)\right|^2 + \left|\chi_\sigma(\tau)\right|^2$$

[5] Fusion algebra can read from the Verlinde formula

$$[1] \times [\sigma] = [\sigma] \qquad \qquad [\epsilon] \times [\epsilon] = [1] \qquad \qquad [\sigma] \times [\sigma] = [1] + [\epsilon]$$

$$[1] \times [\epsilon] = [\epsilon] \qquad \qquad [\epsilon] \times [\sigma] = [\sigma]$$

GOAL Generalize the moonshine phenomena for a different sporadic group

To the end, we need to find a relation between a modular object other than j-function and sporadic group other than the monster group M.

MODULAR OBJECT: Conformal characters of an RCFT, vector-valued modular function

Bilinear Relation

Mukhi *et al* observed recently that characters $f_i(\tau)(i = 0, 1, ..., n - 1)$ of a certain rational CFT with central charge c obey an intriguing bilinear relation giving a modular invariant

$$f_0^{\mathbb{M}}(\tau) = j(\tau) - 744 = \sum_{i=0}^{n-1} f_i(\tau)\tilde{f}_i(\tau)$$

[Hampapura,Mukhi]

 $f_i(au)$ can be identified as characters of a dual rational CFT with central charge 24 - c

The bilinear relation implies that

$$j(\tau) - 744 = \operatorname{Tr}_{V^{\mathbb{M}}} \left[q^{L_{0}^{\mathbb{M}} - \frac{1}{24}24} \right]$$

$$= \sum_{a=0}^{n-1} \operatorname{Tr}_{V_{a}} \left[q^{L_{0} - \frac{c}{24}} \right] \operatorname{Tr}_{\tilde{V}_{a}} \left[q^{\tilde{L}_{0} - \frac{24-c}{24}} \right]$$

$$U^{\mathbb{M}} = \bigoplus_{a=0}^{n-1} V_{a} \otimes \tilde{V}_{a}$$

Baby Monster Moonshine?

Let us consider characters for the Ising model and characters for a certain RCFT satisfying MLDE below

$$\begin{pmatrix} D_{\tau}^{3} + \frac{2315}{576}\pi^{2}E_{4}(\tau)D_{\tau} - i\frac{27025}{6912}\pi^{3}E_{6}(\tau) \end{pmatrix} f(\tau) = 0 \\ \tilde{f}_{0}(\tau) = q^{-\frac{1}{24}\cdot\frac{47}{2}} \begin{pmatrix} 1 + 96256q^{2} + 9646891q^{3} + \cdots \end{pmatrix}$$
 Dual RCFT has
$$\tilde{f}_{\epsilon}(\tau) = q^{\frac{3}{2}-\frac{1}{24}\cdot\frac{47}{2}} \begin{pmatrix} 4371 + 1143745q + 64680601q^{2} + \cdots \end{pmatrix}$$
 of h=3/2, 31/16
$$\tilde{f}_{\sigma}(\tau) = q^{\frac{31}{16}-\frac{1}{24}\cdot\frac{47}{2}} \begin{pmatrix} 96256 + 10602492q + \cdots \end{pmatrix}$$

These characters obey the bilinear relation

$$j(\tau) - 744 = \chi_0(\tau)\tilde{f}_0(\tau) + \chi_\epsilon(\tau)\tilde{f}_\epsilon(\tau) + \chi_\sigma(\tau)\tilde{f}_\sigma(\tau)$$

(Note that the fusion algebra of the dual RCFT with $c = 24 - \frac{1}{2}$ is well-defined)

Baby Monster Moonshine?

Note that **4371** and **96256**, the lowest order coefficients, are dimensions of irreducible representation of the double covering of baby Monster group $2.\mathbb{B}$. Other coefficients have decomposition into irreducible representations.

$$\tilde{f}_{0}(\tau) = q^{-\frac{1}{24} \cdot \frac{47}{2}} \left(1 + 96256q^{2} + 9646891q^{3} + \cdots \right)$$

$$\tilde{f}_{\epsilon}(\tau) = q^{\frac{3}{2} - \frac{1}{24} \cdot \frac{47}{2}} \left(4371 + 1143745q + 64680601q^{2} + \cdots \right)$$

$$\tilde{f}_{\sigma}(\tau) = q^{\frac{31}{16} - \frac{1}{24} \cdot \frac{47}{2}} \left(96256 + 10602492q + \cdots \right) \qquad 92256 = \mathbf{1} \oplus \mathbf{96255}$$

$$1143745 = \mathbf{4371} \oplus \mathbf{1139374}$$

 $10602496 = \mathbf{96256} \oplus \mathbf{10506240}$

Baby Monster Moonshine

It is known that the Ising model has Z_2 symmetry. The identity operator and the energy field are even while the spin field is odd under Z_2 action.

$$\mathbb{Z}_2$$
: $1 \longrightarrow 1$ $\epsilon \longrightarrow \epsilon$ $\sigma \longrightarrow -\sigma$

When the Ising characters are replaced by their Z_2 twined characters, one obtains the McKay-Thompson series of class 2A of \mathbb{M}

Baby Monster Moonshine

The above generalized bilinear relation then implies that Z_2 can be elevated into an element of 2A class of \mathbb{M} , which acts trivially on the Hilbert space \tilde{V}_a (a=0,1,2) of dual RCFT.

$$j^{2\mathbb{A}}(\tau) = \operatorname{Tr}_{V^{\mathbb{M}}} \left[h' \cdot q^{L_0^{\mathbb{M}} - \frac{1}{24}24} \right] = \sum_{a=0}^{2} \operatorname{Tr}_{V_a} \left[h \cdot q^{L_0 - \frac{c}{24}} \right] \operatorname{Tr}_{\tilde{V}_a} \left[q^{\tilde{L}_0 - \frac{\tilde{c}}{24}} \right]$$
$$(h' \in [2A]_{\mathbb{M}}) \qquad (h \in \mathbb{Z}_2)$$

It implies that the dual RCFT with $c = 24 - \frac{1}{2}$ has the centralizer of $[2A]_M$ as symmetry. Note that the centralizer of $[2A]_M$ is the double covering of the Baby Monster group.

$$\mathcal{C}([2A]_{\mathbb{M}}) = 2.\mathbb{B}$$

This explains why the RCFT dual to the Ising model can exhibit the moonshine phenomena for $2.\mathbb{B}$

	centralis	ser struct	ure a	and or	ler					class	
(MONSTER)	8080 17424 79451									1 <i>A</i>	
(BABY)	2.B	8	3305	96296	24528	52382	35516	10880	00000	2 <i>A</i>	
(Conway)	$2^{1+24}C_1$			13	95118	39126	33632	81715	20000	2 <i>B</i>	[o. 4
(Fischer)	3.F ₂₄				37656	17127	57198	51638	78400	3 <i>A</i>	$g \in [3A]$
(Suzuki)	3^{1+12} , 2, Sz					1429	61507	75402	49600	3B 3C	3 -
(Thompson, Smith)	$3 \times E$					272	23783	16636	16000	3C	$g^{3} = 1$
(Conway)	$4.2^{22}.C_3$					8317	58427	33096	96000	4 <i>A</i>	
	$\{4 \times F_4(2)\}$. 2					26	48901	28269	31200	4 <i>B</i>	
	$4.2^{15}.2^{8}.S_{6}(2)$						4870	49291	36640	4 <i>C</i>	
	$4.2^{12}.G_2(4).2$							43239		4D	
(Harada, Norton)	$5 \times F$					1	36515			5 <i>A</i>	
(Hall, Janko)	51+6.2.HJ							45000		5 <i>B</i>	
(Fischer)	$3 \times 2.F_{22}.2$							10198		6 <i>A</i>	
(Suzuki)	6.Sz							00729		6 <i>B</i>	
, ,	$2^{1+12} \cdot 3^2 \cdot U_4(3) \cdot 2$	2						15794		6C	
	$2.3^{1+8}.2^{1+6}.U_4(2)$	2)						06069		6D	
	2.31+4.21+6.U4(2	2)							31360	6 <i>E</i>	
	$3 \times 2^{1+8} \cdot A_9$,						2786	91840	6 <i>F</i>	
(Held)	7 × H						2	82127	10400	7 <i>A</i>	
	$7^{1+4}.2.A_7$							847	07280	7 <i>B</i>	
	$8.2^7.2^6.U_3(3).2$							7927	23456	8 <i>A</i>	
(Mathieu)	$8.2^{10}.M_{12}$							7785	67680	8 <i>B</i>	
(Tits)	$8 \times {}^{2}F_{4}(2)$							1437	69600	8 <i>C</i>	
	$8.2^9.2^4.A_6$							235	92960	8D	
	[2 ²² 3]								82912	8 <i>E</i>	
	$8.2^6.U_3(3)$								96576	8 <i>F</i>	
	$9.3^{1+4}.S_4(3)$								87040	9 <i>A</i>	
	[24311]								34352	9 <i>B</i>	
(Higman, Sims)	$5 \times 2.HS.2$								40000	10 <i>A</i>	
	$5 \times 2^{1+8} \cdot (A_5 \times A_5).$								32000	10 <i>B</i>	
	$2.5^{1+4}.2^{1+4}.A_5$								00000	10C	
(Hall, Janko)	$5 \times 2.HJ$								48000	10D	
	$2.5^{1+2}.2^{1+4}.A_5$								80000	10E	
(Mathieu)	$11 \times M_{12}$							10	45440	11 <i>A</i>	

Note that the centralizer of $[3A]_M$ is the triple covering of the largest Fischer group Fi₂₄

To look for a RCFT exhibiting the 3.Fi₂₄ moonshine, all we need is to find a good RCFT with Z_3 symmetry. One such RCFT is the Z_k parafermion theory with k=3

$$\mathbf{Z}_{\mathbf{k}}$$
 parafermion theory $SU(2)_k/U(1)_k$ with $c_k = \frac{2(k-1)}{k+2}$

[1] Primaries $\phi_{l,m}^{(k)}$ of conformal weight

$$h_{l,m}^{(k)} = \frac{l(l+2)}{4(k+2)} - \frac{m^2}{4k} \qquad \begin{array}{c} 0 \le l \le k \\ -l+2 \le m \le l \\ l-m \in 2\mathbb{Z} \end{array}$$

$$g:\phi_{l,m}^{(k)} \to e^{2\pi i m/k}\phi_{l,m}^{(k)}$$

 Z_3 parafermion theory, a.k.a. three-state Pott's model, has 6 primaries of conformal weight 0,2/3,2/3,2/5,2/5,1/15. Note that primaries with h=2/3 and h=2/5 appear twice, because they transform non-trivially under Z_3

$$\begin{split} f_{3,3}^{(3)}(\tau) &= q^{-\frac{1}{24}\frac{4}{5}} \left(1 + q^2 + 2q^3 + \mathcal{O}(q^4) \right) \\ f_{3,1}^{(3)}(\tau) &= f_{3,-1}^{(3)}(\tau) = q^{\frac{2}{3} - \frac{1}{24}\frac{4}{5}} \left(1 + q + 2q^2 + 2q^3 + \mathcal{O}(q^4) \right) \\ f_{1,1}^{(3)}(\tau) &= f_{2,2}^{(3)}(\tau) = q^{\frac{2}{5} - \frac{1}{24}\frac{4}{5}} \left(1 + 2q + 2q^2 + 4q^3 + \mathcal{O}(q^4) \right) \\ f_{2,0}^{(3)}(\tau) &= q^{\frac{1}{15} - \frac{1}{24}\frac{4}{5}} \left(1 + q + 2q^2 + 3q^3 + \mathcal{O}(q^4) \right) \end{split}$$

The characters $\tilde{f}(\tau)$ of the dual RCFT with c = 116/5 could exhibit the moonshine for 3.Fi₂₄, which is the centralizer of [3A]_M

$$j(\tau) - 744 = f_{1,1}^{(3)}(\tau)\tilde{f}_{1,1}(\tau) + f_{2,2}^{(3)}(\tau)\tilde{f}_{2,2}(\tau) + f_{2,0}^{(3)}(\tau)\tilde{f}_{2,0}(\tau) + f_{3,1}^{(3)}(\tau)\tilde{f}_{3,1}(\tau) + f_{3,-1}^{(3)}(\tau)\tilde{f}_{3,-1}(\tau) + f_{3,3}^{(3)}(\tau)\tilde{f}_{3,3}(\tau)$$

One can show that the bilinear relations can be satisfied with parafermion characters and their dual characters, independent solutions to the 4th order MLDE below

$$\begin{bmatrix} D_{\tau}^{4} + \frac{907\pi^{2}}{225}E_{4}(\tau)D_{\tau}^{2} - i\frac{4289\pi^{3}}{675}E_{6}(\tau)D_{\tau} - \frac{175769\pi^{4}}{50625}E_{4}(\tau)^{2} \end{bmatrix} \tilde{f}(\tau) = 0$$

$$\tilde{f}_{1,1}(\tau) = \tilde{f}_{2,2}(\tau) = q^{\frac{29}{15} - \frac{1}{24}\frac{116}{5}} \left(64584 + 6789393q + 261202536q^{2} + \mathcal{O}(q^{3}) \right)$$

$$\tilde{f}_{2,0}(\tau) = q^{\frac{8}{5} - \frac{1}{24}\frac{116}{5}} \left(8671 + 1675504q + 83293626q^{2} + \mathcal{O}(q^{3}) \right)$$

$$\tilde{f}_{3,1}(\tau) = \tilde{f}_{3,-1}(\tau) = q^{\frac{4}{3} - \frac{1}{24}\frac{116}{5}} \left(783 + 306936q + 19648602q^{2} + \mathcal{O}(q^{3}) \right)$$

$$\tilde{f}_{3,3}(\tau) = q^{-\frac{1}{24}\frac{116}{5}} \left(1 + 57478q^{2} + 5477520q^{3} + \mathcal{O}(q^{4}) \right)$$

Note also that one can utilize the Hecke operator method to obtain the dual characeters. [Harvey, Wu]

Note that **783**, **8671** and **64584**, the lowest order coefficients, are indeed dimensions of irreducible representation of 3.Fi24. Other coefficients have decomposition into irreducible representations.

$$\tilde{f}_{1,1}(\tau) = \tilde{f}_{2,2}(\tau) = q^{\frac{29}{15} - \frac{1}{24}\frac{116}{5}} \left(64584 + 6789393q + 261202536q^2 + \mathcal{O}(q^3) \right)$$

$$\tilde{f}_{2,0}(\tau) = q^{\frac{8}{5} - \frac{1}{24}\frac{116}{5}} \left(8671 + 1675504q + 83293626q^2 + \mathcal{O}(q^3) \right)$$

$$\tilde{f}_{3,1}(\tau) = \tilde{f}_{3,-1}(\tau) = q^{\frac{4}{3} - \frac{1}{24}\frac{116}{5}} \left(783 + 306936q + 19648602q^2 + \mathcal{O}(q^3) \right)$$

$$\tilde{f}_{3,3}(\tau) = q^{-\frac{1}{24}\frac{116}{5}} \left(1 + 57478q^2 + 5477520q^3 + \mathcal{O}(q^4) \right)$$

 $57478 = 1 \oplus 57477$ $306936 = 783 \oplus 306153$ $1675504 = 8671 \oplus 1666833$ $6789393 = 64584 \oplus 6724809$

When the three-state Pott's model characters are replaced by their Z_3 twined characters, one obtains the McKay-Thompson series of class 3A of \mathbb{M}

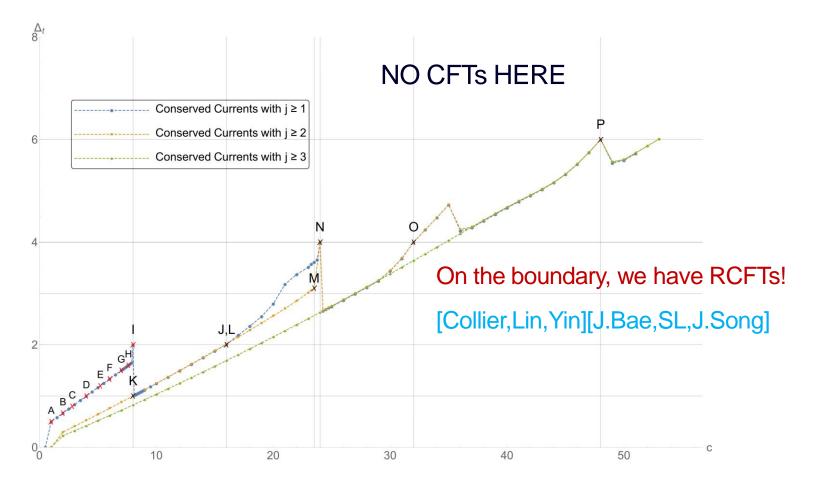
 $(w = e^{2\pi i/3})$

Conclusion

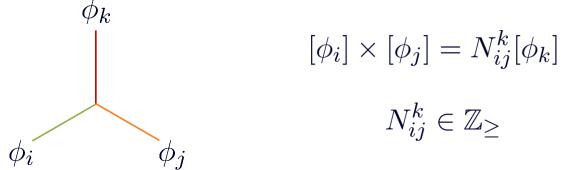
Group	$(X, C_M(X))$	c	Comments
M	(1A, M)	24	
B	(2A, 2.B)	47/2	Hecke dual of $c = 1/2$
Th	$(3C, 3 \times Th)$	248/11	dual of extension of \mathbb{Z}_9 pf
Co_1	$(2B, 2^{1+24}.Co_1)$		dual of $Ising \otimes Ising$?
Co_2	$(\mathbb{Z}_2 \times \mathbb{Z}_2, 2.2^{1+22} Co_2)$		dual of $Ising \otimes Ising$
Co_3	$(4A, 4.2^{22}.Co_3)$	23	Hecke dual of \mathbb{Z}_4 pf
HN	$(5A, 5 \times HN)$		dual $(4,3) \otimes (8,7) \otimes (8,7), (\mathbb{Z}_5 p f)^{\otimes 2}$
Suz	(6B, 6.Suz)		CFT with \mathbb{Z}_6 , maybe \mathbb{Z}_{36} pf?
Fi'_{24}	$(3A, 3.Fi'_{24})$		Hecke dual of \mathbb{Z}_3 pf
Fi_{23}	$(S_3, ??)?$		dual of $(5,4) \otimes (6,5)$ minimal models
$F_{i_{22}}$	$(6A, 3 \times 2.Fi_{22}.2)$		dual $(5,4) \otimes (6,5) \otimes (7,6)$?
McL	$(D_8, 2^{1+22}McL)$		Find CFT with D_8 symmetry
HS	$(10A, 5 \times 2.HS.2)$		Look at \mathbb{Z}_{25} pf?
HJ	$(5B, 5^{1+6}.2.HJ)$		Look at \mathbb{Z}_{25} pf?
He	$(7A, 7 \times He)$		Hecke dual of \mathbb{Z}_7 pf
M_{24}	$(\mathbb{Z}_2 \times \mathbb{Z}_2, 2^{2+11+22}.M_{24})$		
M_{23}		maybe $2.M_{22}$	dual of $(4,3) \otimes (5,4) \otimes (6,5)$
M_{22}	$(2 \times S_5, 2M_{22})$		
M_{12}	$(11A, 11 \times M_{12})$		
M_{11}	Many		
T	$(8C, 8 \times T)$		27th sporadic, Try \mathbb{Z}_8 or \mathbb{Z}_{64} pf?

[3] There has been a recent development solving the constraint numerically.

e.g. upper bound on the twist gap of the lowest primary above the vacuum



For a consistent unitary RCFT, each fusion rule coefficient N_{ij}^k has to be a non-negative integer.



Fusion rule coefficients can be computed from the Verlinde formula

$$N_{ij}^k = \sum_l \frac{S_{il} S_{jl} \bar{S}_{kl}}{S_{0l}} \in \mathbb{Z}_{\geq}$$
 [Verlinde]

When a solution to MLDE have a negative fusion rule coefficient, a corresponding candidate RCFT is not well-defined.

Generalized Bilinear Relation

Replacing the dual characters with the twined characters, defined below, gives the Mckay-Thompson series of the Monster. For instance,

$$q^{-1} \Big[1 + 276q^2 - 2048q^3 + \mathcal{O}(q^4) \Big] = \chi_0(\tau) \tilde{f}_0^{2D}(\tau) + \chi_\epsilon(\tau) \tilde{f}_\epsilon^{2D}(\tau) + \chi_\sigma(\tau) \tilde{f}_\sigma^{2D}(\tau)$$
$$|| \\ \sum_{a=0}^2 \operatorname{Tr}_{V^a} \Big[q^{L_0 - \frac{c}{24}} \Big] \operatorname{Tr}_{\tilde{V}^a} \Big[g \cdot q^{\tilde{L}_0 - \frac{\tilde{c}}{24}} \Big] \\ (g \in [2D]_{2.\mathbb{B}})$$

where
$$\tilde{f}_{0}^{2\mathbf{D}}(\tau) = \operatorname{Tr}_{\tilde{V}_{0}}\left[gq^{\tilde{L}_{0}-\frac{24-c}{24}}\right] = q^{-\frac{1}{24}\frac{47}{2}}\left(1+2048q^{2}+37675q^{3}+\cdots\right)$$

 $\tilde{f}_{\epsilon}^{2\mathbf{D}}(\tau) = \operatorname{Tr}_{\tilde{V}_{\sigma}}\left[gq^{\tilde{L}_{0}-\frac{24-c}{24}}\right] = q^{\frac{3}{2}-\frac{1}{24}\frac{47}{2}}\left(275+9153q+144025q^{2}+\cdots\right)$
 $\tilde{f}_{\sigma}^{2\mathbf{D}}(\tau) = \operatorname{Tr}_{\tilde{V}_{\sigma}}\left[gq^{\tilde{L}_{0}-\frac{24-c}{24}}\right] = -q^{\frac{31}{16}-\frac{1}{24}\frac{47}{2}}\left(2048+47104q+\cdots\right)$

Generalized Bilinear Relation

This generalized bilinear relation implies that an element of 2B class of $\mathbb M$ could reduce to an element of 2D class of $2.\mathbb B$

Generalized Bilinear Relation

We have generalized bilinear relations for other classes as well, which strongly suggests that the RCFT with c = 24-1/2, dual to the Ising model, has $2.\mathbb{B}$ as symmetry.

$$j^{2B}(\tau) \equiv \operatorname{Tr}_{V^{\mathbb{M}}}\left[g \cdot q^{L_0^{\mathbb{M}} - \frac{c^{\mathbb{M}}}{24}}\right] = \sum_{a=0}^2 \operatorname{Tr}_{V^a}\left[q^{L_0 - \frac{c}{24}}\right] \operatorname{Tr}_{\tilde{V}^a}\left[g \cdot q^{\tilde{L}_0 - \frac{\tilde{c}}{24}}\right]$$

$$g_{\mathbb{M}}$$
 2B 3A 3B 4B
 $g_{2.\mathbb{B}}$ 2D 3A 3B 4A

	Table 2a. Additio	onal informa	tion for	small	order e	lements	•		
	centralise	r structure a	and or	ler					class
(MONSTER)	8080 17424 79451 28	3758 86459	90496	17107	57005	75436	80000	00000	1A
(BABY)	2.B	8305	96296	24528	52382	35516	10880	00000	2 <i>A</i>
(Conway)	$2^{1+24}C_1$		13	95118	39126	33632	81715	20000	2 <i>B</i>
(Fischer)	3. F ₂₄			37656	17127	57198	51638	78400	3 <i>A</i>
(Suzuki)	3^{1+12} , 2, Sz				1429	61507	75402	49600	3 <i>B</i>
(Thompson, Smith)	$3 \times E$				272	23783	16636	16000	3C
(Conway)	$4.2^{22}.C_3$				8317	58427	33096	96000	4 <i>A</i>
	$\{4 \times F_4(2)\}$. 2				26	48901	28269	31200	4 <i>B</i>
	$4.2^{15}.2^{8}.S_{6}(2)$					4870	49291	36640	4C
	$4.2^{12}.G_2(4).2$						43239		4D
(Harada, Norton)	$5 \times F$				1	36515	45600	00000	5 <i>A</i>
(Hall, Janko)	5 ¹⁺⁶ .2.HJ					9	45000	00000	5B
(Fischer)	$3 \times 2.F_{22}.2$						10198		6 <i>A</i>
(Suzuki)	6.Sz					269	00729	85600	6 <i>B</i>
. ,	$2^{1+12} \cdot 3^2 \cdot U_4(3) \cdot 2$					48	15794	99520	6C
	$2.3^{1+8}.2^{1+6}.U_4(2)$					13	06069	40160	6D
	$2.3^{1+4}.2^{1+6}.U_4(2)$						16124	31360	6 <i>E</i>
	$3 \times 2^{1+8}$. A ₉						2786	91840	6 <i>F</i>
(Held)	$7 \times H$					2	82127	10400	7 <i>A</i>
	$7^{1+4} \cdot 2 \cdot A_7$							07280	7 <i>B</i>
	$8.2^7.2^6.U_3(3).2$							23456	8 <i>A</i>
(Mathieu)	$8.2^{10}.M_{12}$						7785	67680	8 <i>B</i>
(Tits)	$8 \times {}^{2}F_{4}(2)$						-	69600	8 <i>C</i>
	$8.2^9.2^4.A_6$							92960	8D
	[2 ²² 3]							82912	8 <i>E</i>
	0 76 11 (7)						20	06576	05

 $5 \times 2^{1+8} . (A_5 \times A_5) . 2$ 2.5¹⁺⁴.2¹⁺⁴.A₅ $5 \times 2.HJ$ 2.5¹⁺².2¹⁺⁴.A₅ (Hall, Janko) (Mathieu) $11 \times M_{12}$

(Higman, Sims)

 $8.2^6.U_3(3)$ $9.3^{1+4}.S_4(3)$

[24311]

5×2.HS.2

Note that the centralizer of $[3C]_M$ is the Thompson group Th

To look for a RCFT exhibiting the Th moonshine, all we need is to find a good RCFT with Z_3 symmetry. However we already used up Z_3 parafermion theory to obtain an RCFT exhibiting 3.Fi₂₄ Moonshine.

Instead, let us consider Z_9 parafermion theory. One can show that a set of linear combination of Z_9 parafermion characters is closed under SL(2,Z) action.

$$f_0(\tau) = \phi_{9,9}^{(9)}(\tau) + \phi_{9,3}^{(9)}(\tau) + \phi_{9,-3}^{(9)}(\tau)$$
$$f_1(\tau) = \phi_{2,0}^{(9)}(\tau) + \phi_{7,3}^{(9)}(\tau) + \phi_{7,-3}^{(9)}(\tau)$$
$$f_2(\tau) = \phi_{4,0}^{(9)}(\tau) + \phi_{5,3}^{(9)}(\tau) + \phi_{5,-3}^{(9)}(\tau)$$

$$f_3(\tau) = \phi_{6,0}^{(9)}(\tau) + \phi_{3,3}^{(9)}(\tau) + \phi_{3,-3}^{(9)}(\tau)$$
$$f_4(\tau) = \phi_{8,0}^{(9)}(\tau) + \phi_{8,6}^{(9)}(\tau) + \phi_{8,-6}^{(9)}(\tau)$$

Since the linear combination of characters all have m=0 mod 3, Z_9 symmetry reduces to Z_3 symmetry on these characters f_i (i=0,1,2,3,4).

$$f_{0}(\tau) = \phi_{9,9}^{(9)}(\tau) + \phi_{9,3}^{(9)}(\tau) + \phi_{9,-3}^{(9)}(\tau)$$

$$f_{1}(\tau) = \phi_{2,0}^{(9)}(\tau) + \phi_{7,3}^{(9)}(\tau) + \phi_{7,-3}^{(9)}(\tau)$$

$$f_{3}(\tau) = \phi_{6,0}^{(9)}(\tau) + \phi_{3,3}^{(9)}(\tau) + \phi_{3,-3}^{(9)}(\tau)$$

$$f_{4}(\tau) = \phi_{8,0}^{(9)}(\tau) + \phi_{8,6}^{(9)}(\tau) + \phi_{8,-6}^{(9)}(\tau)$$

Thus one can naturally expects that the characters $f_i(\tau)$ of the dual RCFT with c = 248/11 could exhibit the moonshine for the Thompson group, which is the centralizer of [3C]

$$j(\tau) - 744 = \sum_{i=0}^{4} f_i(\tau)\tilde{f}_i(\tau)$$

One can show that the dual characters are solutions to the 5th MLDE below

$$\left[D_{\tau}^{5} - \frac{413\pi^{2}}{396}E_{4}(\tau)D_{\tau}^{3} + \frac{845\pi^{3}}{792}E_{6}(\tau)D_{\tau}^{2} - \frac{861871\pi^{4}}{1724976}E_{4}^{2}(\tau)D_{\tau} + \frac{3912448\pi^{5}}{39135393}E_{4}(\tau)E_{6}(\tau)\right]\tilde{f}(\tau) = 0$$

Five independent solutions can be expanded in powers of q as follows

$$\begin{split} \tilde{f}_{0}(\tau) &= q^{-\frac{1}{24}\frac{248}{11}} \left(1 + 30876q^{2} + 2634256q^{3} + \mathcal{O}(q^{4}) \right) \\ \tilde{f}_{1}(\tau) &= q^{\frac{20}{11} - \frac{1}{24}\frac{248}{11}} \left(30628 + 3438240q + 132944368q^{2} + \mathcal{O}(q^{3}) \right) \\ \tilde{f}_{2}(\tau) &= q^{\frac{16}{11} - \frac{1}{24}\frac{248}{11}} \left(4123 + 961248q + 49925748q^{2} + \mathcal{O}(q^{3}) \right) \\ \tilde{f}_{3}(\tau) &= q^{\frac{21}{11} - \frac{1}{24}\frac{248}{11}} \left(61256 + 5955131q + 216162752q^{2} + \mathcal{O}(q^{3}) \right) \\ \tilde{f}_{4}(\tau) &= q^{\frac{13}{11} - \frac{1}{24}\frac{248}{11}} \left(248 + 147498q + 10107488q^{2} + \mathcal{O}(q^{3}) \right) \end{split}$$

As expected, the lowest order coefficients **248**, **4123**, **30628** and **61256** are indeed dimensions of irreducible representation of the Thompson group. Other coefficients have decomposition into irreducible representations.

$$\begin{split} \tilde{f}_{0}(\tau) &= q^{-\frac{1}{24}\frac{248}{11}} \left(1 + 30876q^{2} + 2634256q^{3} + \mathcal{O}(q^{4}) \right) \\ \tilde{f}_{1}(\tau) &= q^{\frac{20}{11} - \frac{1}{24}\frac{248}{11}} \left(30628 + 3438240q + 132944368q^{2} + \mathcal{O}(q^{3}) \right) \\ \tilde{f}_{2}(\tau) &= q^{\frac{16}{11} - \frac{1}{24}\frac{248}{11}} \left(4123 + 961248q + 49925748q^{2} + \mathcal{O}(q^{3}) \right) \\ \tilde{f}_{3}(\tau) &= q^{\frac{21}{11} - \frac{1}{24}\frac{248}{11}} \left(61256 + 5955131q + 216162752q^{2} + \mathcal{O}(q^{3}) \right) \\ \tilde{f}_{4}(\tau) &= q^{\frac{13}{11} - \frac{1}{24}\frac{248}{11}} \left(248 + 147498q + 10107488q^{2} + \mathcal{O}(q^{3}) \right) \end{split}$$

 $30876 = 1 \oplus 30875$ $961248 = 4123 \oplus 957125$

Replacing the parafermion characters with their Z_3 twined ones $f_i^w(\tau)$ leads to the Mckay-Thompson series of [3C]_M, which strongly suggests that the dual RCFT has the Thompson group as symmetry.

$$q^{-1} \left(1 + 248q^3 + 4124q^6 + \mathcal{O}(q^9) \right) = \sum_{i=0}^{4} f_i^w(\tau) \tilde{f}_i(\tau) \qquad (w = e^{2\pi i/3})$$
$$j^{3C}(\tau) = \operatorname{Tr}_{V^{\mathbb{M}}} \left[h \cdot q^{L_0^{\mathbb{M}} - \frac{1}{24}24} \right]$$
$$(h \in [3C]_{\mathbb{M}})$$

$$\begin{aligned} f_0^w(\tau) &= \phi_{9,9}^{(9)}(\tau) + w\phi_{9,3}^{(9)}(\tau) + w^2\phi_{9,-3}^{(9)}(\tau) \\ f_1^w(\tau) &= \phi_{2,0}^{(9)}(\tau) + w\phi_{7,3}^{(9)}(\tau) + w^2\phi_{7,-3}^{(9)}(\tau) \\ f_2^w(\tau) &= \phi_{4,0}^{(9)}(\tau) + w\phi_{5,3}^{(9)}(\tau) + w^2\phi_{5,-3}^{(9)}(\tau) \end{aligned} \qquad f_3^w(\tau) &= \phi_{6,0}^{(9)}(\tau) + w\phi_{3,3}^{(9)}(\tau) + w^2\phi_{3,-3}^{(9)}(\tau) \\ f_4^w(\tau) &= \phi_{8,0}^{(9)}(\tau) + w^2\phi_{8,6}^{(9)}(\tau) + w\phi_{8,-6}^{(9)}(\tau) \end{aligned}$$