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Introduction

Mckay and Thompson made a remarkable observation between a modular object and

[1] modular object: j-function

. 123 E3 (1) Ey(q) = 1+ 240q + 2160¢> + 6720¢> + O(q*)
i) —E5(T) By(g) =1 - 504 — 16632¢* — 122976¢° + O(g")
(q _ 627ri7')
- invariant under SL(2,Z) under which
ar + b a,b,c,d € Z
T —
cT +d ad —bc=1

- partition function of a (chiral) RCFT with c=24, conjectured to describe the quantum

theory of gravity in AdS3



Introduction

Mckay and Thompson made a remarkable observation between a modular object and

[2] Monster group: the largest sporadic finite group of order

916,320 .59 .76 .112.13%3.17.19-23.29.31-41-47-59-71 ~ 8 x 10°3

[3] — 1 196883

1
j(1) — 744 = = 4+ 196884q + 214937604 + O(¢*)
q .

=13 196883 © 21296876

each coefficient of the above expansion can be expressed as a sum of dimensions

of the irreducible representation of the monster group M.



Introduction

There exists a derivation of the Monster moonshine from an explicit construction of the

c=24 chiral CFT based on the Leech lattice and Z, orbifold

[Frenkel,Lepowsky,Meurman]

GOAL Generalize the moonshine phenomena for a different sporadic group

- To the end, we need to find a relation between a modular object other than j-function

and sporadic group other than the monster group M.

- e.g. Mathieu moonshine  [1] modular object: the elliptic genus on K3

[Eguchi,Ooguri, Tachikawa] _ _
[2] sporadic group: Mathieu group M.,



Sporadic Groups

Diagram of 26 sporadic simple groups, showing subquotient relationships.
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Sporadic Groups

name order factorization

Mathieu group M1 7920 2%.32.5.11

Mathieu group Miz 05040 26.3%.5.11

Janko group 41 175560 2%.3.5.7.11-19
Mathieu group Mz 443520 27.32.5.7.11
Janko group J2 = HF go4s00 27.3%.5%.7

Mathieu group M2 10200980 27.32.5.7.11.23
Higman-Sims group HS 44352000 29.32.5%.7.11
Janko group J3 50232960 27.3%.5.17.19
Mathieu group M2 244823040 2'%.3%.5.7.11.23
McLaughlin group MclL 898128000 27.3%.5%.7.11
Held group He 4030387200 210.23.52.73.17
Rudvalis Group Ru 145926144000 29.33.53.7.13.29
Suzuki group Suz 448345497600 2'3.37.52.7.11.13
O'Man group O'N 450815505920 2%.3%.5.77.11.19.31
Conway group €o3 495766656000 210.37.5%.7.11.23

Conway group €02 42305421312000 2'%.13%5.5%.7.11.23

Fischer group Fiz 54561751654400 217.3%.52.7.11.13

Harada-Norton group HN 273030912000000 2'%.35.5%.7.11.19

Lyons Group Ly 51785179004000000 2%.37.5%.7.11.31.37.67
Thompson Group Th 90745943887872000 219.30.53.72.13.19.31

Fischer group Fiza 4089470473293004800 21%.313.52.7.11.13.17.23
Conway group Cel 4157776806543360000 22'.3%.5%.92.11.13.23

Janko group J4 86775571046077562880 221.3%.5.7.11%.23.29.31.37.43

Fischer group Fiy, 1255205709190661721202800 22!.316.52.7%.11.13.17.23.29

baby monster group B 4154781481226426181177580544000000 2% .39.55.72.11.13.17-19.23.31 .47

monster group M 808017424794512875886459904961710757005754368000000000 29,320,589 .75 .112.13%.17.19.23.29.31 .41 .47.59.71



Rational CFT

Any conformal field theory in 2 dimensions have two copies of infinite dimensional

symmetry algebras, left and right moving Virasoro algebras

c
(L, L) = (m —n) Ly + E(m?’ — M)0mino (m € Z)

- We focus on parity-preserving CFTs with ¢; = ¢, = ¢

One can decompose the Hilbert space of a given CFT into representations of the

Virasoro algebras degeneracy

H= P d,;yVio Vs
h,h>0 '

representation of

Virasoro algebra



Torus Partition Function CFTonacircleat 7' =

-whenc>1, xo(7) =¢ > | ]

Rational CFT

27TT2

Z(T, 7—_) — TI‘”H e27r7'2H627ri7'1J}

ey [gth-fi gt ]

T C

LL_— ¢ r— <
— Zdh,BTrV;i [q 0 24] Trvg [Q 0 24}
hho . . . -

= Xxn(7) = Xa(7)
Virasoro characters

1
1 —qg"

n=2

1

— (h#0)

xa(r) =¢""2 ]|

n=1

L —c/24=(H —J)/2
Lh—¢/24 = (H + J)/2

H = @ dy Vi@V
h,h>0



Rational CFT

Torus Partition Function CFTonacircleat 7' = 5
TT9

Z dp X (T)XR(T)

Torus partition function is invariant under the modular transformation SL(2,2), generated
by Tand S

iInvariance under T requires states of integer spin

2(7,7) = Te [qho-iqho-i] T2Tth ay [oamd o i gho- ]
invariance under S then leads to strong constraints on the spectrum d,, »

Z(1,7)=Z(——=,—=) (xn(== Z S(hy W) (7))

h'>;




Rational CFT

_ 1 1
Modular Bootstrap Z(7,7) = Z(—;, _E)
[1] when ¢ < 1, this consistency condition can be solved analytically. Those CFTs are
classified and known as minimal models (m+1,m) with central charge

[Zamolodchiov]... 6

[2] when ¢ > 1, one consequence of the constraint is that any unitary CFTs have

infinite number of Virasoro primaries. However, it is extremely to difficult to solve it.



Rational CFT

Rational CFT is a special type of CFT with a finite number of conformal primaries, which

implies that /

(7,7) = Z Mﬂf_(_lfj

1,7=0

conformal character w.r.t. an extended

chiral algebra that includes Virasoro alg.

When the partition function Z takes the above form, both central charge ¢ and

are [Anderson,Moore]

- e.g. Monster CFT with c=24: a single character RCFT
Virasoro characters

Z(r,7) = [j(r) =744 M) = j(r) — 744
— (7)) + 1968832 (1) + 21296876 x5(7) +



Rational CFT

Note that, since the patrtition function is modular invariant, the conformal characters

should be weight 0 vector-valued modular functions,

Conformal characters thus satisfy nth-order
n—1
D} + > an(r)DE| f(r) = 0
k=0

D, =0, — %pEQ(T)

2= (sT) =C C?=1

¢« (7): modular form of weight 2(n-k)

p: weight of a modular form on which the

covariant derivative D acts



Rational CFT

MLDE is invariant under the modular transformation SL(2,Z), which implies that n

independent solutions are vector-valued modular functions.

From the fact that the conformal characters have poles only at 7 = 700 , one can show

that n independent solutions can be expanded in powers of g as follows

filr)=d""% ) jamd™  (am € Z)

|
—

n

(=30 -5 =

I
o

1

(1€{0,2,3,4,6,8,9,10,12, .}

use MLDEs to search for and classify possible characters of a new RCFT
[Mathur,Mukhi,Sen]



Rational CFT

Example: Ising model

[1] Ising model has the identity operator and two primaries of h = 1/2,1/16

1 V3(T) V() 11 9 4
XO(T):_— n3(7)+ n(T)_:q 242(1+q +q° 4 2¢" + )
1] [95(7) dur)| 1 ,
Xe(T) = 3 WS(T) Voo | T 7 242(1+q+q +q3+---)

=\



Rational CFT

Example: Ising model

[2] Three characters are solutions to the MLDE below

d 1 d

(a2 1 5 25 d 23
qdq 2 dq

2 —0
a7’ T 55206 |/ (7)

1 1 1
2 2 2 1

1 1 1

2 2 2
1 1 e 16
\/; —\/; 0



Rational CFT

Example: Ising model

[4] Modular invariant partition function becomes
) 2 2
Z(r,T) = ‘XO(T)‘ + ‘

Xe(T)| +

[5] Fusion algebra can read from the Verlinde formula

1] x [o] = [o] €] x [¢e] = [1]




GOAL Generalize the moonshine phenomena for a different sporadic group

To the end, we need to find a relation between a modular object other than j-function

and sporadic group other than the monster group M.

MODULAR OBJECT: Conformal characters of an RCFT, vector-valued modular function



Bilinear Relation

Mukhi et al observed recently that characters f;(7)(i = 0,1, ..,n — 1) of a certain rational
CFT with central charge c obey an intriguing bilinear relation giving a modular invariant

[Hampapura,Mukhi]

) =i -1 =Y (D

A~

fi(T) can be identified as characters of a dual rational CFT with central charge 24 - ¢

196883 196883

TM:[QTM—I—Z,&@}—I—[l—a ZBT ]

=1

The bilinear relation implies that ' \
M __
0




Baby Monster Moonshine?

Let us consider characters for the Ising model and characters for a certain RCFT satisfying
MLDE below

2315 27025
(D2 + g m Bu(r) Dy — i3 Bu(r) ) £() =

_1 .47
fo(r) =q 2 §(1+962569 +96468914” + ) Dual RCFT has

c=24-1/2 & primaries

~20 % (4371 4 11437459 + 64680601¢ + - - )
of h=3/2, 31/16

Fo(7) = gt 2% (96256 + 10602492 + - )

These characters obey the bilinear relation
J(T) — 744 = XO(T)fO(T) + XE(T)fe(T) + XU(T)fa(T)

(Note that the fusion algebra of the dual RCFT with ¢ = 24 — Y2 is well-defined)



Baby Monster Moonshine?

Note that 4371 and 96256, the lowest order coefficients, are dimensions of irreducible
representation of the double covering of baby Monster group 2.8 . Other coefficients have

decomposition into irreducible representations.

fo(r) = a7 (14 962564° + 9646891¢° + - - )

fo(r) = g3 73 (4371 + 11437450 + 646806014% + - - )

31 1 47

fo(r) = qis— 315 (96256 +10602492¢ + - - ) 02256 = 1 @ 96255
1143745 — 4371 & 1139374

10602496 = 96256 ¢ 10506240



Baby Monster Moonshine

It is known that the Ising model has Z, symmetry. The identity operator and the energy field

are even while the spin field is odd under Z, action.

Zo 0 1 —1 €E—> € o— —0O

When the Ising characters are replaced by their Z, twined characters, one obtains the

McKay-Thompson series of class 2A of M

| |
2
jQA(T) = Trym h' - qut\J/H_Ql_z;M} Z Iry, {h : qLU_ﬂ} Trf/a {qLo_ﬂ}

(W' € 2A]u; B? = 1) " (h € Zs)



Baby Monster Moonshine

The above generalized bilinear relation then implies that Z, can be elevated into an
element of 2A class of M, which acts trivially on the Hilbert space V, (a=0,1,2) of dual
RCFT. ,

22 (1) = Tryu [B - qut\J/ﬂ_zl_z;M} = Z Try, [h : qLO_i} Try [qio_%}

W eRA) (hey)

It implies that the dual RCFT with ¢ = 24 — %% has the centralizer of [2A],, as Symmetry.

Note that the centralizer of [2A],, IS the double covering of the Baby Monster group.

C([2A]y) = 2.B

This explains why the RCFT dual to the Ising model can exhibit the moonshine

phenomena for 2.1B



(MONSTER)
(BABY)
(Conway)
(Fischer)
(Suzuki)

(Thompson, Smith)

(Conway)

(Harada, Norton)
(Hall, Janko)
(Fischer)

(Suzuki)

(Held)

(Mathieu)
(Tits)

(Higman, Sims)

(Hall, Janko)

(Mathieu)

Table 2a. Additional information for small order elements. [Conway, Norto n]

centraliser structure and order
8080 17424 79451 28758 86459 90496 17107 57005 75436 80000 00000
8305 96296 24528 52382 35516 10880 00000
13 95118 39126 33632 81715 20000
37656 17127 57198 51638 78400

2.B
2[1-14.(:'
3.Fy
31+12 282
IxE
4.2* . C,
{4x Fy(2)}.2
4.2 28 5.2)
4.2'*.G,(4).2
SxF
5'%%.2.HJ
3x2.F,,.2
6.5z
2“:‘2,331.+U4(3].2
2.3'78.21%% U2
2+3l+4.2’+6.U4[2]
3)(3’1-:{.119
®
7i¥4.2.4,
8.2’.2:‘0. U,(3).2
8.210.M,,
8x*F ,(2)
8.2°.2%. 4,
[2%3]
8.2%.U,(3)
9.3'*%.5,(3)
[243“]
5x2. HS.2
5x2'*8 (A, x Ag).2
2.5‘5*‘,22'1;:.A5
x2.
2,512 2144 4,
I1xM,,

1429 61507 75402 49600
272 23783 16636 16000
8317 58427 33096 96000
26 48901 28269 31200
4870 49291 36640

824 43239 42400

1 36515 45600 00000

9 45000 00000

77474 10198 52800

269 00729 85600

48 15794 99520

13 06069 40160

16124 31360

2786 91840

2 82127 10400

847 07280

7927 23456

7785 67680

1437 69600

235 92960

125 82911

30 96576

566 87040

28 34352

8870 40000

184 32000

120 00000

60 43000

4 80000

10 45440

class

14
24
2B
34
3B
3C
44
4B
4C
4D
54
3B
64
6B
6C
6D
6E
6F
74
1B
84
8B
8C
8D
8E
8F
94
9B
104
10B
10C
10D
10E
114



3.Fi,, Moonshine

Note that the centralizer of [3A],, is the triple covering of the largest Fischer group Fi,,

To look for a RCFT exhibiting the 3.Fi,, moonshine, all we need is to find a good RCFT
with Z; symmetry. One such RCFT is the Z, parafermion theory with k=3

_ . 2(k —1)
Z, parafermion theory SU(2)/U (1) with ¢k = ———

k
[1] Primaries @bg(% of conformal weight

) 0<I<k
h(’“):l(l”)_m l492<m<]I
bm Ak +2) 4k l B zzf

—m E

[2] qg: Cbl(:l;),b N eQWim/kal(:l;)l



3.Fi,, Moonshine

Z, parafermion theory, a.k.a. three-state Pott's model, has 6 primaries of conformal weight
0,2/3,2/3,2/5,2/5,1/15. Note that primaries with h=2/3 and h=2/5 appear twice, because
they transform non-trivially under Z,
4 (1) = 215 (1 +q° +2¢° + 0((14))
3 3 2_14
) = £21) = 57255 (14 0+ 20 +26° + 0(q"))
1

2 4
f”f(ﬂzféf”;(fr):q% 15 (142 + 2% + 4¢° + O(¢"))

1+ q+2¢% + 363 + O(q ))

DO
o
N

q
S
I
S
EIH
p-|"
ST
AN

The characters f(7) of the dual RCFT with ¢ = 116/5 could exhibit the moonshine for 3.Fi,,,

which is the centralizer of [3A],

§(r) =144 = FE @ Foi(m) + £ for (™) + 1 (D) Fao(r) + £ (1) Fan (7)
+ 1 (D far (D) + £3(7) Fa s

ﬂ
S—



3.Fi,, Moonshine

One can show that the bilinear relations can be satisfied with parafermion characters and

their dual characters, independent solutions to the 4" order MLDE below

90772 428973 1757697 .
[D4 E,(T)D? —i o E¢(T)D, — =063F E4(T)2] f(r)=0

Fii(r) = foo(r) = qis 215 (64584 + 6789393 + 2612025364 + O(q3))
foo(r) = q5 25 (8671 + 1675504q + 832936264> + O(qf‘))
f31(1) = f3,-1(7) = ¢

f3,3('r) — q_ﬁl_éﬁ (1 + 57478¢% + 5477520¢° + O(q4))

111

~# "% (783 + 306936 + 19648602¢° + O(g”) )

Lo

Note also that one can utilize the to obtain the dual characeters.
[Harvey, Wu]



3.Fi,, Moonshine

Note that 783, 8671 and 64584, the lowest order coefficients, are indeed dimensions of
irreducible representation of 3.Fi24. Other coefficients have decomposition into irreducible

representations.

1 11

Fii(r) = fan(r) = qis— 215 (64584 + 6789393¢ + 2612025364> + 0(q3))

111

fao(r) = g5~ 315" (8671 + 1675504q + 8329362642 + 0(q3))

111

far(r) = fa_1(r) = g1 5" (783 +306936¢ + 19648602¢° + O(QS))

faz(r) =g 25 (1 + 57478¢% + 5477520¢° + O(q4))

DT478 =1 @ 57477 306936 = 783 © 306153

1675504 = 8671 @ 1666833 6789393 = 64584 © 6724809



3.Fi,, Moonshine

When the three-state Pott's model characters are replaced by their Z; twined characters,

one obtains the McKay-Thompson series of class 3A of M

-1 (1 + 783¢% + 8672¢° + O(q4)) Wi () fa(r) + w? £ (7) faz (1) + 4 () foo (7)
(3)
3,1

+wfsD () f () + W Y1) faoa (7) + f55(7) faa(7)

| |
5

738(1) = Trym [h qLMLQﬂ ZTl"Va [h-qLO_ﬁ]Trf/a {qio—%]
(h € [3Al) T (e

(’LU _ €2m/3)



Conclusion

Group (X, Cp (X)) c Comments
M (1A, M) 24
B (2A4,2.B) 47/2 Hecke dual of ¢ = 1/2
Th (3C,3 xTh) 248/11 dual of extension of Zg pf
Co (2B,2'124.Coy) dual of Ising ® Ising?
Coy (Zo X Zg,2.21722C0y) dual of Ising @ Ising
Cos (4A,4.222.Co3) 23 Hecke dual of Z, pf
HN (5A,5 x HN) dual (4,3) ® (8,7) ® (8,7), (Zspf)*®?
Suz (6B,6.Suz) CFT with Zg, maybe Zsg pf?
Fil, (3A,3.Fi,,) Hecke dual of Zg pf
Fiag (S3,77)? dual of (5,4) ® (6,5) minimal models
Fligo (6A, 3 X 2.F?:22.2) dual (5,4) ® (6,5) ® (7, 6) ?
MeL (Dg,2'*22McL) Find CFT with Dg symmetry
HS (10A,5 x 2.HS.2) Look at Zos pf?
HJ (5B,5'16.2.H.J) Look at Zsys pf?
He (TA,7 x He) Hecke dual of Z7 pf
ﬂ’:{?dl (ZQ X ZQ, '22+ll+22..ﬁ1(24)
Mss maybe 2.M3> dual of (4,3) ® (5,4) ® (6,5)
ﬂffzg (2 X S") 21“'22)
Mo (114,11 x M)
M Many
T (8C,8 xT) 27th sporadic, Try Zg or Zgy pf?




Rational CFT

[3] There has been a recent development solving the constraint numerically.

e.g. upper bound on the twist gap of the lowest primary above the vacuum

Ay
8
NO CFTs HERE
................... Conserved Currents with j = 1
6 Conserved Currents with j = 2 F:
Conserved Currents with j 2 3 V. x.\,_./“
N 0
4 : T
M On the boundary, we have RCFTS!
o . . .
, i [Collier,Lin,Yin][J.Bae,SL,J.Song]
2 X
H; .
9y |
D K.,
S =
A, :
0 c

20 30

40 50



Rational CFT

For a consistent unitary RCFT, each fusion rule coefficient NZ@ has to be a non-negative

integer.
o
k
(93] x [¢5] = Ny [Px]
NE ez
ij © 4>
i oF

Fusion rule coefficients can be computed from the Verlinde formula
Z ZlSﬂSkl L> Verlinde
Soi - [Verlinde]

When a solution to MLDE have a negative fusion rule coefficient, a corresponding

candidate RCFT is not well-defined.



Generalized Bilinear Relation

Replacing the dual characters with the twined characters, defined below, gives the

Mckay-Thompson series of the Monster. For instance,

a1+ 276" — 2048¢° + O(")| = xo(r) 3P (7) + xe(7) 27 (7) + xo (1) J27(7)

2
> Trve |gh 7% | Trg g g™0731)
a=0

(g € 2D]2B)
where f2P(7) = Try, [ LO%&LC} = qi477(1+2048q + 37675¢" + )
fP(r) = Try, _gqio%_ — g2z (275 + 9153 + 144025¢2 + )

f2P(r) = Trg, |ggho 5"

31 _ 1 47
g5 % (2048 + 4T104g + -+ )



Generalized Bilinear Relation

This generalized bilinear relation implies that an element of 2B class of M could reduce

to an element of 2D class of 2.1B

a1+ 27647 - 20484 + O(g*)] = xo(T)F3(7) + xe(7) F2P(7) + X0 () J2P (7)



Generalized Bilinear Relation

We have generalized bilinear relations for other classes as well, which strongly suggests

that the RCFT with ¢ = 24-1/2, dual to the Ising model, has 2.18 as symmetry.

728 (1) = Tryu [9 - QL%/H_%] = éTrva [qLO_ﬁ}Tl”f/a [9 - qio_%]
gM 2B 3A 3B 1B

92.B 2D JA 3B 4A



(MONSTER)
(BABY)
(Conway)
{Fischer)
(Suzuki)

(Thompson, Smith)

(Conway)

(Harada, Norton)
(Hall, Janko)
(Fischer)

(Suzuki)

(Held)

(Mathieu)
(Tits)

(Higman, Sims)

(Hall, Janko)

(Mathieu)

Table 2a. Additional information for small order elements.

centraliser structure and order
8080 17424 79451 28758 86459 90496 17107 57005 75436 80000 00000
8305 96296 24528 52382 35516 10880 00000
13 95118 39126 33632 81715 20000
37656 17127 57198 51638 78400

2.B
2[1-14.(:'
3.Fy
31+12 282
IxE
4,23 C,
{4x Fy(2)}.2
4.2 28 5.2)
4.2'*.G,(4).2
SxF
5'%%.2.HJ
3x2.F,,.2
6.5z
2“:‘2,331.+U4(3].2
2.3'78.21%% U2
2+3l+4.2’+6.U4[2]
3)(3’1-:{.119
®
7i¥4.2.4,
8.2’.2:‘0. U,(3).2
8.210.M,,
8x*F ,(2)
8.2°.2%. 4,
[2%3]
8.2%.U,(3)
9.3'*%.5,(3)
[243“]
5x2. HS.2
5x2'*8 (A, x Ag).2
2.5‘5*‘,22'1;:.A5
x2.
2,512 2144 4,
I1xM,,

1429 61507 75402 49600
272 23783 16636 16000
8317 58427 33096 96000
26 48901 28269 31200
4870 49291 36640

824 43239 42400

1 36515 45600 00000

9 45000 00000

77474 10198 52800

269 00729 85600

48 15794 99520

13 06069 40160

16124 31360

2786 91840

2 82127 10400

847 07280

7927 23456

7785 67680

1437 69600

235 92960

125 82911

30 96576

566 87040

28 34352

8870 40000

184 32000

120 00000

60 43000

4 80000

10 45440

class

14
24
2B
34
iB
3Cc
44
4B
4C
4D
5A
3B
64
6B
6C
6D
6E
6F
74
1B
84
8B
8C
8D
8E
8F
94
9B
104
10B
10C
10D
10E
114



Thompson Moonshine

Note that the centralizer of [3C],, is the Thompson group Th

To look for a RCFT exhibiting the Th moonshine, all we need is to find a good RCFT with
Z, symmetry. However we already used up Z; parafermion theory to obtain an RCFT

exhibiting 3.Fi,, Moonshine.

Instead, let us consider Z4 parafermion theory. One can show that a set of linear

combination of Zy parafermion characters is closed under SL(2,Z) action.

fo(r) = <£5<g? (7) + (25(9)( ) + Cf’gg,))—g("") ©9) (-
f1(7) = SS9 (1) + 6N (7) + & 5 (7)
fo(7) = & (7) + 6N (7) + & 5 (7)



Thompson Moonshine

Since the linear combination of characters all have m=0 mod 3, Z, symmetry reduces to

Z, symmetry on these characters f;(i=0,1,2,3,4).

fo(r) = &) + 650(7) + 65 4(7)
e U () = d60(m) + 943 + 65 5(r)
filr) = Qbi(z,())( ) + @b( ) T) + Cb’(n)_g(’r) o)

fo(r) = 650(7) + 6%(7) + ¢ 4 (7)

Thus one can naturally expects that the characters /. i(T) of the dual RCFT with ¢ = 248/11

could exhibit the moonshine for the Thompson group, which is the centralizer of [3C]

4
T) — 744 = Zfz(’?')f T
i=0



Thompson Moonshine

One can show that the dual characters are solutions to the 5 MLDE below

41372 5 84573 8618717t 391244875

Bo(r)D3 4+ == Bo(7) D2 — 22 EX(r) Dy + S B(7) Eo(7)] £(7) =

Five independent solutions can be expanded in powers of g as follows

248

folr) = ¢ 211 (1 + 3087642 + 26342564% + O(q ))

filr) = gfi—a it (30628 + 3438240¢ + 132944368¢% + O (93))
fo(r) = git 20T (4123 +961248¢ + 49925748¢° + O(qs))

~ 21 1 248 2 ’
alr) = Bk (61256 +5955131¢ + 216162752¢% + O(q ))

falr) = ¢ii— 24T (248 +147498¢ + 10107488¢2 + O(q3))



Thompson Moonshine

As expected, the lowest order coefficients 248, 4123, 30628 and 61256 are indeed
dimensions of irreducible representation of the Thompson group. Other coefficients have

decomposition into irreducible representations.

248

folr) = ¢ 21 (1 + 308764 + 2634256¢% + O(q ))

fi(r) =quar (30628 + 3438240 + 132944368¢> + O (93))
fo(r) = qui—aa1r (4123 +961248¢ + 49925748¢° + O(qg))

~ 21 1 248 . i
Jalr) = gH-3: %1 (61256 + 5955131¢ + 216162752¢° + O(q ))

~ 13

fa(m) = ¢7

248

~3E (248 + 147498¢ + 10107488¢ + O(¢°) )

—

30876 =1 & 30875 961248 = 4123 © 957125



Thompson Moonshine

Replacing the parafermion characters with their Z, twined ones f;’ (7) leads to the Mckay-
Thompson series of [3C],,, which strongly suggests that the dual RCFT has the Thompson

group as symmetry.
4

g ! (1 +248¢> + 4124¢° + 0(q9)) =Y (0 filr) (w = e”™/?)
[ i=0

jSO(T) — Tryu [h . qugﬂﬁzﬂ

(h € [3Cm)

f(7) = Bia(r) + wola(r) + w2l 5(7)
() = 650 () + weih(r) + w?y) 4(7) : o

(1) = 650(7) + wl)(7) + w4 (7)



