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THE BOUNDARY OF THEORY SPACE

We are interested in the structure of theory space: the constraint on the
parameters or quantum numbers of the theory derived from fundamental
principles (consistency conditions)

* S-matrix bootstrap (60s):

Unitarity + Lorentz invariance + locality +causality, 4’ e® L m? 4w’

Ffe DA ——AAAAAR
The definition of some of these / a
properties are not known non-perturbatively

Analytic +
Massless poles Poles  Branch cuts

* String Landscape/swampland: — —

Conjectural (WGC, distance, non-susy AdS, dS,...)

C’iSCIIC)\NQd 3[‘) C;‘T
Concrete (anomaly cancellation....)

* CFT bootstrap:

. . Allowed 3D-CFT
Unitarity + conformal symmetry

Non-perturbative definition

S El-Showk, M. Paulos , D Poland , S Rychkoy,
D Simmons-Duffine , A. Vichi




THE BOUNDARY OF THEORY SPACE

* CFT bootstrap: start with the 4-pt functions

G(2)
|$12|2A¢|.’L'34|2A¢'

(@(z1)0(22)p(x3)P(24)) =

Unitarity + conformal symmetry

GEOMETRY OF THEORY SPACE

Physicists are uncovering a high-dimensional polyhedron that defines the space of allowed
confermal field theories (CFTs), which are the building blocks of all quantum theories. The plot
below shows which three-dimensional CFTs are cllowed. Viable theories have defining properties
; ates o P - 2 ) called “critical exponents” that fall in the pink region. Surprisingly, interesting theories
Unztar&ty ' g“) Z “Ao GAO (‘,) like the 3-D Ising rioodel — a model of a nﬁagﬂ:?rhof hos?he sc\;mye critical e?ponen‘s
ApEPXD as real magnets, water and other materials ot the points where they undergo
phase fransitions — seem fo live at the comers of the polyhedron =

Disallowed 3D-CF1

Crossing : G(z) = (

Allowed 3D-CF1

Quanta magazine
February 23, 2017




THE BOUNDARY OF THEORY SPACE

* How do we characterize the boundary?

Let’s consider 1 D CFT as an example |Ga(z) = z22F1(A, A, 2A, 2)

Unitarity : G(z) = E c2AOGAO(z)
ApEdxod

Crossing : G(z) = (

let’s consideér the Taylor expansion

(6°)

Gl The four point

. . function lives in
G(z) = G = Ga(z) = Ga = the convex hull

\ :zs/

Crossing says that the four-point function is on a sub plane

of block vectors

— T —

the crossing plane

4AMG" AN LG°




THE BOUNDARY OF THEORY SPACE

* How do we characterize the boundary?

Let’s consider 1 D CFT as an example |Ga(z) = z22F1(A, A, 2A, 2)

Unitarity : G(z) = E ca.Ga,(2)
ApEdxod

Crossing : G(z) = (

T ———

let’s consideér the Taylor expansion

(°
Gl The four point
function lives in

— 2 —
G(z) > G = g Ga(z) > Ga = the convex hull

\én ) \ :’z\/

— — @ T—

Crossing says that the four-point function is on a sub plane
the crossing plane

The four point function is consistent if it lies on the
intersection between the crossing
plane X[Aw] and the unitarity polytope U[{Ai}].




THE BOUNDARY OF THEORY SPACE

* How do we characterize the boundary?

Let’s consider 1 D CFT as an example |Ga(z) = z22F1(A, A, 2A, 2)

Unitarity : G(z) = E c2AOGAO(z)
ApEdxod

Crossing : G(z) = (

let’s consideér the Taylor expansion

G(z) - G =

The problem is then finding the
boundary of the spectrum for intersection




THE BOUNDARY OF THEORY SPACE

For numerical bootstrap, the boundary is defined through the root of optimal
functionals. Reorganize crossing symmetry

S k|2 GAl) - (1-2)HGA(l—2)| =0+ 3 APy (2) = 0
A | A

Consider a linear functional

d as d3 AN +1 d2N+1 A,
Az T3d2 T T N + )l a2 Fa'(2) 2=1/2

Ay
=O!'FA

w(Ff") = lal

when acted on crossing symmetry

w[ZA:CQAFﬁ"(z)] =w[F$é] | Zc?,_\w[FAA“’] =0

A

w(A, ()

o000 The optimal functional
ool - is the functional whose
(1) - s0000]. N last single root is the
—_— N S N SN/ /] lowest. The optimal

Dalimil Mazac | ~2%9 2 : . @ = (a'la ag, ... ’a‘2N+1)

T— T—




THE BOUNDARY OF THEORY SPACE

* The original problem is geometric, the boundary of its solution is non-
geometric 77

* There are strong indications that there is deep structure behind the optimal
functionals

Optimal functional for modular bootstrap chiral algebra U(1)*c maps to the linear
programing bound for sphere packing density with d=2c

Thomas Hartman, Dalimil Mazac, Leonardo Rastelli




THE GEOMETRY OF THE BOUNDARY

Let us go back to the original geometric picture: we are asking for a unitary
polytope that intersects with the crossing plane

The unitary polytope is special, it is a

cyclic polytope!
y p y p N. Arkani-Hamed, S. H. Shao, YTH

The vectors of the convex hull form positive

determinants when ordered

<GAUGA2a"'aGAn)>Oa A1<A2<"'<An

This immediately leads to the conclusion that the boundaries are known

d € odd: (O,Az’,AfH_l, Aj, Aj+1, .o ) U (Ai,Ai+1a AjaAj+1a cee OO)
d € even: (Ai,Az’+1,Aj,AJ’+1,...)

where

(Ai, Air1) = (A, Ay)

T —




THE GEOMETRY OF THE BOUNDARY

The boundaries of a convex hull:

n
Al=mU +- +wal), w>0 ) w=1
i=1

The line (bc) is a boundary but (ac) is not. This is
because while the hull (A) is ONLY on one side of

(bc), it can be on either side of (ac), including on (ac)

det[A, Us, Ug] = 0

e

Thus for boundaries if must satisfy

det[A, U;, U] > 0, VA




THE GEOMETRY OF THE BOUNDARY

A new form of positivity trivializes the problem!

Let's say we have a set of vectors, with a well defined ordering. If its ordered
determinant is positive:

det[U;1,U;2,--- ’Uik]>0’ Vig <<y <l

The convex hull of U; is a cyclic polytope
e It's boundaries are known
d=2: (i,i+1), d=3: (0,i,i+1),(i,i+1,00), d=4:(,i+1,/,j+1)---
Exp: Let A= allg + bUg with a,b > 0

Det[A, Ug, Us, Uz, Ug] = 4a Det[Ue, Us, Us, U, Ua] + b Det[Ug, U, Us, U7, Ue]
da Det[U4, Us, UG) U7a U8] + b Det[U4: Us, ‘J7: UB’ Ug]
a (positive) + b (positive)




THE GEOMETRY OF THE BOUNDARY

Let us go back to the original geometric picture: we are asking for a unitary
polytope that intersects with the crossing plane

Consider d=2N+1, the crossing plane is N-dimensional
( 1 0 0
1A, 0 0
0 1 0
16(Ag — 1A3) 18 0
0 0 1
\ 81A,(32A% —20AZ + 3) 15(A, - 4AY) 47, )

The crossing plane intersects the an N dimensional face of the polytope
(Aila Ail—i-la Aiza Ai:}) sy AiN)

at a point tA‘,
A = GA<1 (Ai, 41, A0y, Ny, X) — Ga;, NG A1 A, X)L
+ (_l)NGiAr (Ailz A2'14-1: .o aAiN—l’x>

for the point to be inside the polytope
(Aiy 41,0,y Ny, X, (DN (AG, Ady ., Aiy, Ay, X,

(Digy e Qi Ay, Ay 41, X)),  same sign

IN




THE GEOMETRY OF THE BOUNDARY

Let us go back to the original geometric picture: we are asking for a unitary
polytope that intersects with the crossing plane

Consider d=2N+1, the crossing plane is N-dimensional
( 1 0 )

’1A¢. 0
0 0
D(As —1A3) 1A 0
0 1

61 2 oy 16 :
\ $14,(32A% —20A% + 3) 13(A, — 4AY) 47, )

After projecting through

(X,0), the geometry is N dim
and we are seeking N+1 points
on the block curve such that

origin is enclosed.




THE GEOMETRY OF THE BOUNDARY

What does this have to do with optimal functionals ?

Reca” that w(A,U)

60000

42000

20000+

From the fact that the vectors form a cyclic polytope, we conjecture the functional
for N =2k+1]is

w(lf‘ﬁ“l’) = (X,0,A,, 8,41, A0, Aiyr1, o, Ay, Adp 41, A)

We need a collection of k points to define the functional.

The geometry at fixed N is N-dimensional when projected through X,0. We are
looking for a set of N+1 vertices to enclose the origin. For the gap, we must be on
a degenerate simplex where the gap is one of it's vertices. Thus we are looking for

k points and the gap (k+1 points on the curve) that form an k-dimensional sub
plane!




THE GEOMETRY OF THE BOUNDARY

What does this have to do with optimal functionals ?

Recall that w(A, ()

60000

42000

20000+

From the fact that the vectors form a cyclic polytope, we conjecture the
N = 2k+1
fun. . A

7_*

We need a collection of k points to define the functional.

Thus we are looking for k points and the gap (k+1 points on the curve) that
form an k-dimensional sub plane! This allows us to solve the functional at any
derivative order with arbitrary precision!

For arbitrary vi ,vo,..., Vi, (X,0,A00p,A1,A0,..., Ak, V1, Vo, ..., VL)




THE GEOMETRY OF THE BOUNDARY

For 2N+1 derivative expansion, after projecting through the crossing plane and
0, the collection of k+1 (N=2k+1) points that enclose the origin is unique, and

gives the optimal functional

w2 = (X,0, A, Aiy+1, Dig, Digs1, - - oy Diy, Ay 1, A)

I ——

for N=2k the optimal functional is

| w(l'§¢) o <X, Oa Aila Ail—l-l, s ’Aik_l ) Aik_1+1a 00, A)

— .

Ay=312

Matches with
optimal functional
from
numeric bootstrap




THE GEOMETRY OF THE BOUNDARY

For 2N+1 derivative expansion, after projecting through the crossing plane and
0, the collection of k+1 (N=2k+1) points that enclose the origin is unique, and

gives the optimal functional

w(173°) =|| (X, 0, A 25731, A 25y - Mg iy A)

|
I ——

for N=2k the optimal functional/is

| w(l'§¢) o <X, Oa Aiu Ail—l-l’ s ’Aik_l ) Aik_1+1a 00, A)

This predicts that at the/intinite derivative order, the optimal functional should
yield a series of double zero above the gap, which corresponds to the complete
spectrum of the theory

Dalimil Mazac




THE GEOMETRY OF HIGHER DIM BOUNDARIES

This simplex picture also allows us to develop a recursive method to carve out
the entire spectrum!

For fixed N, a consistent CFT must contain N+1 set of operators that form a
simplex containing the origin.

* Any set of operators {A1, A, aAnaATH'l}I that contain the origin.

* There must exists an N subset A, A, ... ,An}’ such that when combined
with oo| encloses the origin.

Denote this set as Snl

For each element in Snl , consider all A"H-1|such that the resulting tuple
enclosed the origin. Denote this set as E . The space of all possible

vertices for such simplexis S, U T“l

Now lets move to N+1. The set Sni1 is now the set of all {A1,A2,-+ ,An,Anyt1}

such that when combined with oo, encloses zero

<X30>A1>A2>"' ,An> >0
(X,0,A1,A2,-++ ;Ap_1,00) <0, (X,0,A2,---,Aps+1,00)>0,---




THE GEOMETRY OF HIGHER DIM BOUNDARIES

For fixed N, a consistent CFT must contain N+1 set of operators that form a
simplex containing the origin.

* Any set of operators {A1, Az, - aAnaAn+1}| that contain the origin.

* There must exists an N subset {A1, Ag,--- ,An}| such that when combined
with oo| encloses the origin.

Denote this set as Snl

For each element in S,,|, consider all An+1| such that the resulting tuple
enclosed the origin. Denote this set as Tni° The space of all possible

vertices for such simplex is Sn U Tn|
Now lets move to N+1. The set 1\ is now the set of all

Sn+
such that when combined with ool encloses zero {Aj,Ag,--- ,An,AnH}’

<x30>A1>A2>"' >An> >0
@03 A1, Az, -+, Ap—i, OO) <0, (Xa 0,A2,---, Anti, OO>D -, edt.c.

—_—

The space of S is a subspace of S U'T,.|, i.e.S,lis further constrained
P n+1 P n n




THE GEOMETRY OF HIGHER DIM BOUNDARIES

Let’s consider explicit example, up to 5 Bounding (A1,A2,A3)

A,

Ld o0

0 «X0ss>=0lagestroot | This analytically gives the
. optimal functional for the

next operator

- (/'ff) ;
w (Fp)




THE GEOMETRY OF HIGHER DIM BOUNDARIES

Let’s consider explicit example, up to 5, 7 deriv. Bounding (A1,A2,A3)

AO

| o0

O «<X,0,A2 A>=0 |argest root

| @ a,

<X.0.A1,47 A>=0 1argest root

“ 1 B <X082,BA>=0,Bis the root of <X,0,A2,ii+1>

<X 007,401 40>=0largest root
<X.0.00 M A>=0 |largest root




THE GEOMETRY OF HIGHER DIM BOUNDARIES

Let’s consider explicit example, up to 5. Bounding (A1,A2,A3,A4,As...)

1 0 eo
b A‘

L o0

O <X.,0,4A; A>=0 largest root

Ay=312

I

"event horizon'’

for operators




EXTENSIONS

The convex hull being a cyclic polytope can be found in

» Diagonal limit of 2D global blocks k. sen, A. sinha and A. Zahed

A
2

Gano(2) = (1 z_2 z) 2

when Ay < Aging, w(A) = (X,0,A%, A) For arbitrary vi ,(X,0,A,v1) =0
when Aq‘) > Apink, W(A) — (X, 0, 00, A) - A. Sinha, A. Zahed, Wei Li, YTH




EXTENSIONS

The convex hull being a cyclic polytope can be found in

» Diagonal limit of 2D global blocks k. sen, A. sinha and A. Zahed

22

Gano(z) = (1 —

Scalar gap in P°

(0.088,1.172)

1

0.06

1 A A 1 A A i 1 " i " L i i A 1 I i

0.08 0.10 0.12 0.14 0.16 0.18

Ay

when Ay < Aging, w(A) = (X,0,A%, A) For arbitrary vi ,(X,0,A,v1) =0
when Aq‘) > Apink, W(A) — (X, 0, 00, A) - A. Sinha, A. Zahed, Wei Li, YTH




EXTENSIONS

The convex hull being a cyclic polytope can be found in

* Diagonal limit of 2D global blocks k. sen, A. Sinha and A. Zahed

A
2

Gano(2) = (1 z_2 z) 2

We again find, for 2N+1 derivative expansion, after projecting through the
crossing plane and 0, the collection of k+1 (N=2k+1) points that enclose the
origin is unique, and gives the optimal functional

Ay=5/2
w(B)




EXTENSIONS

The convex hull being a cyclic polytope can be found in

» Diagonal limit of 2D global blocks k. sen, A. sinha and A. Zahed

when Ay < Agink, w(A) = (X,0,A%, A) For arbitrary vi ,{X,0,A;,v1) =0

when Aq‘) > Apink W(A) — (X, 0, 00, A> - A. Sinha, A. Zahed, Wei Li, YTH




EXTENSIONS

The convex hull being a cyclic polytope can be found in

» Diagonal limit of 2D global blocks k. sen, A. sinha and A. Zahed

when Ay < Agink, w(A) = (X,0,A%, A) For arbitrary vi ,{X,0,A;,v1) =0

when Aq‘) > Apink W(A) — (X, 0, 00, A> - A. Sinha, A. Zahed, Wei Li, YTH




EXTENSIONS

The convex hull being a cyclic polytope can be found in

» Diagonal limit of 2D global blocks k. sen, A. sinha and A. Zahed

when Ad) < Akink,w(A) = (X, 0, A", A)

o For arbitrary vi ,(X,0,Agqp,00,v1) =0
A. Sinha, A. Zahed, Wei Li, YTH




EXTENSIONS

The convex hull being a cyclic polytope can be found in

* Modular bootstrap:

F(¢()=) Naexp(—dexp(¢)+d), N;>0,
d>0

R e —

expanding around ¢ =0

n exp(—dexp(¢) +d) = ) _ ca(d)(™.
n=0

me 1) |3
6

Cg—l,

0——(1—02I C——Il—ao (3gs — 3 — 25mqy + 7)),
C.l——d,

By=—— T | o - :
6 H4R 216 216 (18

| [-,T-"(l —go)” g (= 3)(1 — q)? o
- 9 . j

648 216 ¢4 —(d" — 6d° + 7d* — d)

(3 —6mr + 7)) +2(-3— 30'r+7 72)go + (3 + 66 — 28771¢) qn 2

(27 9x | 97%  «3)  2(27 | 531w 2043x2 | 10797 ) g | (27 1071w 7Y83~2 | 77757r3)q,§:]

) Y A < - z
me—1)+3 at .o (n—'i)cz a(n” — bGm + 3) 27—9)7-%9%"—'.7’] 2 (d —d),
0

Cy = —6((] —3({"'*'(1:':

643




EXTENSIONS

The convex hull being a cyclic polytope can be found in

* Modular bootstrap:

F(¢()=) Njexp(—dexp(¢)+d), Ni>0,

d>0

expanding around (¢ =0 [ Fo) /1
C1

Fi

Fy ZNd )

F3 d C3

V) )

T —

We again have a convex hull problem, where the vertices are simply a GL
transformation from the moment curve, i.e. a canonical cyclic polytope!

(‘.g—l,
Cl—-—d,

1.
cp = E(d‘ —d), GL transform

3 = —:-—3‘(]5 — 3 + d" ;
1
24

¢y (d* — 6d° + 7d* — d)




EXTENSIONS

The convex hull being a cyclic polytope can be found in

* Modular bootstrap:

F(¢()=) Naexp(—dexp(¢)+d), N;>0,

d>0

expanding around ¢ =0

We again have a convex hull problem, where the vertices are simply a GL
transformation from the moment curve, i.e. a canonical cyclic polytope!

c=12

w(h
250 -

The numerical

optimal functional

again given by the
degenerate intersection
conditions




SUMMARY

We have seen that the geometry behind the bootstrap program can be approached
analytically in many instances, 1 D CFT, 2D CFT diagonal limit, Modular bootstrap
The optimal functionals, which characterize the boundary of the theory space, is given
by a degenerate simplex, which is unique. Allows us to analytically solve the functional
The same approach applies globally for the spectrum, where the optimal functional for
each operator is given by intersection condition, and the space is carved out recursively.
The same geometric interpretation leads to a geometric definition of the kink
Similarly there is a geometric definition of the bound for OPE coefficients

Inclusion of spins, and move off-diagonal A.Sinha, A. Zahed, Wei Li, YTH

coming to theater soon!




