
Dynamics of Revolving D-Branes

at Short Distances

Takao Suyama (KEK)

Based on collaboration with

S. Iso and H. Ohta (KEK and SOKENDAI),

and N. Kitazawa (Tokyo Metropolitan U).

Ref) arXiv:1909.10717.



Introduction

Mission: Calculate the potential between revolving D-branes.

(Mission impossible?)

⇒ Perturbative calculation for slow revolving. [IOS 17,18]

V(r) = −
∫ ∞

0

ds

2s
(8π2α′s)−

1
2e−

2r2

πα′sη(is)−24

(
1− 1

3
v2
)−1

2

×

[
1− 2πv2

(
− 4

π2
s

∞∑
n=1

n−1qn

1− qn
+ ϵ0s−

4

π
s2

∞∑
n=1

2qn

(1− qn)2

)]
+O(v4).

What is this? Too complicated!
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Mission: Calculate the potential between revolving D-branes.

(Mission impossible?)

⇒ Perturbative calculation for slow revolving. [IOS 17,18]

Recently, we found the partial modular transformation, which

gives a good approximation method for 1-loop amplitude.
cf. [Douglas et al. 97]

This led us to an efficient method for off-shall calculations.

⇒ A good approximation for the desired potential.
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Warm up: D3-D3 at anlge

1-loop effective potential is known: cf. [Polchinski]

V (R) = −
∫ ∞

0

dt

t
(8π2α′t)−

1
2e−

R2

2πα′ t
i
∏4

a=1 ϑ11(
i
πϕ

′
at, it)

η(it)3
∏3

a=1 ϑ11(
i
πϕat, it)

.

What is this? Too complicated!

• V (R) ∼ Newton potential (massless closed string) for large R.

• V (R) ∼ massless open string for small R ?

⇒ No! All states contribute. (e−2πnt not small for small t.)

How to know the shape of the graph?
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Partial modular transformation [IKOS 19]

We calculate as follows:

V (R) = −
∫ ∞

0

dt

t
(8π2α′t)−
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i
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′
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Partial modular transformation [IKOS 19]

We calculate as follows:

V (R) = −
∫ ∞

1

dt

t
(8π2α′t)−

1
2e−

R2

2πα′ t
i
∏4

a=1 ϑ11(
i
πϕ

′
at, it)

η(it)3
∏3

a=1 ϑ11(
i
πϕat, it)

−
∫ 1

0

dt

t
(8π2α′t)−

1
2e−

R2

2πα′ t
i
∏4

a=1 ϑ11(
i
πϕ

′
at, it)

η(it)3
∏3

a=1 ϑ11(
i
πϕat, it)

(Divide integration region into two.)
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Partial modular transformation [IKOS 19]

We calculate as follows:

V (R) = −
∫ ∞

1

dt

t
(8π2α′t)−

1
2e−

R2

2πα′ t
i
∏4

a=1 ϑ11(
i
πϕ

′
at, it)

η(it)3
∏3

a=1 ϑ11(
i
πϕat, it)

+

∫ ∞

1

ds

s
(8π2α′)−

1
2s−

1
2e−

R2

2πα′s
−1

∏4
a=1 ϑ11(

1
πϕ

′
a, is)

η(is)3
∏3

a=1 ϑ11(
1
πϕa, is)

(Modular transf. for the 2nd half.)

3



Partial modular transformation [IKOS 19]

We calculate as follows:

V (R) ∼
∫ ∞

1

dt

t
(8π2α′t)−

1
2e−

R2

2πα′ t
2 sinh(32ϕt) sinh

3(12ϕt)

sinh3(ϕt)

+

∫ ∞

1

ds

s
(8π2α′)−

1
2s−

1
2e−

R2

2πα′s
−12 sin(32ϕ) sin

3(12ϕ)

sin3 ϕ

(Expand theta functions.)

This is more manageable.
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Plot for exact and approximated potentials. Quite nice!
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Reason for good approximation:

For t ≥ 1,

e−2πt ≤ e−2π = 0.001867. Very small !

⇒ Higher-order terms are highly suppressed.

(Degeneracies grow only ec
√
n.)

cf. For D-branes in bosonic string, the error < 3%.

Retaining 1st excited states results in error < 0.05%.

Note: No double-counting.

Note 2: Gaps in the mass spectrum is assumed to be O(1/
√
α′).
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What we have obtained is

V (R) ∼
∫ ∞

1

dt

t
(light open string states)

+

∫ ∞

1

ds (massless closed states).

Note: No double-counting.
This then implies

V (R) ∼
∫ ∞

1

dt

t
(1-loop in SYM)

+

∫ ∞

1

ds (tree in SUGRA).

⇒ Off-shell calculations are possible!
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Revolving D3-branes [IKOS 19]

What we have to do is:

• SYM: 1-loop effective action around

X8 = r cosωt · σ3, X9 = r sinωt · σ3

in N = 4 SU(2) SYM4.

• SUGRA: tree amplitude for exchanging Φ, gµν, C3 with

interaction vertices given by DBI+CS action.

X8 = ±r cosωt, X9 = ±r sinωt

are embedding functions of revolving D3-branes.
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SYM result: for small ω,

Vo(2r) = −ω2r2

π2

[
e−4r2/m2

str −
(
4r2

m2
str

)
E1(4r

2/m2
str)

]
−ω4

[(
1

16π2
+

7r2

12π2m2
str

+
10r4

3π2m4
str

)
e−4r2/m2

str

−
(

6r4

π2m4
str

+
40r6

3π2m6
str

)
E1(4r

2/m2
str)

]
+O(ω6),

where

E1(x) :=

∫ ∞

1

dt
e−xt

t
.

Note: This is exponentially suppressed for large r.

(No contribution to Newton potential.)
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SUGRA result: for small ω,

Vc(2r) = − ω4

16π2

[
1−

(
1 + 4r2/m2

str

)
e−4r2/m2

str

]
+O(ω6)

∼ −v4

r4
.

Note: For large r, the leading term ∝ v4.

⇒ It turned out to be quite general !
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Plot for the approximated potential.

To shallow to form a bound state...

Minimum!
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Note: Bound states of D0-branes.

•Marginal bound states [Yi 97][Sethi,Stern 98]

The existence is well-understood.

Corresponding to gravitons in BFSS.

•Non-marginal bound states [Danielsson et al. 96]

Quantum-mechanical bound states with angular momentum.

(A potential induced by integrating out fast modes.)

⇒ Possibility to investigate with our effective potential.
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Summary

• The partial modular transformation allows us to obtain good
approximation to 1-loop potential.

• This reduces to calculations in SYM and SUGRA.

•Dynamical (non-marginal) bound states can be discussed.

Open issues

• Existence of D-brane bound states.

•Off-shell calculations in string theory.

•Higher loops. cf. [Douglas et al. 97]

• etc.
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