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Introduction

Mission: Calculate the potential between revolving D-branes.

(Mission impossible?)
= Perturbative calculation for slow revolving. [I0S 17,18]

Recently, we found the partial modular transformation, which

gives a good approximation method for 1-loop amplitude.
cf. [Douglas et al. 97]

This led us to an efficient method for off-shall calculations.

= A good approximation for the desired potential.
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Warm up: D3-D3 at anlge

1-loop effective potential is known: cf. [Polchinski]
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What is this? Too complicated!

e V(R) ~ Newton potential (massless closed string) for large R.

e V(R) ~ massless open string for small R ?

= No! All states contribute. (e > not small for small t.)

How to know the shape of the graph?
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Partial modular transformation [IKOS 19]

We calculate as follows:
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(Divide integration region into two.)



Partial modular transformation [IKOS 19]

We calculate as follows:
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(Modular transf. for the 2nd half.)



Partial modular transformation [IKOS 19]

We calculate as follows:
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(Expand theta functions.)

This is more manageable.
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Plot for exact and approximated potentials. Quite nice!
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Reason for good approximation:

For t > 1,
e ?™ < e7*™ = (0.001867. Very small!

= Higher-order terms are highly suppressed.

(Degeneracies grow only eV".)

cf. For D-branes in bosonic string, the error < 3%.

Retaining 1st excited states results in error < 0.05%.

Note: Gaps in the mass spectrum is assumed to be O(1/v/a/).
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What we have obtained is
“dt :
V(R) ~ / n (light open string states)
1

+ / ds (massless closed states).
1

This then implies

> dt
V(R) ~ /1 " (1-loop in SYM)

+/ ds (tree in SUGRA).
1

= Off-shell calculations are possible!
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Revolving D3-branes [IKOS 19]

What we have to do is:

e SYM: 1-loop effective action around
X% = rcoswt-o3, X’ = rsinwt- oy
in N =4 SU(2) SYM,.

e SUGRA: tree amplitude for exchanging ¢, g,,,C3 with

interaction vertices given by DBI4CS action.
X% = 4rcoswt, X’ = Lrsinwt

are embedding functions of revolving D3-branes.



SYM result: for small w,
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Note: This is exponentially suppressed for large r.

(No contribution to Newton potential.)



SUGRA result: for small w,
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Note: For large r, the leading term o< v,

= It turned out to be quite general!
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Minimum!

Plot for the approximated potential.

To shallow to form a bound state...
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Note: Bound states of DO-branes.

e Marginal bound states [Yi97][Sethi,Stern 98]

The existence i1s well-understood.

Corresponding to gravitons in BF'SS.

e Non-marginal bound states [Danielsson et al. 96]

Quantum-mechanical bound states with angular momentum.

(A potential induced by integrating out fast modes.)

= Possibility to investigate with our effective potential.
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Summary

e The partial modular transformation allows us to obtain good
approximation to 1-loop potential.

® This reduces to calculations in SYM and SUGRA.

e Dynamical (non-marginal) bound states can be discussed.

Open issues

e Existence of D-brane bound states.

e Off-shell calculations in string theory.

e Higher loops. cf. [Douglas et al. 97]

® ctc.
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