# Lepton Flavor Universality Anomalies in $B \rightarrow D^{(*)}$ Decay, Updated From Factor, and Leptoquark Explanations

Ying-nan Mao (毛英男)

National Center for Theoretical Sciences, Hsinchu (Dated: December 13, 2019)

Talk @ NCTS Annual Theory Meeting 2019 (NTHU, Hsinchu). Unfinished project with Kingman Cheung, Emi Kou, Zhuo-Ran Huang, Hua-Dong Li, and Cai-Dian Lu.



- This is my first paper about B-physics, so I am not familiar with some details in my following talk;
- We failed to finish the paper before this conference, thus some results are preliminary, but they will not be modified a lot;
- My collaborators suggested not to talk about much details.

#### I. INTRODUCTION

- In SM, charged current processes  $b \to cl^i(e, \mu, \tau)\nu$  are mediated by W-boson;
- $\mathcal{L} \supset \frac{g}{\sqrt{2}} W^+_{\mu} \left( \sum_i \bar{\nu}^i_L \gamma^{\mu} l^i_L + V_{cb} \bar{c}_L \gamma^{\mu} b_L \right) + \text{H.c.: independent on lepton flavor;}$
- Define the ratios R<sub>D</sub> ≡ Br(B→Dτν)/Br(B→Dtν), R<sub>D\*</sub> ≡ Br(B→D\*τν)/Br(B→D\*tν) with ℓ = e, μ, previous theoretical calculations showed R<sub>D</sub> ≃ (0.279 0.305) and R<sub>D\*</sub> ≃ (0.247 0.260):
  [S. Fajfer et al., PRD85 (2012), 094025; M. Tanaka and R. Watanabe, PRD87 (2013), 034028; D. Bigi and P. Gambino, PRD94 (2016), 094008; S. Jaiswal et al., JHEP12 (2017), 060; Z.-R. Huang et al., PRD98 (2018), 095018; C. Murgui et al., JHEP09 (2019), 103; etc.]
- Testing such observables is a possible way to test NP: if people discovered evidence away from the SM prediction, it means lepton flavor universality is broken.

## Testings on $R_{D,D^*}$ were performed since 2012:

| Year | Group | $R_D$         | $R_{D^*}$     | Tagging       | $\tau$ Decay     | Reference      |
|------|-------|---------------|---------------|---------------|------------------|----------------|
| 2012 | BaBar | 0.440(58)(42) | 0.332(24)(18) | Hadronic      | $\ell  u  u$     | PRL109, 101802 |
| 2015 | Belle | 0.375(64)(26) | 0.293(38)(15) | Hadronic      | $\ell \nu \nu$   | PRD92, 072014  |
| 2015 | LHCb  | -             | 0.336(27)(30) | -             | $\ell  u  u$     | PRL115, 111803 |
| 2016 | Belle | -             | 0.302(30)(11) | Semi-leptonic | $\ell \nu \nu$   | PRD94, 072007  |
| 2017 | Belle | -             | 0.270(35)(27) | Hadronic      | $(\pi, \rho)\nu$ | PRL118, 211801 |
| 2018 | LHCb  | -             | 0.291(19)(29) | -             | $3\pi + \nu$     | PRL120, 171802 |
| 2019 | Belle | 0.307(37)(16) | 0.283(18)(14) | Semi-leptonic | $\ell  u  u$     | Belle-2019-18  |

Averaged:  $R_D = 0.346(31)$ ,  $(1-2)\sigma$  pull;  $R_{D^*} = 0.300(12)$ ,  $(3-4)\sigma$  pull.

Other observables:

- $R_{J/\psi} \equiv \frac{\text{Br}(B_c \to J/\psi \tau \nu)}{\text{Br}(B_c \to J/\psi \ell \nu)}$ ,  $R_{J/\psi}^{\text{exp}} = 0.71(17)(18)$  and  $R_{J/\psi}^{\text{SM}} \simeq (0.23 0.29)$ : about  $2\sigma$  pull. [LHCb Collaboration, PRL120 (2018), 121801; etc.]
- $\tau$ -polarization:  $P_{\tau} \equiv \frac{\Gamma^{+} \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$ , where  $\Gamma^{\pm}$  means the decay rate with  $\tau$  having its helicity  $\pm \frac{1}{2}$ ,  $P_{\tau} = -0.38(51)\binom{21}{16}$ . [Belle Collaboration, PRL118, 211801.]
- $D^*$ -polarization:  $F_L^{D^*} \equiv \frac{\Gamma_{D_L^*}}{\Gamma_{D_L^*} + \Gamma_{D_T^*}}$  is the ratio of longitudinal polarized  $D^*$  mode,  $F_L^{D^*} = 0.60(8)(4), (1.5 - 1.8)\sigma$  pull. [Belle Collaboration, BELLE-CONF-1805.]
- Br $(B_c \to \tau \nu)$  has not been observed yet, currently the best estimation of its upper limit is about Br $(B_c \to \tau \nu) \lesssim 10\%$  [A. G. Akeroyd and C.-H. Chen, PRD96 (2017), 075011], we also updated its estimation in this work.
- It is worthy to make better predictions on  $R_{D,D^*}$  together with other observables.

#### II. EFT FORMALISM SET-UP

Effective Lagrangian:

$$\mathcal{L} \supset -\frac{4G_F V_{cb}}{\sqrt{2}} \left[ (1+C_{V_1})\mathcal{O}_{V_1} + C_{V_2}\mathcal{O}_{V_2} + C_{S_1}\mathcal{O}_{S_1} + C_{S_2}\mathcal{O}_{S_2} + C_T\mathcal{O}_T \right] + \text{H.c.}$$

- Operators:  $\mathcal{O}_{V_1} \equiv (\bar{c}_L \gamma^\mu b_L)(\bar{\tau}_L \gamma_\mu \nu_L), \ \mathcal{O}_{V_2} \equiv (\bar{c}_R \gamma^\mu b_R)(\bar{\tau}_L \gamma_\mu \nu_L), \ \mathcal{O}_{S_1} \equiv (\bar{c}_L b_R)(\bar{\tau}_R \nu_L), \ \mathcal{O}_{S_2} \equiv (\bar{c}_R b_L)(\bar{\tau}_R \nu_L), \ \mathcal{O}_T \equiv (\bar{c}_R \sigma^{\mu\nu} b_L)(\bar{\tau}_R \sigma_{\mu\nu} \nu_L).$
- We assume no NP appear in  $bc\ell(e,\mu)\nu$  vertices, thus we only consider NP with  $\tau$ ;
- SM limit: if all coefficients  $C_i \to 0$ .
- If NP scale is  $\Lambda$ ,  $C_{V_1,S_1,S_2,T} \sim \mathcal{O}(v^2/\Lambda^2)$ ,  $C_{V_2} \sim \mathcal{O}(v^4/\Lambda^4)$ , reason:  $\mathcal{O}_2$  cannot be a SM singlet and it can be generated at least from dim-8 EFT, while all the other four operators can be generated from dim-6 EFT.

#### **III. UPDATED FORM FACTOR AND PREDICTIONS**

Brief introduction to the method:

• Global fit using the data points from:

Lattice calculation at large q<sup>2</sup> (or small hadronic recoil) region [MILC collaboration, PRD92 (2015), 034506; HPQCD collaboration, PRD97 (2018) 054502; etc.]
Light-cone sum rule (LCSR) calculation at small q<sup>2</sup> (or large hadronic recoil) region [S. Faller *et al.*, EPJC60 (2009), 603; Y.-M. Wang *et al.*, JHEP06 (2017), 062; N. Gubernari *et al.*, JHEP01 (2019), 150.]

Predictions and Pulls:

|               | $R_D$        | $R_{D^*}$    | $P_{\tau}^{D^*}$ | $F_L^{D^*}$  |
|---------------|--------------|--------------|------------------|--------------|
| SM Prediction | 0.312(7)     | 0.259(4)     | -0.487(4)        | 0.483(6)     |
| Pull          | $+1.1\sigma$ | $+3.2\sigma$ | $< 1\sigma$      | $+1.3\sigma$ |

#### IV. MODEL INDEPENDENT ANALYSIS

Before the analysis, we first turn to  $B_c \to \tau \nu$  decay:

- Also  $bc\tau\nu$  contact vertex: also receive the contributions from NP operators;
- Branching ratio dependence on the Wilson coefficients  $C_i$ :

$$Br(B_c \to \tau \nu) = \frac{\tau_{B_c} m_{B_c} m_{\tau}^2}{8\pi} \left( 1 - \frac{m_{\tau}^2}{m_{B_c}^2} \right) f_{B_c}^2 G_F^2 |V_{cb}|^2 \times \left| 1 + C_{V_1} - C_{V_2} + \frac{m_{B_c}^2}{(m_b + m_c)m_{\tau}} (C_{S_1} - C_{S_2}) \right|^2$$

- SM value:  $\operatorname{Br}_{SM}(B_c \to \tau \nu) \approx 2.4\%$ ;
- Independent on tensor operator, but very sensitive to scalar operators.

#### A. Re-estimation on the upper limit of $Br(B_c \to \tau \nu)$

- Currently the best estimation is  $Br(B_c \to \tau \nu) \lesssim 10\%$  based on LEP data [A. G. Akeroyd and C.-H. Chen, PRD96 (2017), 075011].
- LEP data:  $\operatorname{Br}_{\text{eff}} \equiv \operatorname{Br}(B_u \to \tau \nu) + \frac{f_c}{f_u} \operatorname{Br}(B_c \to \tau \nu) < 5.7 \times 10^{-4} @ 90\% \text{ C.L.}$ [L3 Collaboration, PLB396 (1997), 327.]
- $f_q \equiv \sigma(B_q)/\sigma(b)$  which is the hadronization ratio of *b*-quark exclusively to  $B_q$  meson and  $f_c \ll f_u = f_d$ ,  $\operatorname{Br}(B_c \to \tau \nu) = \frac{f_u}{f_c} (\operatorname{Br}_{\text{eff}} - \operatorname{Br}(B_u \to \tau \nu)).$
- The key observable is  $f_c/f_u$ , which was recently measured by LHCb collaboration as [LHCb collaboration, LHCb-PAPER-2019-033]

$$\frac{f_c}{f_u + f_d} \operatorname{Br}(B_c \to J/\psi \mu \nu) = \begin{cases} 7.07 \pm 0.28, & (\sqrt{s} = 7 \text{ TeV}); \\ 7.36 \pm 0.31, & (\sqrt{s} = 13 \text{ TeV}). \end{cases}$$

- They are consistent with each other within  $1\sigma$  which means the number depends weakly on the scale, thus it can be applied to Z-pole scale;
- Assuming no NP in bcl(e, μ)ν vertices as above, thus Br(B<sub>c</sub> → J/ψμν) should be its SM prediction (1.95±0.46)%, see [LHCb collaboration, LHCb-PAPER-2019-033; and a lot of its references.]
- Br $(B_u \to \tau \nu) = (1.06 \pm 0.19) \times 10^{-4}$  [HFLAV Collaboration, 1909.12524];
- Combine all the numerical results, we have the best limit till now:

$$Br(B_c \to \tau \nu) < \begin{cases} 6.8\%, (@ 90\% \text{ C.L.}) \\ 8.8\%, (@ 95\% \text{ C.L.}) \end{cases}$$

#### B. Global-fit analysis

- We use all the measurements on  $R_{D,D^*,J/\psi}, P_{\tau}, F_L^{D^*}$  listed above to perform global  $\chi^2$ -fit, and also consider the bound of  $Br(B_c \to \tau \nu)$  as a condition.
- For single scalar operator (S<sub>1</sub> or S<sub>2</sub>) cases: χ<sup>2</sup><sub>min</sub>/d.o.f > 19.7/11, which means the scalar scenarios are excluded at 95% C.L., the main constraint comes from B<sub>c</sub> → τν decay, because it is sensitive to scalar operators.
- For single vector and tensor operator  $(V_1, V_2, \text{ or } T)$  cases: can explain the  $R_{D,D^*}$ anomalies without predicting other anomalies, but for single tensor operator scenario, it will predict small  $F_L^{D^*}$  near  $2\sigma$  exclusion boundary.
- Single  $V_2$  scenario favor the case with large CP-violation:  $C_{V_2} = -0.023(32) \pm 0.33(6)$ i.

## V. IMPLICATIONS TO LEPTOQUARK MODEL

- Leptoquark (LQ) models are good candidates to explain the  $R_{D,D^*}$  anomalies;
- A LQ is a scalar or vector particle with both lepton and baryon numbers, and interact directly with a lepton and a quark.
- There are ten types of LQs if we consider only SM fermions.
- Three of which are expected to be able to explain  $R_{D,D^*}$  anomalies, which are named as  $R_2$  (scalar),  $S_1$  (scalar), and  $U_1$  (vector).
- The LQs are listed in next page, where blue interactions can induce  $bc\tau\nu$  vertices, and red ones can explain  $R_{D,D^*}$  anomalies.

LQ models  $(F \equiv 3B + L)$  [Particle Data, Group, PRD98 (2018), 030001]:

|               | SM quantum number                                             | F  | Spin | LQ Couplings                                                                                                                                                      |  |
|---------------|---------------------------------------------------------------|----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | $[\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)]$ |    |      |                                                                                                                                                                   |  |
| $S_1$         | $(\bar{3}, 1, 1/3)$                                           | -2 | 0    | $(ar{b}^c_L u_L,ar{c}^c_L	au_L,ar{c}^c_R	au_R)X_{1/3}$                                                                                                            |  |
| $\tilde{S}_1$ | $(\bar{3}, 1, 4/3)$                                           | -2 | 0    | $ar{b}^c_R	au_R X_{4/3}$                                                                                                                                          |  |
| $S_3$         | $(\bar{3}, 3, 1/3)$                                           | -2 | 0    | $(\bar{b}_L^c \nu_L, \bar{c}_L^c \tau_L) X_{1/3},  \bar{b}_L^c \tau_L X_{4/3},  \bar{c}_L^c \nu_L X_{-2/3}$                                                       |  |
| $V_2$         | $(\bar{3}, 2, 5/6)$                                           | -2 | 1    | $(\bar{b}_R^c \gamma_\mu \nu_L, \bar{c}_L^c \gamma_\mu \tau_R) X_{1/3}^\mu, (\bar{b}_R^c \gamma_\mu \tau_L, \bar{b}_L^c \gamma_\mu \tau_R) X_{4/3}^\mu$           |  |
| $\tilde{V}_2$ | $(\bar{3}, 2, -1/6)$                                          | -2 | 1    | $ar{c}_{R}^{c}\gamma_{\mu}	au_{L}X_{1/3}^{\mu},ar{c}_{R}^{c}\gamma_{\mu} u_{L}X_{-2/3}^{\mu}$                                                                     |  |
| $R_2$         | (3, 2, 7/6)                                                   | 0  | 0    | $(\bar{c}_R  u_L, \bar{b}_L 	au_R) X_{2/3},  (\bar{c}_R 	au_L, \bar{c}_L 	au_R) X_{5/3}$                                                                          |  |
| $\tilde{R}_2$ | (3, 2, 1/6)                                                   | 0  | 0    | $\bar{b}_R \tau_L X_{2/3}, \ \bar{b}_R \nu_L X_{-1/3}$                                                                                                            |  |
| $U_1$         | (3, 1, 2/3)                                                   | 0  | 1    | $(ar{c}_L\gamma_\mu u_L,ar{b}_L\gamma_\mu	au_L,ar{b}_R\gamma_\mu	au_R)X^\mu_{2/3}$                                                                                |  |
| $\tilde{U}_1$ | (3, 1, 5/3)                                                   | 0  | 1    | $ar{c}_R \gamma_\mu 	au_R X^\mu_{5/3}$                                                                                                                            |  |
| $U_3$         | (3, 3, 2/3)                                                   | 0  | 1    | $(\bar{b}_L \gamma_\mu \tau_L, \bar{c}_L \gamma_\mu \nu_L) X^{\mu}_{2/3},  \bar{b}_L \gamma_\mu \nu_L X^{\mu}_{-1/3},  \bar{c}_L \gamma_\mu \tau_L X^{\mu}_{5/3}$ |  |

- Choose  $m_{\rm LQ} = 1.5$  TeV as an example which is allowed at LHC;
- Lagrangian at  $m_{LQ}$  scale:

$$\mathcal{L} \supset \begin{cases} \left( y_R^{b\tau} \bar{b}_L \tau_R + y_L^{c\tau} \bar{c}_R \nu_L \right) X_{2/3} + \text{H.c.}, & (R_2 \text{ LQ}); \\ \left( (V_{CKM}^* y_L)^{c\tau} \bar{c}_L^c \tau_L - y_L^{b\tau} \bar{b}_L^c \nu_L + y_R^{c\tau} \bar{c}_R^c \tau_R \right) X_{1/3} + \text{H.c.}, & (S_1 \text{ LQ}); \end{cases}$$

$$\left( (V_{\text{CKM}} x_L)^{c\tau} \bar{c}_L \gamma_{\mu} \nu_L + x_L^{b\tau} \bar{b}_L \gamma_{\mu} \tau_L + x_R^{b\tau} \bar{b}_R \gamma_{\mu} \tau_R \right) X_{2/3}^{\mu} + \text{H.c.}, \ (U_1 \text{ LQ}).$$

• Integrate LQs out, Wilson coefficients at  $m_{LQ}$  scale:

$$C_{S_2}(m_{\mathrm{LQ}}) = 4C_T(m_{\mathrm{LQ}}) = \frac{y_{L}^{c\tau}(y_B^{k\tau})^*}{4\sqrt{2}G_F V_{cb}m_{\mathrm{LQ}}^2}, \qquad (R_2 \ \mathrm{LQ})$$

$$C_{V_1}(m_{\mathrm{LQ}}) = \frac{y_L^{b\tau}(V_{\mathrm{CKM}}y_L^*)^{c\tau}}{4\sqrt{2}G_F V_{cb}m_{\mathrm{LQ}}^2}, \qquad (R_2 \ \mathrm{LQ})$$

$$C_{V_1}(m_{\mathrm{LQ}}) = \frac{y_L^{b\tau}(V_{\mathrm{CKM}}y_L^*)^{c\tau}}{4\sqrt{2}G_F V_{cb}m_{\mathrm{LQ}}^2}, \qquad (S_1 \ \mathrm{LQ});$$

$$C_{V_1}(m_{\mathrm{LQ}}) = \frac{(V_{\mathrm{CKM}}x_L)^{c\tau}(x_L^{b\tau})^*}{2\sqrt{2}G_F V_{cb}^2 m_{\mathrm{LQ}}^2}, \qquad (C_{S_1}(m_{\mathrm{LQ}}) = -\frac{(V_{\mathrm{CKM}}x_L)^{c\tau}(x_R^{b\tau})^*}{\sqrt{2}G_F V_{cb}^2 m_{\mathrm{LQ}}^2}, \qquad (U_1 \ \mathrm{LQ}).$$

• For simplify, denote

$$y_{LR}^{R_2} \equiv y_L^{c\tau} (y_R^{b\tau})^*, y_{LL}^{S_1} \equiv y_L^{b\tau} (V_{\text{CKM}} y_L^*)^{c\tau}, y_{LR}^{S_1} \equiv y_L^{b\tau} (y_R^{c\tau})^*, x_{LL(LR)}^{U_1} \equiv (V_{\text{CKM}} x_L)^{c\tau} (x_{L(R)}^{b\tau})^*.$$

• Consider the RGE running (3-loop QCD+1-loop EW) from  $m_{LQ}$  to  $m_b$  scale [S. Iguro *et al.*, JHEP02 (2019), 194; M. Gonzalez-Alonso *et al.*, PLB772 (2017), 777]:

$$\begin{pmatrix} C_{S_1}(m_b) \\ C_{S_2}(m_b) \\ C_T(m_b) \end{pmatrix} = \begin{pmatrix} 1.788 \\ 1.789 \\ -4.43 \times 10^{-3} \\ 0.837 \end{pmatrix} \begin{pmatrix} C_{S_1}(m_{LQ}) \\ C_{S_2}(m_{LQ}) \\ C_T(m_{LQ}) \end{pmatrix};$$

$$C_{V_{1,2}}(m_b) = C_{V_{1,2}}(m_{LQ}).$$

• In the following global fits, we fix coefficients in  $S_1$  and  $U_1$  models real, but allow the coefficient for  $R_2$  model complex.

- For all the three LQ models,  $\chi^2_{\rm min} \simeq 13/11$  and best fit points locate in the region  ${\rm Br}(B_c \to \tau \nu) \lesssim 9\%$ , which means all three LQs can explain the anomalies.
- We show the 68% C.L. (green) and 95% C.L. (yellow) allowed regions for the coefficients, and the light blue regions are shown for  $Br(B_c \to \tau \nu) \leq 9\%$ :



• For  $R_2$  LQ, the fitting result implies large CP-violation:  $y_{LR}^{R_2} = -0.33(19) \pm 1.30(11)$ i.

### VI. SUMMARY

- We updated the  $B \to D^{(*)}$  form factors and hence the updated predictions on  $R_{D,D^*}, F_L^{D^*}, P_{\tau}$ , etc.: still over  $3\sigma$  tension in  $R_{D^*}$ .
- We updated the limit estimation  $Br(B_c \to \tau \nu) \lesssim 9\%$  at 95% C.L.
- We updated model-independent analysis for each operator, scalar cases are excluded at 95% C.L., because of strict constraint from  $B_c \rightarrow \tau \nu$  decay.
- Though single tensor scenario is not excluded by global-fit yet, it predicts small  $F_L^{D^*} \sim 0.37(7)$ , which is close to the  $2\sigma$  exclusion boundary.
- Implication to LQ models: three usual models  $R_2$ ,  $S_1$ , and  $U_1$  can still explain the anomalies, in which the fitting result of  $R_2$  model implies large CP-violation.

# The end,

# thank you!

ynmao@cts.nthu.edu.tw