Minimal New Physics Explanation for Anomalies in Hadronic tau decays

Girish Kumar National Taiwan University, Taipei

NCTS Annual Theory Meeting

Dec 13, 2019, Hsinchu

In collaboration with **Subhajit Ghosh**, **Amol Dighe**, and **Tuhin Roy** Based on **1902.09561 (hep-ph)**

Tau decays as probes of SM & beyond

Lepton flavor universality

Charged lepton flavor violation

 $\mathscr{L}_{\rm SM} \supset \frac{g_2}{\sqrt{2}} (\bar{\tau}_L \gamma^\mu \nu_{\tau,L}) W_\mu^- + {\rm h.c.}$

S

Determination of the SM parameters

 V_{us} , α_s , m_s

Tests of CP violation

$$d_{\theta} = V_{ud} d + V_{us}$$

$$A_{CP}^{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}$$
Bigi, Sanda, PLB 625, 2005

This asymmetry is nonzero is the SM, and comes from CPV in **neutral kaon mixing**

Using

$$|K_{S,L}\rangle = p |K^{0}\rangle \pm q |\overline{K}^{0}\rangle, \quad \frac{|p|^{2} - |q|^{2}}{|p|^{2} + |q|^{2}} \approx 2 \operatorname{Re}(\epsilon)$$
Indirect CPV paramater
 $(\sim 10^{-3})$

$$\tau$$

$$W^{-}$$

The SM prediction is

$$A_{CP}^{\tau}(\mathrm{SM}) \approx 2 \operatorname{Re}(\epsilon)$$

 $= (0.33 \pm 0.01)\%$

 $\sim 3\sigma$ disagreement between theory and experiment

 $A_{CP}^{\tau}(SM) = (0.36 \pm 0.01)\%, \quad A_{CP}^{\tau}(Exp) = (-0.33 \pm 0.21 \pm 0.10)\%$ BABAR Collab., 1109.1527

After taking into account exp. conditions and time efficiencies

 $\sim 3\sigma$ disagreement between theory and experiment

$$A_{CP}^{\tau}(SM) = (0.36 \pm 0.01)\%, \quad A_{CP}^{\tau}(Exp) = (-0.33 \pm 0.21 \pm 0.10)\%$$

BABAR Collab., 1109.152

After taking into account exp. conditions and time efficiencies

A sidenote :

The same dynamics also yields **CPV for D meson decays**

$$A_D \equiv \frac{\Gamma(D^+ \to K_S \pi^+) - \Gamma(D^- \to K_S \pi^-)}{\Gamma(D^+ \to K_S \pi^+) + \Gamma(D^- \to K_S \pi^-)} \approx -2 \operatorname{Re}(\epsilon)$$

Experimental and SM values for CP asymmetry in D meson are **consistent** with each other

 $A_D(SM) = (-0.332 \pm 0.006)\%, \quad A_D(Exp) = (-0.41 \pm 0.09)\%$

Extraction of Vus

Branching fraction	HFLAV Spring 2017 fit (%)		
$K^- u_{ au}$	0.6960 ± 0.0096		
$K^-\pi^0 u_ au$	0.4327 ± 0.0149		
$K^- 2\pi^0 u_ au$ (ex. K^0)	0.0640 ± 0.0220		
$K^- 3 \pi^0 u_{ au}$ (ex. K^0 , η)	0.0428 ± 0.0216		
$\pi^-\overline{K}^0 u_ au$	0.8386 ± 0.0141		
$\pi^-\overline{K}^0\pi^0 u_ au$	0.3812 ± 0.0129		
$\pi^-\overline{K}^0\pi^0\pi^0 u_ au$ (ex. K^0)	0.0234 ± 0.0231		
$\overline{K}^{0}h^{-}h^{-}h^{+} u_{ au}$	0.0222 ± 0.0202		
$K^-\eta u_ au$	0.0155 ± 0.0008		
$K^-\pi^0\eta u_ au$	0.0048 ± 0.0012		
$\pi^-\overline{K}^0\eta u_ au$	0.0094 ± 0.0015		
$K^-\omega u_ au$	0.0410 ± 0.0092		
$K^- \phi u_ au$ ($\phi ightarrow K^+ K^-$)	0.0022 ± 0.0008		
$K^- \phi u_ au$ $(\phi ightarrow K^0_S K^0_L)$	0.0015 ± 0.0006		
$\mathcal{K}^{-}\pi^{-}\pi^{+} u_{ au}$ (ex. $\mathcal{K}^{0},\omega)$	0.2923 ± 0.0067		
$K^{-}\pi^{-}\pi^{+}\pi^{0} u_{\tau}$ (ex. K^{0}, ω, η)	0.0410 ± 0.0143		
$K^{-}2\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001		
$K^{-}2\pi^{-}2\pi^{+}\pi^{0} u_{ au}$ (ex. K^{0})	0.0001 ± 0.0001		
$X_s^- u_ au$	2.9087 ± 0.0482		

via exclusive mode:

$$BR(\tau \to K\nu_{\tau})/BR(\tau \to \pi\nu_{\tau})$$

via inclusive mode:

$$\tau \to X_s + \nu_\tau$$

Status of Vus

$$|V_{us}|_{uni} = 0.22582(89) \qquad \text{from } \sqrt{1 - |V_{ud}|^2} \quad (\text{CKM unitarity})$$

$$|V_{us}|_{\tau s} = 0.2186(21) - 3.1\sigma \qquad \text{from } \Gamma(\tau^- \to X_s^- \nu_{\tau})$$

$$|V_{us}|_{\tau K/\pi} = 0.2236(18) - 1.1\sigma \qquad \text{from } \Gamma(\tau^- \to K^- \nu_{\tau})/\Gamma(\tau^- \to \pi^- \nu_{\tau})$$

New physics in $\tau \rightarrow s$?

The low-energy effective Lagrangian

$$\begin{aligned} \mathscr{L}^{\Delta S=1} \supset &-\frac{4G_F}{\sqrt{2}} V_{us} \Big[c_L^V \bar{\tau}_L \gamma^\mu \nu_{\tau L} \cdot \bar{u}_L \gamma_\mu s_L &+ c_R^V \bar{\tau}_L \gamma^\mu \nu_{\tau L} \cdot \bar{u}_R \gamma_\mu s_R & \text{Vector} \\ &+ c_L^S \bar{\tau}_R \nu_{\tau L} \cdot \bar{u}_R s_L &+ c_R^S \bar{\tau}_R \nu_{\tau L} \cdot \bar{u}_L s_R & \text{Scalar} \\ &+ c_T \bar{\tau}_R \sigma_{\mu\nu} \nu_{\tau L} \cdot \bar{u}_R \sigma_{\mu\nu} s_L & \Big] &+ \text{h.c.} & \text{Tensor} \end{aligned}$$

In the SM : $c_L^V = 1$ and rest coefficients are zero

Nature of NP interaction?

Vus extraction from *INCLUSIVE* mode is anomalous

NP keeps two body decay unaffected, but modifies inclusive rate

Vus extraction from

is almost consistent

EXCLUSIVE mode

 $\langle K^{-}(q) | \bar{s}\sigma_{\mu\nu}u | 0 \rangle = 0 \quad \text{For} \quad \tau \to K\nu$

No antisymmetric structure is possible

Nature of NP interaction?

Need interference of two amplitudes to yield non-zero CP asymmetry

$$A_{CP} \propto |A_1 + A_2|^2 - |\bar{A}_1 + \bar{A}_2|^2$$

= -4 |A_1| |A_2| sin($\delta_1^{S} - \delta_2^{S}$) sin($\delta_1^{W} - \delta_2^{W}$)

$$A_j = |A_j| e^{i\delta_j^{\rm S}} e^{i\delta_j^{\rm W}}, (j = 1, 2)$$

Both strong and weak phases are necessary

 $\tau \to K_S \pi^- \nu_\tau :$

$$\frac{d\Gamma}{ds} \propto \left| f_0(s) \left(c_V + \frac{s}{m_\tau (m_s - m_u)} c_S \right) \right|^2,$$
$$\left| f_+(s) c_V - T(s) \right|^2$$

No strong phase in scalar-vector interference

Relative strong phase in tensor-vector interference

Only tensor operator can generate direct CPV !

Inclusive Hadronic Tau decay

$$\mathscr{L}_{\rm NP} \supset -\frac{4G_F}{\sqrt{2}} V_{us} c_T \left[\,\bar{\tau}_R \sigma_{\mu\nu} \nu_{\tau L} \cdot \bar{u}_R \sigma_{\mu\nu} s_L \, \right]$$

SU(3) breaking quantity

Correction from :

 $m_s \leftrightarrow m_u \;,\; \langle \bar{s}s \rangle \leftrightarrow \langle \bar{u}u \rangle$

$$\delta R_{\tau} \equiv \frac{R_{\tau}^{NS}}{|V_{ud}|^2} - \frac{R_{\tau}^S}{|V_{us}|^2}$$

 $\delta R_{\tau}^{\rm SM} = 0.242(32)$

E. Gamiz et. al, PRL 94 (2005) 011803

Inclusive Hadronic Tau decay

$$\mathscr{L}_{\rm NP} \supset -\frac{4G_F}{\sqrt{2}} V_{us} c_T \left[\,\bar{\tau}_R \sigma_{\mu\nu} \nu_{\tau L} \cdot \bar{u}_R \sigma_{\mu\nu} s_L \, \right]$$

CPV in
$$\tau \to K_S \pi^- \nu_{\tau}$$

$$A_{CP}^{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}$$

Devi, Dhargyal, Sinha, PRD 90, 013016 (2014)

$$A_{CP}^{\tau,\text{BSM}} = \frac{\sin \delta_T^W |c_T|}{\Gamma_\tau \text{BR}(\tau \to K_S \pi \nu_\tau)} \times \int_{s_{\pi K}}^{m_\tau^2} ds' \,\kappa(s) |f_+(s')| |B_T(s')| \sin \left[\delta_+(s') - \delta_T(s')\right]$$

Vector and Tensor Form factors : Contribution from K*(892) and K*(1410), <u>dominated by elastic K*(892) resonance</u>

Can be parametrised by **Omnes function**

$$\Omega(s) = \exp\left\{\frac{s}{\pi} \int_{s_{\pi K}}^{\infty} \frac{\delta(s')}{s'(s'-s)}\right\}$$

In elastic region: Watson final state theorem Phys. Rev. 95 (1954) 228 $\delta_+(s) = \delta_T(s) = \delta_1^{1/2}(s)$

CPV in
$$\tau \to K_S \pi^- \nu_{\tau}$$

$$A_{CP}^{\tau} = \frac{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}{\Gamma(\tau^+ \to \pi^+ K_S \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \pi^- K_S \nu_{\tau})}$$

Devi, Dhargyal, Sinha, PRD 90, 013016 (2014)

$$A_{CP}^{\tau,\text{BSM}} = \frac{\sin \delta_T^W |c_T|}{\Gamma_\tau \text{BR}(\tau \to K_S \pi \nu_\tau)} \times \int_{s_{\pi K}}^{m_\tau^2} ds' \,\kappa(s) |f_+(s')| |B_T(s')| \sin \left[\delta_+(s') - \delta_T(s')\right]$$

Vector and Tensor Form factors : Contribution from K*(892) and K*(1410), <u>dominated by elastic K*(892) resonance</u>

Can be parametrised by **Omnes function**

$$\Omega(s) = \exp\left\{\frac{s}{\pi} \int_{s_{\pi K}}^{\infty} \frac{\delta(s')}{s'(s'-s)}\right\}$$

In elastic region: Watson final state theorem Phys. Rev. 95 (1954) 228 $\delta_+(s) = \delta_T(s) = \delta_1^{1/2}(s)$

Vector-Tensor interference vanishes up to inelastic corrections!!

CPV in
$$\tau \to K_S \pi^- \nu_{\tau}$$

Inelastic effects start around K*(1410) resonance

Inelastic phase shifts can't be extracted from experimental fits

We take the following assumption:

 $\delta_T(s) - \delta_+(s) = \alpha \times \operatorname{Arg}[\operatorname{BW}(K^*(1410))]$

Belle collab., PLB 654, 65 (2007) Cirigliano et al, PRL 120, 141803 (2018)

Combined NP resolution

Implications from SM Gauge Invariance

Implications from SM Gauge Invariance

No heavy BSM explanation is possible for A_{CP} anomaly ??!!

Breaking the no-go theorem !!

Matching of low energy EFT operator to Gauge invariant operator is not unique

Breaking the no-go theorem !!

Matching of low energy EFT operator to Gauge invariant operator is not unique

No Neutron EDM operator (Thanks to the Higgses)

Heavy BSM explanation is possible for A_{CP} anomaly

A toy UV model

	$\left \left(SU(3)_C, SU(2)_W \right)_Y \right $	$ U(1)_{q_2} $	$U(1)_{u_{1}}$	$U(1)_{\ell_3}$	$U(1)_{e_{3}}$
B	$(3,1)_{-1/3}$	0	1	0	0
B^c	$(\bar{3},1)_{1/3}$	-1	0	0	0
N	$(1,1)_{0}^{'}$	0	0	-1	0
N^c	$(1,1)_{0}^{\circ}$	0	0	0	1
Φ_c	$(3,1)_{2/3}$	0	+1	0	-1
Φ_y	$(1,1)_{1}^{'}$	0	0	0	0

$$\mathcal{L} \supset k_1 H^{\dagger} q_2 B^c + k_2 H \mathcal{L}_3 N + k_3 \Phi_c u_1^c N^c$$
$$+ k_4 \Phi_c^{\dagger} e_3^c B + k_5 \Phi_y u_1^c B + k_6 \Phi_y^{\dagger} e_3^c N^c$$

Summary

Tau decays offer unique possibilities to test the SM and beyond.

We have explored the possibility of addressing the anomalies in **Vus** and **CP asymmetry** in tau decays via NP in a model-independent analysis.

A single effective tensor operator can account for both CP asymmetry and V_{us} anomaly.

EW gauge invariance implied constraints from neutron EDM are not general and arise only in particular class.

As a proof-of-principle, the UV model demonstrates how to generate the dim-8 gauge invariant operator, avoiding the dim-6 one that contributes to neutron EDM.

Summary

Tau decays offer unique possibilities to test the SM and beyond.

We have explored the possibility of addressing the anomalies in **Vus** and **CP asymmetry** in tau decays via NP in a model-independent analysis.

A single effective tensor operator can account for both CP asymmetry and V_{us} anomaly.

EW gauge invariance implied constraints from neutron EDM are not general and arise only in particular class.

As a proof-of-principle, the UV model demonstrates how to generate the dim-8 gauge invariant operator, avoiding the dim-6 one that contributes to neutron EDM.

Back-up

au : The Heaviest Lepton

Mass: 1776.86(12) MeV PDG 2018

Lifetime : 290.3(5) fs PDG 2018

The only known lepton heavy enough to decay into <u>both leptons</u> <u>and hadrons</u>

PDG 2018 lists 244 various decay modes of the tau

Decays to lighter leptons $\tau \to \ell \bar{\nu}_{\ell} \nu_{\tau} (\ell = e, \mu)$: 17% each

Decays to hadrons $\tau \rightarrow \text{hadrons} + \nu_{\tau} : 65\%$

Largest BR $\tau^- \to \pi^- \pi^0 \nu_{\tau}$: 25 %

NP in Hadronic Tau decay

$$\mathscr{L}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{us} \left[\bar{s}_L \gamma^\mu u_L \cdot \bar{\nu}_{\tau L} \gamma_\mu \tau_L \right] + \frac{Dv^2}{2\Lambda^4} \left[\bar{s}_L \sigma_{\mu\nu} u_R \cdot \bar{\nu}_{\tau L} \sigma^{\mu\nu} \tau_R \right]$$

$$c_T = \left(\frac{v}{\Lambda}\right)^4 \frac{D}{4V_{us}}, \qquad c_T$$
 is a complex number

Im c_T : Contributes to CP asymmetry

Re c_T & Im c_T : Contributes to $\tau \to X_s \nu_{\tau}$

Calculation of R_{τ}

$$\sum_{n} \Gamma(\tau \to \nu_{\tau} n) = \frac{1}{2m_{\tau}} \int \frac{d^3 p_{\nu}}{(2\pi)^3 2E_{\nu}} \frac{1}{2} \sum_{s,s'} \sum_{n} \int d\phi_n \left| \langle \nu_{\tau} n | \mathcal{H} | \tau \rangle \right|^2 (2\pi)^4 \delta^4 (q - p_n)$$

Can be written in term of spectral functions using:

$$\begin{split} \rho_{ij,VV}^{\mu\nu} &\equiv \int d\phi_n (2\pi)^3 \delta^4 (q - p_n) \sum_n \langle 0 \,|\, V_{ij}^{\mu} \,|\, n \rangle \langle n \,|\, V_{ij}^{\nu\dagger} \,|\, 0 \rangle \\ &= (q^{\mu} q^{\nu} - g^{\mu\nu} q^2) \rho_{ij,VV}^{(1)} (q^2) + q^{\mu} q^{\nu} \rho_{ij,VV}^{(0)} (q^2) \end{split}$$

Spectral functions are equal to imaginary part of the associated correlators

$$\Pi_{ij,VV}^{\mu\nu}(q) \equiv i \int d^4x e^{iqx} \langle 0 | T\{V_{ij}^{\mu}(x)V_{ij}^{\nu\dagger}(0)\} | 0 \rangle$$
 Optical theorem
$$= (q^{\mu}q^{\nu} - g^{\mu\nu}q^2) \Pi_{ij,VV}^{(1)}(q^2) + q^{\mu}q^{\nu}\Pi_{ij,VV}^{(0)}(q^2)$$

Calculation of R_{τ}

$$R_{\tau}^{S(NS)} = 12\pi |V_{us(d)}|^2 S_{EW} \int_0^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right) \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im}\Pi^{(1)}(s) + \operatorname{Im}\Pi^{(0)}(s)\right]$$

Braaten, Narison, Pich'92

Analyticity of Π : making use of Cauchy theorem

$$R_{\tau}^{S(NS)} = 6i\pi |V_{us(d)}|^2 S_{EW} \oint_{|s|=m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right) \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s)\right]$$

Use of OPE:

$$\Pi^{J}(s) = \sum_{D=2,4,\dots} \frac{1}{(-s)^{D/2}} \sum_{\dim O=D} C^{(J)}(s,\mu) \langle O_{D}(\mu) \rangle$$

New Physics in R^s_{τ}

The tensor contribution:

$$R_{\tau,BSM}^{S} = 6\pi i |V_{us}|^{2} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right) \left[-12 \operatorname{Re}[C_{T}] \frac{\Pi_{TV}}{m_{\tau}} + 16 |C_{T}|^{2} \left(1 + \frac{s}{2m_{\tau}^{2}}\right) \left(\Pi_{TT}^{(Q)} + \Pi_{TT}^{(R)}\right)\right]$$
Pure tensor term

Using

$$\Pi_{TV}(-Q^{2}) \simeq -\frac{2}{Q^{2}} \langle 0 | \bar{q}q | 0 \rangle$$
$$\Pi_{TT}^{(Q)} = \Pi_{TT}^{(R)} = -\frac{N_{C}}{24 \pi^{2}} \log(Q^{2})$$

Ignored mass and α_s corrections

Craigie, Stern, PRD 26, 1982

Calculation of Vus in SM

Experimental information

 $R_{\tau}^{S} = 0.1633(27) \qquad R_{\tau}^{NS} = 3.4718(72) \qquad |V_{ud}| = 0.97417(21) \qquad \text{HFLAV report 2017}$ $|V_{us}|_{\tau s} = 0.2186 \pm 0.0018_{\text{exp}} \pm 0.0010_{\text{theory}} \qquad -3.1 \,\sigma \text{ away from unitarity!}$

In the SM, $\tau^+(\tau^-)$ decay first into a $K^0(\bar{K}^0)$ state

In experiments, intermediate K_s is not observed directly, rather defined via a final $\pi^+\pi^-$ state with $m_{\pi\pi} \approx m_K$ and decay time τ_S

Therefore, CP asymmetry depends on the integrated decay times and can be expressed as (reconstructed over a time interval $t_1 < \tau_S < t_2$)

$$A_{CP}^{\tau}(t_1, t_2) = \frac{\int_{t_1}^{t_2} dt [\Gamma(K^0(t) \to \pi\pi) - \Gamma(\overline{K}^0(t) \to \pi\pi)]}{\int_{t_1}^{t_2} dt [\Gamma(K^0(t) \to \pi\pi) + \Gamma(\overline{K}^0(t) \to \pi\pi)]}$$

Grossman, Nir, JHEP 04 (2012) 002

Form factors for $\tau \to K_S \pi^- \nu_{\tau}$

Vector and Tensor form factors are parametrized by **Omnés function**

$$\Omega(s) = \exp\left\{\frac{s}{\pi} \int_{s_{\pi K}}^{\infty} \frac{\delta(s')}{s'(s'-s)}\right\}$$

with phase taken from Belle's fit

 $f_+(s) = f_+(0) \,\Omega(s),$ $B_T(s) = B_T(0) \,\Omega(s),$

Cirigliano et al, PRL 120, 141803 (2018)

Decay Rate CP Asymmetry

BABAR result reanalysis

Measured asymmetry
$$A = \frac{f_1 A_1 + f_2 A_2 + f_3 A_3}{f_1 + f_2 + f_3}$$
 $f_1 : \tau^- \to \pi^- K_S^0 \nu_{\tau}$ (signal) $A = (-0.27 \pm 0.18 \pm 0.08) \%$ $f_2 : \tau^- \to K^- K_S^0 \nu_{\tau}$ BABAR: $A_1 = -A_2 = A_Q$ (valid in SM) $A_Q = (0.33 \pm 0.01) \%$ $A_Q = (-0.36 \pm 0.23 \pm 0.11) \%$ BABAR correction factor = 1.08

Correct extraction of asymmetry assuming NP in the signal :

Put $A_2 = (-0.33 \pm 0.01)\%$ and extract $A_1 = (-0.33 \pm 0.21 \pm 0.10)\%$