

Annihilation Signatures of neutron dark decay

Po-Yan Tseng (Yonsei U.)

Collaborators: Wai-Yee Keung (U. of Illinois Chicago) Danny Marfatia (U. of Hawaii, Manoa)

Reference: 1905.03401, JHEP09(2019)053

NCTS annual theory Meeting 2019, 13rd Dec.

Motivation

- The neutron lifetime is measured in bottle experiments and beam experiments.
- Bottle: total lifetime is measured by counting the number of neutrons in a container.
- Beam: count the number of protons from neutron decay.

$$\tau_n^{\text{beam}} = \frac{\tau_n^{\text{bottle}}}{\text{Br}(n \to p + \text{anything})}$$

Motivation

- From SM prediction, bottle and beam experiments are almost equal.
- However, there is 4-sigma tension between bottle and beam:

B.Belfatto, R.Beradze, Z.Berezhiani, 1906.02714.

NCTS annul 2019,

$$\tau_n^{\text{bottle}} = 879.6 \pm 0.6 \text{ s}$$

 $\tau_n^{\text{beam}} = 888.0 \pm 2.0 \text{ s}$

Particle Data Group, Chin.Phys.C40, 10, 100001 (2016), G.L.Greene, P.Geltenbort, Sci.Am.314,36 (2016).

Motivation

- From SM prediction, bottle and beam experiments are almost equal.
- However, there is 4-sigma tension between bottle and beam:
- To explain the discrepancy, 1% of neutron decay into channel without proton.

$$\Delta\Gamma(n \to \text{no proton}) \simeq 7.1 \times 10^{-30} \text{ GeV}$$

Two models, invoking dark decays on the neutron:

$$\begin{array}{c} \text{Model I} \\ n \to \chi + \gamma \end{array}$$

B.Fornal, B.Grinstein, PRL 120, 19, 191801 (2018), 1801.01124, 1810.00862.

Model II $n \to \chi + \phi$

The colored scalar should be heavier than TeV:

B.Fornal, B.Grinstein, PRL 120, 19, 191801 (2018), 1801.01124, 1810.00862.

$$\begin{array}{c} \text{Model II} \\ n \to \chi + \phi \end{array}$$

$$n \longrightarrow \chi \text{ or } \tilde{\chi}$$

$$\theta \simeq \frac{1}{m_n - m_\chi}$$

It can couple to photon and pion:

$$n \longrightarrow \chi \text{ or } \tilde{\chi}$$

$$F_{\bar{n}\gamma n}(Q^2)\,\bar{n}\sigma^{\mu\nu}F_{\mu\nu}n$$

$$F_{\bar{n}\pi n}(Q^2)\,\bar{N}(\overrightarrow{\tau}\cdot\overrightarrow{\pi})i\gamma_5N$$

• Requirement of ${}^{9}\mathrm{Be}$ stability, and prevent χ decay into proton. It becomes good DM candidate.

 $\begin{array}{c} \text{Model I} \\ n \to \chi + \gamma \end{array}$

 $937.900 \text{ MeV} < m_{\chi} < 938.783 \text{ MeV}$

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

 $\begin{array}{c} \text{Model II} \\ n \to \chi + \phi \end{array}$

937.900 MeV $< m_{\chi} + m_{\phi} < 939.565$ MeV

937.900 MeV < $m_{\tilde{\chi}}$,

 $|m_{\chi} - m_{\phi}| < m_p + m_e = 938.783081 \text{ MeV}$

25th SI 2019,

P.Y. Tseng,

• Requirement of ${}^{9}\mathrm{Be}$ stability, and prevent χ decay into proton. It becomes good DM candidate.

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

Model II $n \rightarrow \chi + \phi$ m_n 937.900 MeV $< m_{\chi} + m_{\phi} \le 939.565$ MeV 937.900 MeV $< m_{\tilde{\chi}}$, $|m_{\chi} - m_{\phi}| < m_p + m_e = 938.783081$ MeV

Parameter Space

Model II:

P.Y. Tseng,

• Requirement of ${}^{9}\mathrm{Be}$ stability, and prevent χ decay into proton. It becomes good DM candidate.

 $\begin{array}{c} \text{Model I} \\ n \to \chi + \gamma \end{array}$

 $937.900 \text{ MeV} < m_{\chi} < 938.783 \text{ MeV}$

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

 $\begin{array}{c} \text{Model II} \\ n \to \chi + \phi \end{array}$

937.900 MeV $< m_{\chi} + m_{\phi} < 939.565$ MeV

937.900 MeV < $m_{\tilde{\chi}}$,

 $|m_{\chi} - m_{\phi}| < m_p + m_e = 938.783081 \text{ MeV}$

25th SI 2019,

P.Y. Tseng,

What signatures are expected from Model I and II:

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

What signatures are expected from Model I and II:

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

- GeV DM annihilate with neutron, produce GeV photon and pions.
- SuperK, HyperK, and DUNE can detect these signals.

Signal events:

				_Model J	
	Mod	lel I	P1	 P2	P3
$m_{\chi} \; [{ m MeV}]$	937.900	938.783	937.900	937.900	939.174
$m_{\phi} \; [{ m MeV}]$	-	-	0	0	0.391
$m_{\tilde{\chi}} [{ m MeV}]$	-	-	937.900	$2m_n$	940.000
λ_{ϕ}	-	-	0.04	0.04	0.04
$ \theta $	5.64×10^{-11}	1.75×10^{-10}	4.09×10^{-12}	4.10×10^{-12}	4.03×10^{-11}
$\Gamma_{n \to \chi \gamma \ (or \ \tilde{\chi} \gamma)} \ [GeV]$	7.1×10^{-30}	7.1×10^{-30}	3.7×10^{-32}	0	0
$\Gamma_{n \to \chi \phi} \; [\text{GeV}]$	-	-	7.06×10^{-30}	$7.10 imes 10^{-30}$	7.10×10^{-30}
	$\bar{\chi}n \to \gamma\pi$	$^{0}(y=2)$		$\bar{\chi}n o \phi\gamma\pi^0$	(y=2)
$rac{v}{c}\sigma~[{ m cm}^2]$	5.76×10^{-52}	5.53×10^{-51}	4.74×10^{-57}	1.27×10^{-57}	3.02×10^{-55}
Super-K events	5.67	54.4	4.7×10^{-5}	1.3×10^{-5}	$3.0 imes 10^{-3}$
Hyper-K events	138	1322	1.1×10^{-3}	3.0×10^{-4}	7.2×10^{-2}
DUNE events	9.29	89.4	7.7×10^{-5}	2.0×10^{-5}	$4.9 imes 10^{-3}$

NCTS annul 2019,

P.Y. Tseng,

Signal events:

				_Wodel 1	
	Moo	del I	P1	P2	P3
$m_{\chi} \; [{ m MeV}]$	937.900	938.783	937.900	937.900	939.174
$m_{\phi} \; [{ m MeV}]$	-	-	0	0	0.391
$m_{\tilde{\chi}} [{ m MeV}]$	-	-	937.900	$2m_n$	940.000
λ_{ϕ}	-	-	0.04	0.04	0.04
$ \theta $	5.64×10^{-11}	1.75×10^{-10}	4.09×10^{-12}	4.10×10^{-12}	4.03×10^{-11}
$\Gamma_{n \to \chi \gamma \text{ (or } \tilde{\chi} \gamma)} [\text{GeV}]$	7.1×10^{-30}	7.1×10^{-30}	3.7×10^{-32}	0	0
$\Gamma_{n \to \chi \phi} \; [\text{GeV}]$	_	-	7.06×10^{-30}	7.10×10^{-30}	7.10×10^{-30}
	$\bar{\chi}n o \gamma\pi$	$^{.0}(y=2)$		$\bar{\chi}n o \phi\gamma\pi^0$	(y=2)
$\frac{v}{\sigma}\sigma ~[\mathrm{cm}^2]$	5.76×10^{-52}	5.53×10^{-51}	4.74×10^{-57}	1.27×10^{-57}	3.02×10^{-55}
Super-K events	5.67	54.4	4.7×10^{-5}	$1.3 imes 10^{-5}$	$3.0 imes 10^{-3}$
Hyper-K events	138	1322	1.1×10^{-3}	$3.0 imes 10^{-4}$	7.2×10^{-2}
DUNE events	9.29	89.4	7.7×10^{-5}	2.0×10^{-5}	4.9×10^{-3}

NCTS annul 2019,

P.Y. Tseng,

The predominating channel is multi-pions:

$\bar{n+p}$		$\bar{n}+n$	
$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%
$\pi^+ 2\pi^0$	8%	$2\pi^0$	1.5%
$\pi^+ 3 \pi^0$	10%	$\pi^+\pi^-\pi^0$	6.5%
$2\pi^+\pi^-\pi^0$	22%	$\pi^+\pi^-2\pi^0$	11%
$2\pi^+\pi^-2\pi^0$	36%	$\pi^+\pi^-3\pi^0$	28%
$2\pi^+\pi^-2\omega$	16%	$2\pi^+2\pi^-$	7%
$3\pi^+ 2\pi^- \pi^0$	7%	$2\pi^+ 2\pi^- \pi^0$	24%
		$\pi^+\pi^-\omega$	10%
		$2\pi^+ 2\pi^- 2\pi^0$	0 10%

The Super-Kamiokande Collaboration: 1109.4227.

The predominating channel is multi-pions:

$$\frac{v}{c}\sigma(\bar{n}p \to \text{multi-pions})_{\text{exp}} = 44 \pm 3.5 \text{ mb}$$
$$\frac{v}{c}\sigma(\bar{\chi}n \to \text{multi-pions}) = \theta^2 \frac{v}{c}\sigma(\bar{n}p \to \text{multi-pions})_{\text{exp}}$$

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

- The predominating channel is multi-pions.
- The signal is similar to the antineutron-neutron oscillation searched at SuperK.

The Super-Kamiokande Collaboration: 1109.4227.

	Kinematic cuts (in MeV)	$N_{ m obs}$	$N_{\rm bkgd}$	$N_{ m Super-K}^{3\sigma}$	$N_{ m Hyper-K}^{3\sigma}$	$N_{ m DUNE}^{3\sigma}$
cut-1	$P_{\text{tot}} \subset [0, 450] \ M_{\text{tot}} \subset [750, 1800] \ 17$	24	24.1	[0, 22.5]	[0, 75]	[0, 27]
cut-2	$P_{\text{tot}} \subset [0, 100], \ M_{\text{tot}} \subset [800, 1050]$ [16]	0	0.07	[0,7]	[0, 5.5]	[0,4]
cut-3	$P_{\text{tot}} \subset [100, 250], \ M_{\text{tot}} \subset [800, 1050]$ 16	0	0.54	[0, 6.5]	[0,7]	[0, 5.8]

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

- The predominating channel is multi-pions.
- The signal is similar to the antineutron-neutron oscillation searches at SuperK.

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401. NCTS annul 2019,

- The predominating channel is multi-pions.
- The signal is similar to the antineutron-neutron oscillation searches at SuperK.

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401. NCTS annul 2019,

The percentage of events pass the kinematic cuts:

Table 3. Percentage of events that pass the kinematic cuts.							
	Mode	l I: $m_{\chi} = 937.99$	02 MeV	Model II: P1			
	$\bar{\chi}n o \gamma \pi^0$	$\bar{\chi}n \to 3\pi^0$	$\bar{\chi}n \to 5\pi^0$	$\bar{\chi}n ightarrow \phi \gamma \pi^0$	$\bar{\chi}n ightarrow \phi 3\pi^0$	$\bar{\chi}n o \phi 5\pi^0$	
cut-1	31.2~%	41.0~%	79.7~%	15.4~%	78.3~%	71.8~%	
$\mathbf{cut-2}$	$2.9 imes 10^{-9}$ %	1.1×10^{-9} %	$5.7 imes 10^{-9}$ %	2.4×10^{-6} %	$2.4\times10^{-7}~\%$	$1.5 imes 10^{-7}$ %	
cut-3	$2.7 imes 10^{-10}$ %	$5.7 imes 10^{-10}$ %	$1.0 \times 10^{-10}~\%$	$3.8 imes 10^{-4}$ %	$2.3\times10^{-5}~\%$	$1.5\times10^{-5}~\%$	
		Model II: P2			Model II: P3		
	$\bar{\chi}n o \phi\gamma\pi^0$	$\bar{\chi}n ightarrow \phi 3\pi^0$	$\bar{\chi}n o \phi 5\pi^0$	$\bar{\chi}n ightarrow \phi \gamma \pi^0$	$\bar{\chi}n ightarrow \phi 3\pi^0$	$\bar{\chi}n o \phi 5\pi^0$	
cut-1	1.76~%	57.6~%	93.5~%	14.6~%	$57.5 \ \%$	87.3~%	
$\mathbf{cut-2}$	$1.3 imes 10^{-6}$ %	$7.8\times10^{-6}~\%$	4.6×10^{-6} %	3.2×10^{-6} %	$1.0\times10^{-6}~\%$	$3.6 imes 10^{-7}$ %	
cut-3	$2.8\times10^{-4}~\%$	$1.1\times 10^{-3}~\%$	$1.1\times 10^{-3}~\%$	$5.0 imes 10^{-4}$ %	$1.0\times10^{-4}~\%$	$5.8\times10^{-5}~\%$	

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

P.Y. Tseng,

The percentage of events pass the kinematic cuts:

	Table 3. Percentage of events that pass the kinematic cuts.						
	Mode	el I: $m_{\chi} = 937.99$	$02 { m MeV}$	Model II: P1			
	$\bar{\chi}n o \gamma \pi^0$	$\bar{\chi}n o 3\pi^0$	$\bar{\chi}n \to 5\pi^0$	$\bar{\chi}n o \phi\gamma\pi^0$	$\bar{\chi}n o \phi 3\pi^0$	$\bar{\chi}n \to \phi 5\pi^0$	
cut-1	31.2~%	41.0~%	79.7~%	15.4~%	78.3 %	71.8~%	
$\mathbf{cut-2}$	$2.9 imes 10^{-9}$ %	1.1×10^{-9} %	$5.7 imes 10^{-9}$ %	2.4×10^{-6} %	2.4×10^{-7} %	$1.5 imes 10^{-7}$ %	
cut-3	$2.7 imes 10^{-10}$ %	$5.7 imes 10^{-10}$ %	$1.0\times 10^{-10}~\%$	$3.8 imes 10^{-4}$ %	$2.3\times10^{-5}~\%$	$1.5\times10^{-5}~\%$	
		Model II: P2			Model II: P3		
	$\bar{\chi}n o \phi \gamma \pi^0$	$\bar{\chi}n ightarrow \phi 3\pi^0$	$\bar{\chi}n o \phi 5\pi^0$	$\bar{\chi}n o \phi \gamma \pi^0$	$\bar{\chi}n o \phi 3\pi^0$	$\bar{\chi}n \to \phi 5\pi^0$	
cut-1	1.76~%	57.6~%	93.5~%	14.6~%	57.5 %	87.3~%	
$\mathbf{cut-2}$	$1.3 imes 10^{-6}$ %	$7.8 imes 10^{-6}$ %	4.6×10^{-6} %	3.2×10^{-6} %	$1.0 imes 10^{-6}$ %	$3.6 imes 10^{-7}$ %	
cut-3	$2.8\times10^{-4}~\%$	$1.1\times 10^{-3}~\%$	$1.1\times 10^{-3}~\%$	$5.0 imes 10^{-4}$ %	$1.0\times10^{-4}~\%$	$5.8\times10^{-5}~\%$	

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

NCTS annul 2019,

P.Y. Tseng,

The predominating channel is multi-pions. Model II

	Mo	del I	P1	P2	P3
$m_{\chi} \; [\text{MeV}]$	937.900	938.783	937.900	937.900	939.174
$m_{\phi} \; [{ m MeV}]$	-	-	0	0	0.391
$m_{\tilde{\chi}} \; [{ m MeV}]$	-	-	937.900	$2m_n$	940.000
λ_{ϕ}	-	-	0.04	0.04	0.04
$ \theta $	5.64×10^{-11}	1.75×10^{-10}	4.09×10^{-12}	4.10×10^{-12}	4.03×10^{-11}
$\Gamma_{n \to \chi \gamma \text{ (or } \tilde{\chi} \gamma)} [\text{GeV}]$	7.1×10^{-30}	7.1×10^{-30}	3.7×10^{-32}	0	0
$\Gamma_{n \to \chi \phi} [\text{GeV}]$	-	-	7.06×10^{-30}	7.10×10^{-30}	7.10×10^{-30}
	$\bar{\chi}n \to \mathrm{mr}$	ulti-pions	$\bar{\chi}n o \phi 3\pi^0$ (y = 0.542) &	$\bar{\chi}n \to \phi 5\pi^0 (y=0.337)$
$\frac{v}{c}\sigma ~[{ m cm}^2]$	1.40×10^{-46}	1.35×10^{-45}	2.37×10^{-51}	5.14×10^{-54}	7.04×10^{-50}
Super-K events	1.38×10^6	1.33×10^7	23.3	$5.1 imes 10^{-2}$	693
Hyper-K events	3.35×10^7	3.22×10^8	567	1.23	16824
DUNE events	2.26×10^6	2.18×10^7	38.4	8.3×10^{-2}	1137

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

The predominating channel is multi-pions. Model II

	Moo	del I	P1	P2	P3
$m_{\chi} \; [\text{MeV}]$	937.900	938.783	937.900	937.900	939.174
$m_{\phi} \; [{ m MeV}]$	-	-	0	0	0.391
$m_{\tilde{\chi}} \; [{ m MeV}]$	-	-	937.900	$2m_n$	940.000
λ_{ϕ}	-	-	0.04	0.04	0.04
$ \theta $	5.64×10^{-11}	1.75×10^{-10}	4.09×10^{-12}	4.10×10^{-12}	4.03×10^{-11}
$\Gamma_{n \to \chi \gamma \text{ (or } \tilde{\chi} \gamma)} [\text{GeV}]$	7.1×10^{-30}	7.1×10^{-30}	3.7×10^{-32}	0	0
$\Gamma_{n \to \chi \phi} [\text{GeV}]$	1	-	7.06×10^{-30}	7.10×10^{-30}	7.10×10^{-30}
	$\bar{\chi}n \to \mathrm{mv}$	ulti-pions	$\bar{\chi}n o \phi 3\pi^0$ (y = 0.542) &	$\bar{\chi}n \to \phi 5\pi^0 (y=0.337)$
$\frac{v}{c}\sigma$ [cm ²]	1.40×10^{-46}	1.35×10^{-45}	2.37×10^{-51}	5.14×10^{-54}	7.04×10^{-50}
Super-K events	1.38×10^6	1.33×10^7	23.3	$5.1 imes 10^{-2}$	693
Hyper-K events	3.35×10^7	3.22×10^8	567	1.23	16824
DUNE events	2.26×10^{6}	2.18×10^7	38.4	8.3×10^{-2}	1137

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

• The predominating channel is multi-pions. Model II

	Moo	del I	P1	P2	 P3
$m_{\chi} \; [{ m MeV}]$	937.900	938.783	937.900	937.900	939.174
$m_{\phi} \; [{ m MeV}]$	-	-	0	0	0.391
$m_{\tilde{\chi}} \; [\text{MeV}]$	-	-	937.900	$2m_n$	940.000
λ_{ϕ}	-	-	0.04	0.04	0.04
$ \theta $	5.64×10^{-11}	1.75×10^{-10}	4.09×10^{-12}	4.10×10^{-12}	4.03×10^{-11}
$\Gamma_{n \to \chi \gamma \text{ (or } \tilde{\chi} \gamma)} [\text{GeV}]$	7.1×10^{-30}	7.1×10^{-30}	$3.7 imes 10^{-32}$	0	0
$\Gamma_{n \to \chi \phi} [\text{GeV}]$	-	- 1	$7.06 imes 10^{-30}$	7.10×10^{-30}	7.10×10^{-30}
	$\bar{\chi}n ightarrow \mathrm{mi}$	ulti-pions <	$\bar{\chi}n \to \phi 3\pi^0 (m_{\pi}^2)$	y = 0.542) & z	$\bar{\chi}n \to \phi 5\pi^0 (y=0.337)$
$rac{v}{c}\sigma~[{ m cm}^2]$	1.40×10^{-46}	1.35×10^{-45}	2.37×10^{-51}	5.14×10^{-54}	7.04×10^{-50}
Super-K events	1.38×10^6	1.33×10^7	23.3	$5.1 imes 10^{-2}$	693
Hyper-K events	3.35×10^7	3.22×10^8	567	1.23	16824
DUNE events	2.26×10^6	2.18×10^7	38.4	$8.3 imes 10^{-2}$	1137

W.Y.Keung, D.Marfatia, P.Y.Tseng: 1905.03401.

Summary

- We studied the possible signatures from neutron dark decay models at SuperK, HyperK and DUNE.
- Photon+pion, or multi-pion are the signals.
- Model I is ruled out by the current antineutronneutron oscillation search at SuperK.
- Model II is difficult to completely explore the parameter space, and difficult to rule out. It will be explore by HyperK and DUNE.

Thank You!

Back Up

Introduction

- From SM prediction, bottle and beam experiments are almost equal.
- However, there is 4-sigma tension between bottle and beam:
 B.Belfatto, R.Beradze, Z.Berezhiani, 1906.02714.

$$\tau_n = \frac{2\mathcal{F}t}{\ln 2\mathcal{F}_n(1+3g_A^2)} = \frac{5172.0(1.1) \text{ s}}{1+3g_A^2}$$

From factor:

$$\mathcal{L}^{\text{eff}} \supset \frac{g_n e}{2m_n} F_{\bar{n}\gamma n}(Q^2) \,\bar{n}\sigma^{\mu\nu}F_{\mu\nu}n$$

$$\mathcal{L}^{\text{eff}} \supset \frac{g_{n\pi}}{\sqrt{4\pi}} F_{\bar{n}\pi n}(Q^2) \,\bar{N}(\overrightarrow{\tau}\cdot\overrightarrow{\pi})i\gamma_5 N$$
$$= \frac{g_{n\pi}}{\sqrt{4\pi}} F_{\bar{n}\pi n}(Q^2) \,\left(-\bar{n}i\gamma_5 n\pi^0 + \bar{p}i\gamma_5 p\pi^0 + \sqrt{2}\bar{p}i\gamma_5 n\pi^+ + \sqrt{2}\bar{n}i\gamma_5 p\pi^-\right)$$

$$F_{\bar{n}\pi n}(Q^2) = \left(\frac{1 - m_n^2/\Lambda_n^2}{1 + Q^2/\Lambda_n^2}\right)^y$$

From factor:

	Super-K						
	P1	$\mathbf{P2}$	P3				
$\bar{\chi}n o \phi\gamma\pi^0$	-0.807	-3.48	-0.236				
$\bar{\chi}n o \phi 3\pi^0$	0.229	-0.721	0.883				
$\bar{\chi}n o \phi 5\pi^0$	0.260	-0.502	0.735				
Hyper-K							
	P1	P2	P3				
$\bar{\chi}n o \phi\gamma\pi^0$	-0.434	-2.88	0.172				
$\bar{\chi}n o \phi 3\pi^0$	0.658	-0.371	1.297				
$\bar{\chi}n \to \phi 5\pi^0$	0.535	-0.261	1.003				
		DUNE					
	P1	$\mathbf{P2}$	P3				
$\bar{\chi}n o \phi\gamma\pi^0$	-0.751	-3.38	-0.173				
$\bar{\chi}n \to \phi 3\pi^0$	0.296	-0.665	0.948				
$\bar{\chi}n \to \phi 5\pi^0$	0.304	-0.464	0.777				

Model II:

P.Y. Tseng,

Antineutron-proton annihilation cross section:

$$\frac{v}{c}\sigma(\bar{n}p \to \text{multi-pions})_{\text{exp}} = 44 \pm 3.5 \text{ mb}$$

NCTS annul 2019,

P.Y. Tseng,

Model II

Lagrangian:

B.Fornal, B.Grinstein, PRL 120, 19, 191801 (2018), 1801.01124, 1810.00862.

$$\mathcal{L}_{2} = \left(\lambda_{q} \,\epsilon^{ijk} \,\overline{u_{L_{i}}^{c}} \,d_{Rj} \Phi_{k} + \lambda_{\chi} \Phi^{*i} \bar{\tilde{\chi}} \,d_{Ri} + \lambda_{\phi} \,\bar{\tilde{\chi}} \,\chi \,\phi + \text{h.c.}\right) + M_{\Phi}^{2} \,|\Phi|^{2} + m_{\phi}^{2} |\phi|^{2} + m_{\chi} \,\bar{\chi} \,\chi + m_{\tilde{\chi}} \,\bar{\tilde{\chi}} \,\tilde{\chi} \,.$$
(38)