Effects of Heavy Fermions on Complex Scalar DM Relic Density and Direct Detection in G2HDM²

Chrisna Setyo Nugroho

NCTS

December 13, 2019

²Follow up from C.R. Chen, Y.X. Lin, C.S. Nugroho, R. Ramos, Y.L. Sming Tsai, T.C. Yuan (1910.13138)

1 / 25

Chrisna Setyo Nugroho (NCTS) Effects of Heavy Fermions on Complex Scalar December 13, 2019

Outline

Gauged Two Higgs Doublet Model

- G2HDM Matter Content
- Complex Scalar DM: Set Up
- 2 Relic Density
 - $SU(2)_H$ Triplet-like DM
 - Goldstone boson-like DM
- 3 Direct Search
 - SU(2)_H Triplet-like DM
 - Goldstone boson-like DM
- 4 Surviving Parameter Space

5 Summary

Gauged Two Higgs Doublet Model

G2HDM: embedding two Higgs doublet into a doublet of a non-Abelian gauge group $SU(2)_H$

- New gauge group $SU(2)_H \times U(1)_X$ simplifies the scalar potential.
- EWSB is induced via SSB of the $SU(2)_H$ triplet.
- All new gauge fields are neutral including W' as opposed to the LRSM.
- No tree level FCNC thanks to the gauge symmetry.
- Anomaly free with additional new heavy fermions.
- Contains the Inert Higgs \rightarrow potential DM candidate protected by $SU(2)_H$ gauge symmetry.
- Accidental Z₂ symmetry.

G2HDM Matter Content

Matter Fields	$SU(3)_C$	$SU(2)_L$	<i>SU</i> (2) _{<i>H</i>}	$U(1)_Y$	$U(1)_X$
$Q_L = (u_L \ d_L)^T$	3	2	1	1/6	0
$U_R = \left(u_R u_R^H \right)^T$	3	1	2	2/3	1
$D_R = \left(d_R^H \ d_R \right)^T$	3	1	2	-1/3	-1
u_L^H	3	1	1	2/3	0
$d_L^{\overline{H}}$	3	1	1	-1/3	0
$L_L = (v_L \ e_L)^T$	1	2	1	-1/2	0
$N_R = \begin{pmatrix} v_R & v_R^H \end{pmatrix}_T^T$	1	1	2	0	1
$E_R = \begin{pmatrix} e_R^H & e_R \end{pmatrix}'$	1	1	2	-1	-1
v_L^H	1	1	1	0	0
$e_L^{ar{H}}$	1	1	1	-1	0

3

G2HDM Matter Content

Matter Fields	$SU(3)_C$	$SU(2)_L$	$SU(2)_H$	$U(1)_Y$	$U(1)_X$
$H = (H_1 H_2)^T$	1	2	2	1/2	1
$\Delta_H = \begin{pmatrix} \frac{\Delta_3}{2} & \frac{\Delta_P}{\sqrt{2}} \\ \frac{\Delta_m}{\sqrt{2}} & -\frac{\Delta_3}{2} \end{pmatrix}$	1	1	3	0	0
$\Phi_H = (\Phi_1 \ \Phi_2)^T$	1	1	2	0	1

$$H_1 = \begin{pmatrix} G^+ \\ \frac{\nu+h}{\sqrt{2}} + i\frac{G^0}{\sqrt{2}} \end{pmatrix}, \qquad H_2 = \begin{pmatrix} H^+ \\ H_2^0 \end{pmatrix},$$
$$\Phi_H = \begin{pmatrix} G_H^p \\ \frac{\nu\Phi+\phi_2}{\sqrt{2}} + i\frac{G_H^0}{\sqrt{2}} \end{pmatrix}, \qquad \Delta_H = \begin{pmatrix} \frac{-\nu_\Delta+\delta_3}{2} & \frac{1}{\sqrt{2}}\Delta_p \\ \frac{1}{\sqrt{2}}\Delta_m & \frac{\nu_\Delta-\delta_3}{2} \end{pmatrix}.$$

Chrisna Setyo Nugroho (NCTS) Effects of Heavy Fermions on Complex Scalar

3

<ロ> (日) (日) (日) (日) (日)

• The G2HDM particles can be further categorized based on their Z₂ charge as follow

Z_2 Even	h_1, h_2, h_3	W^{\pm} , Z, Z', Z''	f_SM L,R
$Z_2 \operatorname{Odd}$	$D, \tilde{\Delta}, H^{\pm}$	$W^{\prime(p,m)}$	$f_{L,R}^H$

Table: 1. The Z_2 assignments in G2HDM model.

Heavy Fermion (HF) f^H

• The heavy fermion gets its mass from Yukawa term

$$m_{f^H} = rac{y_{f^H} v_\Phi}{\sqrt{2}} \; .$$

In the old set up we set

$$m_{f^H} = max[1.5 \,\mathrm{TeV}, 1.20 \,\mathrm{m_D}]$$
.

We relieve the old set up by setting

 $m_{f^H} = max[150 \,\mathrm{GeV}, 1.05 \,\mathrm{m_D}]$.

- Lower bound around Top quark mass.
- 5 % mass difference to account for coannihilation.

Complex Scalar DM Candidate

• Let's remind ourselves for two Higgs doublets H

$$H_1 = \begin{pmatrix} G^+ \\ \frac{\nu+h}{\sqrt{2}} + i\frac{G^0}{\sqrt{2}} \end{pmatrix}, \ H_2 = \begin{pmatrix} H^+ \\ H_2^0 \end{pmatrix}$$

• For additional $SU(2)_H$ scalars with scale hierarchy $v_{\Phi} \ge v_{\Delta} > v$

$$\Phi_{H} = \begin{pmatrix} G_{H}^{\rho} \\ \frac{v_{\Phi} + \phi_{2}}{\sqrt{2}} + i \frac{G_{H}^{0}}{\sqrt{2}} \end{pmatrix}, \ \Delta_{H} = \begin{pmatrix} \frac{-v_{\Delta} + \delta_{3}}{2} & \frac{1}{\sqrt{2}} \Delta_{\rho} \\ \frac{1}{\sqrt{2}} \Delta_{m} & \frac{v_{\Delta} - \delta_{3}}{2} \end{pmatrix}.$$

 The Z₂ odd mixing matrix M²_D in the basis of {G^p_H, H^{0*}₂, Δ_p} is given by

$$\begin{pmatrix} M_{\Phi\Delta} \mathbf{v}_{\Delta} + \frac{1}{2} \lambda'_{H\Phi} \mathbf{v}^2 & \frac{1}{2} \lambda'_{H\Phi} \mathbf{v}_{\Phi} & -\frac{1}{2} M_{\Phi\Delta} \mathbf{v}_{\Phi} \\ \frac{1}{2} \lambda'_{H\Phi} \mathbf{v}_{\Phi} & M_{H\Delta} \mathbf{v}_{\Delta} + \frac{1}{2} \lambda'_{H\Phi} \mathbf{v}_{\Phi}^2 & \frac{1}{2} M_{H\Delta} \mathbf{v} \\ -\frac{1}{2} M_{\Phi\Delta} \mathbf{v}_{\Phi} & \frac{1}{2} M_{H\Delta} \mathbf{v} & \frac{1}{4 \mathbf{v}_{\Delta}} \left(M_{H\Delta} \mathbf{v}^2 + M_{\Phi\Delta} \mathbf{v}_{\Phi}^2 \right) \end{pmatrix}$$

Complex Scalar DM Candidate

• \mathcal{M}_D^2 is diagonalized by an orthogonal matrix O^D such that the physical fields and unphysical ones are related via

$$\{G_{H}^{p}, H_{2}^{0*}, \Delta_{p}\}^{T} = O^{D} \cdot \{\widetilde{G}^{p}, D, \widetilde{\Delta}\}^{T}$$

• The complex scalar DM *D* can be written in terms of its components as

$$D = O_{12}^D G_H^p + O_{22}^D H_2^{0*} + O_{32}^D \Delta_p.$$

- We have three different types of complex scalar DM:
 - Inert doublet-like DM: $(O_{22}^D)^2 \equiv f_{H_2^*} > 2/3$
 - $SU(2)_H$ triplet-like DM: $(O_{32}^D)^2 \equiv f_{\Delta_p} > 2/3$
 - Goldstone boson-like DM: $(O_{12}^D)^2 \equiv f_{G_H^p} > 2/3$

$SU(2)_H$ Triplet-like DM Δ_p

$SU(2)_H$ Goldstone boson-like DM G^p

Figure: 2a. $\Omega_D h^2$ of G^P DM (C.R.Chen et al. 1910.13138).

Figure: 2b. $\Omega_D h^2$ of G^p DM with HF.

47 ▶

→
 ⇒

```
SU(2)_H Triplet-like DM \Delta_p
```


12 / 25

QCD Sommerfeld Correction and BSF

Figure: 3. DM Relic density including QCD Sommerfeld Correction and BSF.

13 / 25

Chrisna Setyo Nugroho (NCTS) Effects of Heavy Fermions on Complex Scalar December 13, 2019

EM Correction to QCD BSF

Figure: 4 DM Relic density including QCD BSF with EM correction.

$SU(2)_H$ Triplet-like DM Δ_p

$SU(2)_H$ Goldstone boson-like DM G^p


```
SU(2)_H Triplet-like DM \Delta_p
```


Surviving Parameter

Parameter Ranges No HF	Parameter Ranges with HF		
$6.35{ imes}10^{-3} < \lambda_{\Phi} < 4.09$	$1.83{ imes}10^{-3} < \lambda_{m{\Phi}} < 4.17$		
$-3.39 < \lambda_{H\Delta} < 4.07$	-3.35 $<\lambda_{H\Delta}<$ 3.55		
-0.07 $<\lambda_{\Phi\Delta}<$ 6.62	-0.40 $<\lambda_{\Phi\Delta}<$ 6.48		
$-5.67 < \lambda_{H\Phi} < 3.41$	-5.53 $<\lambda_{H\Phi}<$ 3.03		
$-0.01 < \lambda^{'}_{H\Phi} < 15.90$	$0.00 < \lambda^{'}_{Holdsymbol{\Phi}} < 15.27$		
$1.29 imes 10^{-1} < \lambda_H < 2.80$	$1.30{ imes}10^{-1} < \lambda_H < 2.71$		
$-22.74 < \lambda_{H}^{'} < 9.57$	$-22.24 < \lambda_{H}^{'} < 9.92$		
$1.01{ imes}10^{-4} < \lambda_{\Delta} < 4.99$	$1.01{ imes}10^{-4} < \lambda_{\Delta} < 5.02$		
$7.16 \times 10^{-3} < g_H < 0.10$	$2.97 \times 10^{-3} < g_H < 0.10$		
$1.01 \times 10^{-8} < g_X < 3.55 \ \times 10^{-2}$	$1.01 imes 10^{-8} < g_X < 2.86 \ imes 10^{-2}$		

Table: 2 The surviving parameter space after DM constraints.

Surviving Parameter

Parameter Ranges No HF (GeV)	Parameter Ranges with HF (GeV)
$2.75 < M_{H\Delta} < 4.99 \ imes 10^3$	$1.75 \times 10^3 < M_{H\Delta} < 3.91 \times 10^3$
$0.01 < M_{\Phi\Delta} < 49.9$	$0.01 < M_{\Phi\Delta} < 46.9$
$5.00 \ imes 10^2 < v_\Delta < 2.00 \ imes 10^4$	$5.09 imes 10^2 < v_\Delta < 2.00 imes 10^4$
$4.15 \ imes 10^4 < v_{\Phi} < 1.00 \ imes 10^5$	$4.38 \times 10^4 < v_{\Phi} < 9.99 \times 10^4$

Table: 3 The surviving dimensionful parameter space after DM constraints.

Summary

- G2HDM is a new framework with a rich but simple scalar sector.
- The Gauge group exhibits accidental Z₂ symmetry that protects DM stability.
- The new heavy fermions effectively reduce the DM relic abundance.
- The new heavy fermions reduce the DM nucleon interaction.
- The inclusion of heavy fermions constraint the allowed parameter space significantly.

Back Up Slides

<ロ> (日) (日) (日) (日) (日)

3

ISV and XENON1T Limit

- Due to the isospin violating (ISV) nature of the DM-nucleon interaction one needs to take careful consideration when imposing the experimental result on the theoretical calculation.
- The ISV originated from the following coupling

$$g_{\bar{q}qZ_{k}}^{V} = \frac{i}{2} \left[\frac{g}{c_{W}} \left(T_{3} - 2Q_{q}s_{W}^{2} \right) \mathcal{O}_{1k}^{G} + g_{H}T_{3}^{\prime}\mathcal{O}_{2k}^{G} + g_{X}X\mathcal{O}_{3k}^{G} \right].$$
(1)

 To accommodate ISV, we compute the DM nucleon cross section in nucleus level

$$\sigma_{DN} = \frac{4\mu_{\mathcal{A}}^2}{\pi} [f_{\rho}Z + (A - Z)f_n]^2 .$$
 (2)

• The XENON1T limit is rescaled to the nucleus level

$$\sigma_{DN}^{X1T} = \sigma_p^{SI}(X1T) \times \frac{\mu_A^2}{\mu_p^2} \times \left[\mathcal{Z} + \frac{f_n}{f_p} (\mathcal{A} - \mathcal{Z}) \right]^2 .$$
(3)

• Remark: $\sigma_{DN} = 0$ when $f_n/f_p = -Z/(A-Z) \approx -0.7 \rightarrow \text{maximal cancellation}$.

Direct Search Feynman Diagrams

Figure: 7. Feynman diagram relevant to the DM direct detection.

Direct Search Feynman Diagrams

Figure: 8. Feynman diagram relevant to the DM direct detection.

Scan Range

Parameter	Doublet-like	Triplet-like	Goldstone-like
λ_H	[0.12, 2.75]	[0.12, 2.75]	[0.12, 2.75]
λ_{Φ}	[10 ⁻⁴ , 4.25]	[10 ⁻⁴ , 4.25]	[10 ⁻⁴ , 4.25]
λ_{Δ}	$[10^{-4}, 5.2]$	$[10^{-4}, 5.2]$	$[10^{-4}, 5.2]$
$\lambda_{H\Phi}$	[-6.2, 4.3]	[-6.2, 4.3]	[-6.2, 4.3]
$\lambda_{H\Delta}$	[-4.0, 10.5]	[-4.0, 10.5]	[-4.0, 10.5]
$\lambda_{\Phi\Delta}$	[-5.5, 15.0]	[-5.5, 15.0]	[-5.5, 15.0]
$\lambda'_{H\Phi}$	[-1.0, 18.0]	[-1.0, 18.0]	[-1.0, 18.0]
λ'_H	$[-8\sqrt{2}\pi, 8\sqrt{2}\pi]$	$[-8\sqrt{2}\pi, 8\sqrt{2}\pi]$	$\left[-8\sqrt{2}\pi, 8\sqrt{2}\pi ight]$
$M_{H\Delta}/{ m GeV}$	[0.0, 15000]	[0.0, 5000.0]	[0.0, 5000.0]
$M_{\Phi\Delta}/{ m GeV}$	[0.0, 5.0]	[-50.0, 50.0]	[0.0, 700]
$v_{\Delta}/{ m TeV}$	[0.5, 2.0]	[0.5, 20.0]	[14.0, 20.0]
$v_{\Phi}/{ m TeV}$	[20, 100]	[20, 100]	[20, 28.0]
в́н	[see text, 0.1]	[see text, 0.1]	[see text, 0.1]
gх	$[10^{-8}, 1.0]$	$[10^{-8}, 1.0]$	$[10^{-8}, 1.0]$

Table: Parameter ranges used in the scans of G2HDM.

2

イロン イヨン イヨン イヨン