



## Recent SM results from CMS

Rong-Shyang Lu National Taiwan University



CMS



#### General purpose design to detect all particles. Wide reaches of physics potential





CMS Luminosity



- In Run1, CMS recorded 6.1 fb<sup>-1</sup> @7TeV and 23.3 fb<sup>-1</sup> @8TeV.
- Run 2, CMS recorded 163 fb<sup>-1</sup> @13TeV.





# SM results of CMS



- Numerous "Standard Model measurements", use almost Full Run2 data, performed by CMS
- Good agreement for many processes, over 15 orders of magnitude
- Testing the Standard Model through rare processes and differential/precision measurements possible due to excellent reconstruction and calibration performance results
   CMS Preliminary



# Drell-Yan from leptons

JHEP 12(2019) 059

- The production of lepton pairs in ppcollisions is described by the s-channel exchange of  $\gamma$ \*Z. Theoretical calculations are well established up to NNLO order
- The measurement provides
- ell established up to ININLO order
  The measurement provides
  Testing Standard model (SM)
  Constraining parton distribution functions (PDFs) (PDFs)
  - Extracting parameters ( $\sin^2\theta_w$ ,  $A_{FB}$ , angular coefficients etc.)
  - Background evaluation for BSM models
  - Testing different Monte Carlo models
  - Testing production mechanism dynamics
  - searches for new physics
- Precision measurements with a hadron collider!



100

200

20 30

1000 2000

m [GeV]





PileUp Jet ID



Jet Energy Correction agreement at per mill level;

MPF stands for Missing Transverse



Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

# Vector Bonson Scattering



- Measurements of vector boson scattering (VBS) processes  $\rightarrow$  Key process to experimentally probe nature of EWSB
  - complementary to direct Higgs boson measurements
- The LHC makes it possible to measure many rare processes predicted by the SM
- VBS topology
  - two energetic forward jets in opposite hemisphere
  - large dijet mass and  $\Delta \eta_{jj}$
- Experimental Analysis
  - Select VV (V=W, Z,  $\gamma$ ) events with VBS-like jets
  - Estimate non-VV backgrounds
  - Non prompt/fake (reducible) due to mis-ID  $\implies$  from data
  - Prompt (irreducible)  $\implies$  from MC
- Measurements
  - Inclusive and Differential Cross section Measurements
  - Search for anomalous Quartic Gauge Couplings

Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU





8

- First simultaneous W<sup>±</sup>W<sup>±</sup>jj & WZjj analyses using fully leptonic final states
- Why W<sup>±</sup>W<sup>±</sup>jj ?
  - EW production dominant over QCD-induced
  - Distinct same-sign (SS) lepton state with low background
- Why WZjj ?
  - sensitive to charged resonances or couplings
  - $\bullet$  Clean signature but higher background compared to  $W\pm W$





QCD production



# $W^{\pm}W^{\pm}$ & WZ VBS



## W±W± & WZ VBS: Analysis Strategy



137 fb<sup>-1</sup> (13 TeV)

 Statistical analysis by simultaneously fitting signal yields in WW & WZ signal regions as well as background yields in control Regions (Non prompt, WZb(tZq) and ZZ), to assess normalization from data

CMS

137 fb<sup>-1</sup> (13 TeV)

|                               |                                                                                                                 |              |                                 |              | GeV                     |             | tVx                                    | -+ Data -                       | GeV                      |             | tVx              | -+ Data                       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|--------------|-------------------------|-------------|----------------------------------------|---------------------------------|--------------------------|-------------|------------------|-------------------------------|
| Process                       | $W^{\pm}W$                                                                                                      | $V^{\pm}$ SR | WZ                              | SR           | / stue                  | -           | Wrong sign                             | W <sup>±</sup> W <sup>±</sup> – | / stue<br>10             | <b>–</b>    | Vγ<br>Wrong sign | W <sup>±</sup> W <sup>±</sup> |
|                               | Pre-fit                                                                                                         | Post-fit     | Pre-fit                         | Post-fit     | Ш –                     |             | outer bkg.                             | WZ -<br>ZZ -                    | E<br>E                   | -           | other big.       | WZ ZZ J                       |
| $EW W^{\pm}W^{\pm}$           | $209\pm22$                                                                                                      | $210\pm26$   | —                               |              | 2                       |             |                                        | Nonprompt –                     |                          | -           |                  | Nonprompt                     |
| $QCD W^{\pm}W^{\pm}$          | $13.6\pm2.3$                                                                                                    | $13.7\pm2.2$ | —                               | —            |                         |             |                                        | -                               | 5                        |             |                  | -                             |
| Interference $W^{\pm}W^{\pm}$ | $8.4\pm2.3$                                                                                                     | $8.7\pm2.3$  | —                               |              |                         |             |                                        |                                 | 5                        |             |                  | -                             |
| EW WZ                         | $14.1\pm1.7$                                                                                                    | $17.8\pm3.9$ | $54.3\pm5.7$                    | $69\pm15$    | 1                       |             |                                        |                                 |                          | _           |                  | -                             |
| QCD WZ                        | $42.9\pm4.7$                                                                                                    | $42.7\pm7.4$ | $117.9\pm6.8$                   | $117\pm17$   |                         |             | ·····                                  | -                               |                          |             |                  | _                             |
| Interference WZ               | $0.3\pm0.1$                                                                                                     | $0.3\pm0.2$  | $2.2\pm0.6$                     | $2.7\pm1.0$  | ≳1.4                    | <u>++++</u> |                                        |                                 | ≥ 1.4                    | E           |                  |                               |
| ZZ                            | $0.7\pm0.1$                                                                                                     | $0.7\pm0.2$  | $6.1\pm0.4$                     | $6.0\pm1.8$  | 1.2 ata/                | -<br>-      | •••••••••••••••••••••••••••••••••••••• |                                 | 1.2 ata/2                | -<br>       | ł                | ····•                         |
| Nonprompt                     | $211\pm55$                                                                                                      | $193\pm40$   | $14.6\pm7.6$                    | $14.4\pm6.7$ | 0.8 <sup>0</sup><br>0.6 | - Î         | - 1                                    | • -                             | 0.8 <sup>C</sup><br>0.6  | I I         |                  |                               |
| tVx                           | $9.0\pm3.1$                                                                                                     | $7.4\pm2.2$  | $15.1\pm1.9$                    | $14.3\pm2.8$ | 50                      | 0 1000      | 1500 2000                              | ) 2500 3000<br>m, [GeV]         |                          | 100         | 200 300          | 400 500<br>m, [GeV]           |
| $\mathrm{W}\gamma$            | $7.8\pm2.0$                                                                                                     | $9.1\pm2.9$  | $1.1\pm0.5$                     | $1.1\pm0.4$  |                         | CMS         |                                        | 137 fb <sup>-1</sup> (13 TeV)   | _                        | CMS         |                  | 137 fb <sup>-1</sup> (13 TeV) |
| Wrong-sign                    | $13.5\pm7.1$                                                                                                    | $13.9\pm6.5$ | $1.6\pm0.7$                     | $1.7\pm0.7$  | / GeV                   |             | Vγ<br>Wrong sign                       | -+ Data −<br>∭Bkg. unc. −       | រីគ<br>/្គ 400           |             | Vγ<br>Wrong sign | -+ Data -                     |
| Other background              | $5.0\pm2.4$                                                                                                     | $5.2\pm2.1$  | $3.3\pm0.7$                     | $3.3\pm0.7$  | ents ,                  |             | Other bkg.                             | EWK WZ _                        | Event                    |             | Other bkg.       | EWK WZ                        |
| Total SM                      | $535\pm60$                                                                                                      | $522\pm49$   | $216\pm12$                      | $229\pm23$   | ш́ 1-                   | _           |                                        | ZZ<br>Nonprompt                 | 300                      | -           |                  | ZZ –<br>Nonprompt –           |
| Data                          | 52                                                                                                              | 24           | 22                              | 29           | ŀ                       |             |                                        | tVx -                           |                          | -           |                  | tVx -                         |
|                               | n an tha an tha fair an tha tha an | ∑            |                                 |              |                         |             |                                        | -                               | 200                      |             |                  | -                             |
| Source of uncer               | tainty                                                                                                          | W±           | <sup>±</sup> W <sup>±</sup> (%) | WZ (%)       | 0.5                     | _           |                                        |                                 | 100                      |             |                  |                               |
| Theory                        |                                                                                                                 |              | 1.9                             | 3.8          |                         |             |                                        | -                               |                          | _<br>_<br>_ |                  |                               |
| Total systematic uncertainty  |                                                                                                                 | 5.7          | 7.9                             | ≳1.4         |                         |             |                                        | ≥1.4                            |                          |             |                  |                               |
| Statistical uncertainty       |                                                                                                                 |              | 8.9                             | 22           | 1.2 ata/                | -<br>       | <u> </u>                               |                                 | 1.2¥<br>1 gta            | -<br>-      |                  |                               |
| Total uncertaint              | ty                                                                                                              |              | 11                              | 23           | 0.8 0.6 0.6             |             | 1500 2000                              |                                 | 0.8 <sup>لت</sup><br>0.6 |             | 5 0              |                               |
|                               | -                                                                                                               |              |                                 |              | 50                      | 0 1000      | 1500 2000                              | m <sub>ii</sub> [GeV]           | -                        | -1 -0.      | .5 U             | BDT score                     |

Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

#### PLB 809(2020) 135710

Oct 5-6, 2020

CMS



#### W<sup>±</sup>W<sup>±</sup> & WZ VBS Full Run II : Results

- Measured inclusive and differential cross section measurements on m<sub>jj</sub>, m<sub>ee</sub>, and p<sub>T</sub><sup>max</sup> for WW and m<sub>jj</sub> for WZ
- Obtained obs(exp) significance of 6.8(5.3) $\sigma$  for EWK WZ and far above  $5\sigma$  for EWK WW.

|                         |                                                                | MadGraph5_amc@nlo<br>predictions at LO                 |                                                     |
|-------------------------|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|
| Process                 | $\sigma \mathcal{B}$ (fb)                                      | Theoretical prediction<br>without NLO corrections (fb) | Theoretical prediction<br>with NLO corrections (fb) |
| $EW W^{\pm}W^{\pm}$     | $3.98 \pm 0.45$<br>$0.37 ({ m stat}) \pm 0.25 ({ m syst})$     | $3.93\pm0.57$                                          | $3.31 \pm 0.47$                                     |
| EW+QCD $W^{\pm}W^{\pm}$ | $4.42 \pm 0.47$<br>$0.39 ({ m stat}) \pm 0.25 ({ m syst})$     | $4.34\pm0.69$                                          | $3.72\pm0.59$                                       |
| EW WZ                   | $1.81 \pm 0.41$<br>0.39 (stat) $\pm$ 0.14 (syst)               | $1.41\pm0.21$                                          | $1.24\pm0.18$                                       |
| EW+QCD WZ               | $4.97 \pm 0.46$<br>0.40 (stat) $\pm$ 0.23 (syst)               | $4.54\pm0.90$                                          | $4.36\pm0.88$                                       |
| QCD WZ                  | $3.15 \pm 0.49$<br>$0.45 (\text{stat}) \pm 0.18 (\text{syst})$ | $3.12\pm0.70$                                          | $3.12\pm0.70$                                       |

#### Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTL





#### Polarized W<sup>±</sup>W<sup>±</sup> VBS Full Run II : Overview



- $\bullet\,$  First measurements of EW production cross sections of polarized  $W^\pm W^\pm$
- VBS scattering amplitude is dominated by transverse gauge components. In SM,  $W_LW_L$  contribute bout 10% of total EW WW cross section. Significant excess in the longitudinally polarized channel would point to new interactions in the EWSB sector
- Same Event Selection & Background Estimation with WW VBS analysis
- Analysis Strategy : simultaneous fit with
  - WW signal region (2D) : inclusive BDT (to separate EW from SM bkg) vs signal BDTs (to measure  $W_LW_L$  against  $W_XW_T$  and  $W_LW_X$  agains  $W_TW_T$ )





Events / GeV

1.5

0.5

1.5

500

1000

1500

LHC and Future Colliders

2000

Data/SM

CMS

Preliminary

#### Polarized W<sup>±</sup>W<sup>±</sup> VBS Full Run II : Results



- Fiducial cross sections Measurement for the helicity eigenstates in the parton-parton center-of-mass frame
- The observed (expected) upper limit 95% CL of  $W_1 W_1$  is 1.17 (0.88) fb.

Other bkg.

- W, W,

— W, W,

| Process                                              | $\sigma \mathcal{B}$ (fb)       | Theoretical prediction (fb) |
|------------------------------------------------------|---------------------------------|-----------------------------|
| $W_L^{\pm}W_L^{\pm}$                                 | $0.24\substack{+0.40 \\ -0.37}$ | $0.28\pm0.03$               |
| $W_X^{\pm}W_T^{\pm}$                                 | $3.25_{-0.48}^{+0.50}$          | $3.32\pm0.37$               |
| $\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$          | $1.40\substack{+0.60\\-0.57}$   | $1.71\pm0.19$               |
| $\mathrm{W}_\mathrm{T}^\pm\mathrm{W}_\mathrm{T}^\pm$ | $2.03\substack{+0.51 \\ -0.50}$ | $1.89\pm0.21$               |

#### **CMS-PAS-SMP-20-006**





# ZZ VBS Full Run II



- Measurement of EW ZZjj production using  $4\ell$  events
- Really clean , fully reconstructable final state. Small instrumental background
- Making use of a matrix-element discriminant ( $\mathrm{K}_{_{\scriptscriptstyle D}}$ ) to enhance EW production
- BDT was also studied gave consistent results
- Observed (expect) EWK ZZ  $4.0(3.5)\sigma$

• 
$$\mu_{\rm EW} = 1.21^{+0.47}_{-0.40}, \ \mu_{\rm EW+QCD} = 0.99^{+0.13}_{-0.12}$$

|                      | SM $\sigma$ (fb)           | Measured $\sigma$ (fb)                                                                        |  |  |  |  |  |  |
|----------------------|----------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                      | ZZjj inclusive             |                                                                                               |  |  |  |  |  |  |
| EW                   | $0.275 \pm 0.021$ (theo)   | $0.33 {}^{+0.11}_{-0.10}({ m stat}) {}^{+0.04}_{-0.03}({ m syst})$                            |  |  |  |  |  |  |
| EW+QCD               | $5.35 \pm 0.51$ (theo)     | $5.29^{+0.31}_{-0.30}({ m stat})\pm 0.46({ m syst})$                                          |  |  |  |  |  |  |
| VBS-enriched (loose) |                            |                                                                                               |  |  |  |  |  |  |
| EW                   | $0.186 \pm 0.015$ (theo)   | $0.200 \stackrel{+0.078}{_{-0.067}} (\text{stat}) \stackrel{+0.023}{_{-0.013}} (\text{syst})$ |  |  |  |  |  |  |
| EW+QCD               | $1.21\pm0.09(\text{theo})$ | $1.00 \stackrel{+0.12}{_{-0.11}} (\mathrm{stat}) \stackrel{+0.06}{_{-0.05}} (\mathrm{syst})$  |  |  |  |  |  |  |
| VBS-enriched (tight) |                            |                                                                                               |  |  |  |  |  |  |
| EW                   | $0.050 \pm 0.005$ (theo)   | $0.06 {}^{+0.05}_{-0.04}({ m stat}) \pm 0.01({ m syst})$                                      |  |  |  |  |  |  |
| EW+QCD               | $0.171 \pm 0.012$ (theo)   | $0.17 \pm 0.04 (\text{stat}) \pm 0.01 (\text{syst})$                                          |  |  |  |  |  |  |



Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

#### Wy VBS 2016 dataset **CMS-PAS-SMP-19-008**

- $W_{\gamma}$  measurement is difficult by itself
- Large QCD irreducible  $W_{\gamma jj}$  background, and fakes
- Fiducial XS  $\sigma_{EW}^{fid} = 20.4 \pm 0.4 (lumi) \pm 2.8 (stat) \pm 3.5 (syst) \, fb$
- Combine 13+8 TeV and obtain EW Wy 5.3(4.8) $\sigma$ observed (expect) significance





## aQGCs

- Traces of heavy states from Beyond Standard Model Physics can be parameterized in terms of the Effective Field Theory (EFT) approach.
- Limits on aQGCs are set via EFT approach.
   Dimension-8 operators that can modify VVjj production through aQGCs are considered, one at a time.









#### esults



|    |                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 200 400               | 600                                          | 800          | 1000 1200 14    | 00      |                     |                     |                     |
|----|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|--------------|-----------------|---------|---------------------|---------------------|---------------------|
|    |                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                              |              | m₄ [GeV]        | 1       | Expected (WZ)       | Observed            | Expected            |
|    |                                            | (10, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                     | (10 1                                        | ,            |                 |         | $(\text{TeV}^{-4})$ | $(\text{TeV}^{-4})$ | $(\text{TeV}^{-4})$ |
|    | $f_{\rm T0}/\Lambda^4$                     | [-1.53,2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1]                    | [-2.05,2                                     | .73]         | [-1.65,1.90]    | )]      | [-2,2.25]           | [-1.10,1.63]        | [-1.58,1.99]        |
|    | $f_{\mathrm{T1}}/\Lambda^4$                | [-0.81,1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6]                    | [-0.98,1                                     | .42]         | [-1.32,1.54]    | ]       | [-1.59,1.81]        | [-0.69,0.97]        | [-0.94,1.27]        |
|    | $f_{\mathrm{T2}}/\Lambda^4$                | [-2.14,4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5]                    | [-2.65,5                                     | .25]         | [-2.73,3.44]    | ]       | [-4.42,5.47]        | [-1.62,3.06]        | [-2.25,3.82]        |
| WZ | $f_{ m M0}/\Lambda^4$                      | [-13.4,15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9]                    | [-18.6,1                                     | 8.3]         | [-16.2,16.1]    | ]       | [-18.9,18.8]        | [-10.5,12.2]        | [-14.9,14.9]        |
|    | $f_{\rm M1}/\Lambda^4$                     | [-20.3,18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9]                    | [-22,24                                      | .8]          | [-19.1,19.6]    | 5]      | [-23.3,23.8]        | [-15,13.8]          | [-18,19.6]          |
|    | $f_{ m M6}/\Lambda^4$                      | [-27.3,31.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8]                    | [-37.4,3                                     | 6.5]         | [-33.6,33.4]    | ]       | [-39,38.6]          | [-21.7,24.8]        | [-30.6,30]          |
|    | $f_{ m M7}/\Lambda^4$                      | [-21.5,24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2]                    | [-26.6,2                                     | 4.9]         | [-22.2,22]      |         | [-28.2,28]          | [-15.7,17.8]        | [-21.9,20.9]        |
|    | $f_{\rm S0}/\Lambda^4$                     | [-35,36.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .]                    | [-31.3,3                                     | 0.9]         | [-82.5,85.4]    | ]       | [-87.9,91.1]        | [-33.8,35]          | [-31,30.6]          |
|    | $f_{\mathrm{S1}}/\Lambda^4$                | [-100,118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8]                    | [-102,1                                      | 10]          | [-107,109]      | ]       | [-122,126]          | [-86.3,99.8]        | [-91,97]            |
|    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                              |              |                 |         |                     |                     |                     |
|    | Coupling                                   | Exp. lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exp. upper            | Obs.                                         | lower        | Obs. upper      | Unita   | rity bound          |                     |                     |
|    | $f_{\rm T0}/\Lambda^4$                     | -0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.35                  | -(                                           | ).24         | 0.22            |         | 2.9                 |                     |                     |
| ,  | $f_{\rm T1}/\Lambda^4$                     | -0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.49                  | -(                                           | ).31         | 0.31            |         | 2.7                 |                     |                     |
| •  | $f_{\rm T2}/\Lambda^4$                     | -0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.95                  | -(                                           | ).63         | 0.59            |         | 2.8                 |                     |                     |
|    | $f_{ m T8}/\Lambda^4$                      | -0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.68                  | -(                                           | 0.43         | 0.43            |         | 3.3                 |                     |                     |
|    | $f_{\rm T9}/\Lambda^4$                     | -1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.46                  | -(                                           | ).92         | 0.92            |         | 3.3                 |                     |                     |
|    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                              |              | <b>TT 1 1 1</b> | [m x x] | -                   |                     |                     |
|    | Observed In                                | $\frac{1}{1}$ $\frac{1}$ | Expected In           | nits [le                                     | V I          | Unitarity bound | [TeV]   | -                   |                     |                     |
|    | $-8.07 < F_{\rm M}$                        | $_{1,0}/\Lambda^{4} < 7.99$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $-7.67 < F_{\rm M}$   | $_0/\Lambda^{+} <$                           | 7.55         | 1.0             |         |                     |                     |                     |
|    | $-11.8 < F_{\rm M}$                        | $(\Lambda^4 < 12.1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-10.8 < F_{\rm M}$   | $_{1}/\Lambda^{1} < $                        | 11.3         | 1.2             |         |                     |                     |                     |
|    | $-2.61 < F_{\rm N}$                        | $1,2/\Lambda^{2} < 2.81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-2.68 < F_{\rm M}$   | $_2/\Lambda^2 < /\Lambda^4 <$                | 2.00         | 1.5             |         |                     |                     |                     |
|    | $-4.41 < r_{\rm M}$                        | $(\Lambda^4 < 4.49)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-4.04 < F_{\rm M}$   | $_{3/\Lambda} < /_{\Lambda^4} <$             | 4.10         | 1.5             |         |                     |                     |                     |
|    | $-4.99 < I_{\rm M}$<br>$-8.27 < E_{\rm M}$ | $1,4/\Lambda < 4.95$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-4.70 < T_{M}$       | $\frac{4}{\Lambda} \sim \frac{1}{\Lambda^4}$ | 4.07<br>7.73 | 1.5             |         |                     |                     |                     |
| ,  | $-16.2 < F_{\rm M}$                        | 1.5/M < 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-15.4 < E_{M}$       | $\frac{5}{\Lambda^4} <$                      | 15.1         | 1.0             |         |                     |                     |                     |
| /  | $-20.8 < F_{\rm M}$                        | $\sqrt{\Lambda^4} < 20.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-19.4 < F_{M}$       | $\frac{1}{2}/\Lambda^4 < 1$                  | 18.7         | 1.3             |         |                     |                     |                     |
|    | $-0.62 < F_{\rm T}$                        | $\Lambda_{1,7}^{1,7}/\Lambda^{4} < 0.64$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-0.60 < F_{\rm T}$   | $\Lambda^{4} <$                              | 0.62         | 1.4             |         |                     |                     |                     |
|    | $-0.35 < F_{\rm T}$                        | $M_{1}^{0}/\Lambda^{4} < 0.39$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.34 < F_{\rm T}$   | $1/\Lambda^4 <$                              | 0.38         | 1.5             |         |                     |                     |                     |
|    | $-0.99 < F_{\rm T}$                        | $M_2/\Lambda^4 < 1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-0.98 < F_{\rm T}$   | $h/\Lambda^4 <$                              | 1.16         | 1.5             |         |                     |                     |                     |
|    | $-0.45 < F_{\rm T}$                        | $L_{5}^{2}/\Lambda^{4} < 0.46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-0.43 < F_{\rm T}$   | $\frac{1}{5}/\Lambda^4 <$                    | 0.44         | 1.8             |         |                     |                     |                     |
|    | $-0.36 < F_{\rm T}$                        | $L_{6}/\Lambda^{4} < 0.38$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-0.34 < F_{\rm T,0}$ | $_{6}/\Lambda^{4} <$                         | 0.36         | 1.7             |         |                     |                     |                     |
|    | $-0.87 < F_{\rm T}$                        | $_{7,7}/\Lambda^4 < 0.93$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-0.83 < F_{T_{e}}$   | $_7/\Lambda^4 <$                             | 0.89         | 1.8             |         |                     |                     |                     |

WW & WZ

ZZ

Wγ

Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU



- Are multi-boson interaction SM? First observation VVV and evidences of individual channels.
- Fit four signal strength across 21 categories in lepton number  $(2 \sim 6)$  / charge / flavour ....
- Observed the production of heavy triboson production with a significance of  $5.7\sigma$  ( $5.9\sigma$  expected).
- Evidences for the WWW  $3.3\sigma$  ( $3.1\sigma$  expected) and WWZ 3.3 $\sigma$  (4.1 $\sigma$  expected). Hints for WZZ 1.7 $\sigma$  (0.7 $\sigma$  expected)







Rong-Shyang Lu / NTU





(TGC)

Triple gauge coupling Higgs-gauge coupling (HGC)





- Large theoretical range of branching fraction in the range of 10<sup>-9</sup>-10<sup>-6</sup>
- Isolated single track + photon in tt enriched sample.
- Expect limit 0.86 X 10<sup>-5</sup> and observe  $\mathcal{B}(W \to \pi \gamma) < 1.51 \times 10^{-5}$

in tī events



CMS-PAS-SMP-20-008



Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

Data/MC





Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

Oct 5-6, 2020 20

## Extraction of $\alpha_s$

- 大学の
- Extracted  $\alpha_s$  = 0.1175±0.0026 (NNLO,±2.3%) via 12 precise W,Z x-sections:



• Extracted  $\alpha_s = 0.1135 \pm 0.0020$  (NLO, PDF dep.) via precise ttbar+N<sub>in</sub>x-sections:





 Z+c in good agreement with Madgraph LO predictions. Madgraph NLO and Sherpa tend to overestimate the data.



LHC and Future Colliders

#### **CMS-PAS-SMP-19-011**

## Data vs pQCD - Z+c/b

• Z+c/b measurements observe some disagreement between measurements and theoretical predictions, e.g. for R(c/j) for madgraph LO and NLO and R(b/j) for MCFM. R(c/b) is OK.





• Z+c/b measurements observe some disagreement between measurements and theoretical predictions, e.g. for R(c/j) for madgraph LO and NLO and R(b/j) for MCFM. R(c/b) is OK.



Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

#### CMS-PAS-SMP-19-004

# Data vs pQCD - Z/γ+jets

•  $\gamma$ +jets measurement directly test pQCD @NLO and is also sensitive to the gluon PDF over a wide range of x (momentum fraction) and Q2 (energy scale)

2.26 fb<sup>-1</sup> (13 TeV)

- Differential measurement of cross section ratio of  $Z/\gamma$  vs boson pT
- Ratio can constrain higher order QCD and electroweak corrections that vary with boson pT



## Other QCD measurements



- Parton Distribution Functions constraint : All differential crosssections:
  - dijet, W, Z,  $\gamma$ , t $\overline{t}$  ...
  - W/Z/ $\gamma$  + jets/c/b
- Jet substructure : dijet & tī events
- MPI : same sign WW, double  $\Upsilon;$  UE : Z+jet

Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU



## Summary



- CMS performs analyses on testing fundamental aspects of the Standard Model.
- The precision measurements study its EFT-based extensions if any hint
- Increasingly precise QCD observables are experimentally studied. It leads to improved analytic and MC models and better control of pQCD.

Energy Frontier in Particle Physics: LHC and Future Colliders

Rong-Shyang Lu / NTU

### Back up slides

#### ATLAS $\gamma\gamma$ ->WW and R( $\tau/\mu$ ) from W decay



大学家

- Probing universality of W coupling to charged leptons: fundamental property of SM
- di-lepton (eµ, µµ) tī events provide a sample of probe W-bosons
- differentiate W- $\rangle_{\tau\nu}$  and W $\rightarrow \mu\nu\nu\nu\nu$ :  $p_{T\mu}$  and  $|d_{\mu}|$





#### $W^{\pm}W^{\pm}$ & WZ VBS: Event Selection & **Background Estimation**



- WZ SR is dominated by QCD WZ events after the kinematic selection
- MultiVariate Analysis for  $WZ \rightarrow$  enhance WZ EWK production w.r.t large WZ QCD production
- Overall good separation between EWK signal and background
- **BACKGROUND ESTIMATION:** 
  - Backgrounds estimated from simulation marked with (\*) have normalization assessed from data, others are normalized to the best theoretical cross section prediction

| EVEI                             | NT SELECTION IN S                        | IGNAL REGIONS                               | Catagony                     | Estimation                     |  |  |  |
|----------------------------------|------------------------------------------|---------------------------------------------|------------------------------|--------------------------------|--|--|--|
| Variable                         | $W^{\pm}W^{\pm}$                         | WZ                                          | Category                     | LSumation                      |  |  |  |
| Leptons                          | 2 leptons, $p_{\rm T} > 25/20 {\rm GeV}$ | 3 leptons, $p_{\rm T} > 25/10/20 {\rm GeV}$ |                              |                                |  |  |  |
| $p_{\mathrm{T}}^{\mathrm{j}}$    | >50 GeV                                  | >50 GeV                                     |                              |                                |  |  |  |
| $ m_{\ell\ell} - m_Z $           | >15 GeV (ee)                             | <15 GeV                                     | Non Prompt                   | From Data-Driven technique     |  |  |  |
| $m_{\ell\ell}$                   | >20 GeV                                  | —                                           |                              |                                |  |  |  |
| $m_{\ell\ell\ell}$               | —                                        | >100 GeV                                    |                              |                                |  |  |  |
| $p_{\mathrm{T}}^{\mathrm{miss}}$ | >30 GeV                                  | >30 GeV                                     |                              | From charge mis-ID scale       |  |  |  |
| b quark veto                     | Required                                 | Required                                    | Wrong sign                   | factors and simulated opposite |  |  |  |
| $\max(z_\ell^*)$                 | <0.75                                    | <1.0                                        |                              | sign events                    |  |  |  |
| m <sub>jj</sub>                  | >500 GeV                                 | >500 GeV                                    |                              | 0                              |  |  |  |
| $ \Delta \eta_{jj} $             | >2.5                                     | >2.5                                        | QCD WZ[*], ZZ[*], tZq[*], WW |                                |  |  |  |
|                                  |                                          |                                             | QCD, WW DPS, VVV             | From simulation                |  |  |  |
| Energy Fron                      | tier in Particle Physics                 | Rong-Shy                                    | ang Lu / NTU                 | Oct 5-6, 2020 30               |  |  |  |

LHC and Future Colliders