# LHC/ILC Synergy for Exploring Extended Higgs Sectors

#### Kei Yagyu (Osaka U.)



Collaboration with

Masashi Aiko, Shinya Kanemura (Osaka U.),

Mariko Kikuchi (Kitakyushu Coll.),

Kentarou Mawatari (Iwate U.), Kodai Sakurai (KIT)

High Energy Frontier in Particle Physics: LHC and Future Colliders 2020, Oct. 5<sup>th</sup>, NTU

### 2 Figs well describing the current status





New particles have not been observed.

Q. Is the SM enough?

A. Of course, No!

SM predictions are good agreement.

| Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>l</i> , γ Jets;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Emiss                                                                                                     | () dt[fb                                                                             | -1] Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADD $G_{KK} + g/q$<br>ADD OBH-resonant $\gamma\gamma$<br>ADD OBH high $\sum p_T$<br>ADD BH high $\sum p_T$<br>ADD BH multijet<br>RS1 $G_{KK} \rightarrow \gamma\gamma$<br>Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu q$<br>Bulk RS $g_{KK} \rightarrow WV \rightarrow \ell \nu q$<br>Bulk RS $g_{KK} \rightarrow tt$<br>2UED / RPP                                                                                                                                                            | $\begin{array}{c} 0 \ e, \mu & 1 \ -4 \ i \\ 0 \ e, \mu & 1 \ -4 \ i \\ 2 \ \gamma & -2 \ i \\ 0 \ i \\ 1 \ e, \mu & 2 \ i \\ 1 \ e, \mu & 2 \ i \\ 2 \ \gamma & -2 \ i \\ 1 \ e, \mu & 2 \ i \\ 2 \ \gamma & -2 \ i \\ 2 \ \gamma & -2 \ i \\ 1 \ e, \mu & 2 \ i \\ 2 \ \gamma & -2 \ i \ -2 \ -2$ | - T<br>Yes<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 36.1<br>36.7<br>37.0<br>3.2<br>3.6<br>36.7<br>36.1<br>139<br>36.1<br>36.1<br>36.1    | Mo         7.7 TeV         n = 2           Ms         8.8 TeV         n = 3 H.Z N.O           Ma         8.8 TeV         n = 0           Ma         8.8 TeV         n = 0           Ma         8.8 TeV         n = 0. Mg = 3 TeV, rot BH           Ma         9.55 TeV         n = 0. Mg = 3 TeV, rot BH           Ger mass         2.3 TeV         k/Mg = 10           Ger mass         2.0 TeV         k/Mg = 10           Krmass         3.8 TeV         Ter (15, 15, (A) <sup>L11</sup> ) → rt) = 1                                                               | 1711.03301<br>1707.04147<br>1708.09127<br>1606.02265<br>1512.02586<br>1707.04147<br>1808.02380<br>2004.14636<br>1804.10823<br>1804.08238                      |
| $\begin{array}{l} \mathrm{SSM}\ Z' \to \ell \ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophotic}\ Z' \to t t \\ \mathrm{Leptophotic}\ Z' \to t t \\ \mathrm{SSM}\ W' \to t r \\ \mathrm{SSM}\ W' \to \tau \\ \mathrm{HT}\ W' \to WZ \to \ell v \\ \mathrm{HT}\ W' \to WW \to q a q m \\ \mathrm{HT}\ V' \to WW \to q a q m \\ \mathrm{HT}\ V' \to WW - d w \\ \mathrm{HT}\ W' \to WH - d w \\ \mathrm{LRSM}\ W_R \to t \\ \mathrm{LRSM}\ W_R \to m \\ \mathrm{RSM}\ W_R \to m \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>-<br>Yes<br>Yes<br>Yes<br>2 J<br>-                                                                   | 139<br>36.1<br>139<br>139<br>36.1<br>139<br>36.1<br>139<br>36.1<br>139<br>36.1<br>80 | 2/ mass         5.1 TeV           2/ mass         2.4 12 TeV           2/ mass         2.1 TeV           2/ mass         2.1 TeV           W mass         6.0 TeV           W mass         3.7 TeV           W mass         3.7 TeV           W mass         3.0 TeV           W mass         3.0 TeV           W mass         3.0 TeV           W mass         3.0 TeV           W mass         3.2 TeV           W mass         3.2 TeV           W mass         3.2 TeV           We mass         3.2 TeV           We mass         5.0 TeV                        | 1903.06248<br>1709.07242<br>1805.096299<br>2005.05138<br>1801.06892<br>2004.14636<br>1906.08589<br>1712.06518<br>CERN-EP-2020-073<br>1807.10473<br>1904.12679 |
| Cl qqqq<br>Cl ℓℓqq<br>Cl tttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | − 2 j<br>2 e,μ −<br>≥1 e,μ ≥1 b,≥1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | j Yes                                                                                                     | 37.0<br>139<br>36.1                                                                  | Λ 21.0 TeV η <sub>LL</sub><br>Λ 35 TeV η <sub>LL</sub><br>Λ 2.57 TeV ΙC <sub>tt</sub> = 4π                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1703.09127<br>CERN-EP-2020-066<br>1811.02305                                                                                                                  |
| Axial-vector mediator (Dirac l<br>Colored scalar mediator (Dirac<br>$VV_{\chi\chi}$ EFT (Dirac DM)<br>Scalar reson. $\phi \rightarrow t\chi$ (Dirac l                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{cccc} \text{DM}) & 0 \ e, \mu & 1-4 \ j \\ c \ \text{DM}) & 0 \ e, \mu & 1-4 \ j \\ & 0 \ e, \mu & 1 \ J, \leq 1 \\ \text{DM}) & 0-1 \ e, \mu & 1 \ b, 0-1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes<br>Yes<br>j Yes<br>J Yes                                                                              | 36.1<br>36.1<br>3.2<br>36.1                                                          | mmax         1.55 TeV         g <sub>s</sub> -0.55 g <sub>s</sub> -10 m(t) = 1.62 M           mmax         1.87 TeV         g <sub>s</sub> -0.5 m(s) = 1.64 V           M <sub>s</sub> 700 GeV         m(t) = 1.04 V           my         3.4 TeV         y = 0.4, = 0.2, m(t) = 10 GeV                                                                                                                                                                                                                                                                               | 1711.03301<br>1711.03301<br>1608.02372<br>1812.09743                                                                                                          |
| Scalar LQ 1 <sup>st</sup> gen<br>Scalar LQ 2 <sup>nd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen<br>Scalar LQ 3 <sup>rd</sup> gen                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{rrrr} 1,2 \ e & \geq 2 \ j \\ 1,2 \ \mu & \geq 2 \ j \\ 2 \ \tau & 2 \ b \\ 0 & -1 \ e, \ \mu & 2 \ b \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes<br>Yes<br>-<br>Yes                                                                                    | 36.1<br>36.1<br>36.1<br>36.1                                                         | L0 mass         1.4 TeV         β = 1           L0 mass         1.65 TeV         β = 1           L02 mass         1.03 TeV         8/L0(γ - tr) = 1           L02 mass         970 GeV         8/L0(γ - tr) = 0                                                                                                                                                                                                                                                                                                                                                       | 1902.00377<br>1902.00377<br>1902.08103<br>1902.08103                                                                                                          |
| $\begin{array}{c} VLQ\;TT \rightarrow Ht/Zt/Wb + X\\ VLQ\;BB \rightarrow Wt/Zb + X\\ VLQ\;T_{5/3}\;T_{5/3}\;T_{5/3} \rightarrow Wt + \\ VLQ\;Y \rightarrow Wb + X\\ VLQ\;VD \rightarrow Hb + X\\ VLQ\;QQ \rightarrow WqWq \end{array}$                                                                                                                                                                                                                                                                 | $\begin{array}{l} \mbox{multi-channel} \\ \mbox{multi-channel} \\ X \ 2(SS)/\geq 3 \ e, \mu \geq 1 \ b, \geq 1 \\ 1 \ e, \mu \ \geq 1 \ b, \geq \\ 0 \ e, \mu, 2 \ \gamma \ \geq 1 \ b, \geq \\ 1 \ e, \mu \ \geq 4 \ j \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | j Yes<br>1j Yes<br>1j Yes<br>Yes                                                                          | 36.1<br>36.1<br>36.1<br>36.1<br>79.8<br>20.3                                         | Trans         1.37 TeV         SU(2) doublet           Branss         1.34 TeV         SU(2) doublet           Ta,n mais         1.64 TeV         SU(2) doublet           Yrmass         1.64 TeV         SU(2) doublet           Brans         1.64 TeV         SU(2) doublet           Branss         1.85 TeV         SU(2) doublet           Branss         1.21 TeV         SU(2) doublet           Qrmass         600 GeV         sg= 0.5                                                                                                                       | 1808.02343<br>1808.02343<br>1807.11883<br>1812.07343<br>ATLAS-CONF-2018-02<br>1509.04261                                                                      |
| Excited quark $q^* \rightarrow qg$<br>Excited quark $q^* \rightarrow q\gamma$<br>Excited quark $b^* \rightarrow bg$<br>Excited lepton $\ell^*$<br>Excited lepton $v^*$                                                                                                                                                                                                                                                                                                                                 | - 2j<br>1γ 1j<br>- 1b,1j<br>3 e,μ -<br>3 e,μ,τ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                         | 139<br>36.7<br>36.1<br>20.3<br>20.3                                                  | st mass         6.7 TeV         only u' and d'. A = m(q')           q' mass         5.3 TeV         only u' and d'. A = m(q')           b' mass         2.6 TeV         only u' and d'. A = m(q')           t' mass         3.0 TeV         A = 3.0 TeV           v' mass         1.6 TeV         A = 1.6 TeV                                                                                                                                                                                                                                                         | 1910.08447<br>1709.10440<br>1805.09299<br>1411.2921<br>1411.2921                                                                                              |
| Type III Seesaw<br>LRSM Majorana $\nu$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$<br>Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$<br>Multi-charged particles<br>Magnetic monopoles                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccc} 1 \ e, \mu & \geq 2 \ j \\ 2 \ \mu & 2 \ j \\ 2,3,4 \ e, \mu \ (SS) & - \\ 3 \ e, \mu, \tau & - \\ - & - \\ - & - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes<br>-<br>-<br>-                                                                                        | 79.8<br>36.1<br>36.1<br>20.3<br>36.1<br>34.4                                         | M <sup>4</sup> mass         560 GeV         m(Wc) = 4.1 TeV, g: = ge           M <sup>47</sup> mass         870 GeV         DY production, 92 (H <sup>4*</sup> = 4.7) = 1           M <sup>47</sup> mass         870 GeV         DY production, 92 (H <sup>4*</sup> = 4.7) = 1           M <sup>47</sup> mass         00 (geV)         DY production, 92 (H <sup>4*</sup> = 4.7) = 1           multi-charged particle mass         1.22 TeV         DY production, (el = 5e           DY production, (el = 1.6), scin 1/2         DY production, (el = 1.6), scin 1/2 | ATLAS-CONF-2018-02<br>1809.11105<br>1710.09748<br>1411.2921<br>1812.03673<br>1905.10130                                                                       |

*†Small-radius (large-radius) jets are denoted by the letter j (J).* 

## Higgs as a problematic sector

We expect that a new scale appears at high energies.



□ We need a new symmetry to stabilize the Higgs mass to be 125 GeV.

E.g., Supersymmetry

Chiral symmetry (Composite Higgs)

Gauge symmetry (Gauge Higgs unification)

## Higgs as a problematic sector

We expect that a new scale appears at high energies.



□ We need a new symmetry to stabilize the Higgs mass to be 125 GeV.

E.g., Supersymmetry

Chiral symmetry (Composite Higgs)

Gauge symmetry (Gauge Higgs unification)

## Higgs as a portal to BSM

□ The Higgs sector can be a portal to a BSM sector.



# Higgs as a probe of New Physics

#### New Physics at High Energy Frontier

#### **Standard Model**

Direct search @LHC Indirect search @ILC

**Higgs Physics** 











SM-likeness of h(125)



Synergy b/w LHC and ILC searches is important!

#### Contents

- I. Introduction
- II. 2HDMs and their alignment/decoupling limit
- III. Theory constraints
- IV. Results
- V. Summary

# 2 Higgs doublet models

- □ Simple extension of the Higgs sector:
- □ Variations of the 2HDM

 $\Phi_{\mathrm{SM}} \rightarrow \Phi_1, \ \Phi_2$  $h_{\mathrm{SM}} \rightarrow h, \ H, \ A, \ H^{\pm}$ 

CP 
$$\int$$
 CP-conserving 2HDM  
CP-violating 2HDM  
Hardly-broken (General 2HDM)  
 $V = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_1^{\dagger} \Phi_2 + h.c.)$   
 $+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2$   
 $+ \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$ 

Z<sub>2</sub> Softly-broken (Type-I, Type-II, Type-X, Type-Y)  
Unbroken (Inert doublet model)  
$$M^2 = m_3^2/(\sin\beta\cos\beta)$$

**D** 8 parameters v,  $m_h$ ,  $m_H$ ,  $m_A$ ,  $m_{H+}$ ,  $sin(\beta-\alpha)$ ,  $tan\beta$ , and  $M^2$ 

## 4 types of Yukawa interactions

In general, four independent types of Yukawa interactions are allowed in this setup. Barger, Hewett, Phillips, PRD41 (1990)

Barger, Hewett, Phillips, PRD41 (1990 Grossman, NPB426 (1994)



# Alignment/Decoupling in the 2HDM



**D** Masses of the Higgs boson at  $sin(\beta-a) \sim 1$ 

 $m_{h}^{2} \sim \lambda v^{2}, \quad m_{\Phi}^{2} \sim M^{2} + \lambda' v^{2}$  ( $\Phi = H^{\pm}, A, H$ )

 $\square$  Decoupling limit:  $M^2 \to \infty$ 

-Masses of H, A,  $H^{\pm}$  become infinity.

 $\square$  Alignment limit:  $\sin(eta-lpha) o 1$ 

-h behaves like the SM Higgs boson.
-H, A, H<sup>±</sup> behave fermio-philic scalars.

# (Non) alignment in the 2HDM

Computed by H-COUP v3-β , Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu

Type-I 2HDM with mH = mA = mH<sup>+</sup> = M = 400 GeV,  $tan\beta = 10$ 



Higgs to Higgs decays become important for the non-alignment case.



- I. Introduction
- II. 2HDMs and their alignment/decoupling limit
- III. Theory constraints
- IV. Results
- V. Summary

## Decoupling without alignment?

Q. Can we take  $M \rightarrow \infty$  with  $sin(\beta-a) \neq 1$ ?

A. No.

$$m_h^2 = \lambda v^2 + \frac{\cos^2(eta - lpha)M^2}{4} = (125~{
m GeV})^2$$
  
This term becomes huge when M » v and sin(β-a)  $eq$ 

This term should also be huge to keep 125 GeV  $\rightarrow$  unitarity violation

1

The upper limit on M (~2<sup>nd</sup> Higgs scale) appears when  $sin(\beta-\alpha) \neq 1$ . ILC can extract it from precise measurements of h couplings

ILC can set the upper limit on the second Higgs mass scale.

# Unitarity & vacuum stability bounds



## $m_{\Phi} = 800 \text{ GeV}, \sin(\beta - a) = 0.995$



### $m_{\Phi} = 900 \text{ GeV}, \sin(\beta - a) = 0.995$



## $m_{\Phi} = 1000 \text{ GeV}, \sin(\beta - a) = 0.995$





- I. Introduction
- II. 2HDMs and their alignment/decoupling limit
- III. Theory constraints
- IV. Results
- V. Summary

### Excluded region by current LHC data

Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, KY (in preparation)



*Cross section: SusHi v1-7-0 Harlander, Liebler, Mantler* 

BR:H-COUP v3-β :Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu

#### Expected exclusion at HL-LHC

Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, KY (in preparation)



Cross section: SusHi v1-7-0 Harlander, Liebler, Mantler

BR:H-COUP v3-β :Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu

### Expected exclusion at HL-LHC and ILC

Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, KY (in preparation)



Cross section: SusHi v1-7-0 Harlander, Liebler, Mantler

BR:H-COUP v3-β :Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, Yagyu

#### Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, KY (in preparation)



### Fingerprinting the Higgs sector

Kanemura, Kikuchi, Mawatari, Sakurai, KY (2019)



#### Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, KY (in preparation)



#### Aiko, Kanemura, Kikuchi, Mawatari, Sakurai, KY (in preparation)



#### Alignment without decoupling region can still remain.

- Electroweak baryogenesis
- Inert dark matter

Barbieri, Hall, Rychkov (2003), etc

 $\cdot \mu(g-2)$  anomaly

Chun et. al, (2014) Abe, Sato, Yagyu (2015), etc.

etc.



Kanemura, Okada, Senaha (2004)

# Summary

- We can explore wide region of the parameter space by using the synergy between direct search at the LHC and indirect search at the ILC.
- If we find signatures → Possible new physics can be further narrowed down by the fingerprinting of the Higgs sector.
- If we do not find signatures → alignment w/o decoupling scenario can still remain.
  - Motivations: EWBG, Inert dark matter, muon g 2, etc.

Non-decoupling effects of additional Higgs bosons on hhh coupling can be important  $\rightarrow$  ILC500.



#### Case for $cos(\beta-a) > 0$



The G-Fitter Group, Haller et al. EPJC78 (2018)



ATLAS, arXiv:1909.02845 [hep-ex].



|                    | Current (ATLAS,CMS)                                          | HL-LHC (ATLAS,CMS) [%] | ILC250 [%] | ILC500 [%] |
|--------------------|--------------------------------------------------------------|------------------------|------------|------------|
| $\kappa_Z$         | $(1.11 \pm 0.08, 1.00 \pm 0.11)$                             | (2.6,2.4)              | 0.38       | 0.30       |
| $\kappa_W$         | $(1.05 \pm 0.09, -1.13^{+0.16}_{-0.13})$                     | (3.1, 2.6)             | 1.8        | 0.40       |
| $\kappa_b$         | $(1.03\substack{+0.19\\-0.17}, 1.17\substack{+0.27\\-0.31})$ | (6.2, 6.0)             | 1.8        | 0.60       |
| $\kappa_t$         | $(1.09^{+0.15}_{-0.14}, 0.98 \pm 0.14)$                      | (6.3, 5.5)             | —          | 6          |
| $\kappa_c$         | (-,-)                                                        | (-,-)                  | 2.4        | 1.2        |
| $\kappa_{	au}$     | $(1.05^{+0.16}_{-0.15}, 1.02 \pm 0.17)$                      | (3.7, 2.8)             | 1.9        | 0.80       |
| $\kappa_{\mu}$     | $(-,0.80\substack{+0.59\\-0.80})$                            | (7.7, 6.7)             | 5.6        | 5.1        |
| $\kappa_g$         | $(0.99^{+0.11}_{-0.10}, 1.18^{+0.16}_{-0.14})$               | (4.2, 4.0)             | 2.2        | 0.97       |
| $\kappa_{\gamma}$  | $(1.05\pm0.09, 1.07^{+0.14}_{-0.15})$                        | (3.7, 2.9)             | 1.1        | 1.0        |
| $\kappa_{Z\gamma}$ | (-,-)                                                        | $(12.7,\!-)$           | 16         | 16         |
| $\kappa_h$         | (-,-)                                                        | (-,-)                  | _          | 27         |

| Constrained quantity                                  | Applicable mass region            | Reference                 |
|-------------------------------------------------------|-----------------------------------|---------------------------|
| $\sigma(\phi) \times B(\phi \to \tau\tau)$            | $200 < m_\Phi < 2000~{\rm GeV}$   | Fig. 7(a) in [1]          |
| $\sigma(\phi(bb)) \times B(\phi \to \tau\tau)$        | $200 < m_\Phi < 2000~{\rm GeV}$   | Fig. 7(b) in [1]          |
| $\sigma(\phi(bb)) \times B(\phi \to bb)$              | $450 < m_{\Phi} < 1400~{\rm GeV}$ | Fig. 8 in [2]             |
| $\sigma(\phi) \times B(\phi \to tt)$                  | $400 < m_{\Phi} < 5000~{\rm GeV}$ | Fig. 14 in [3]            |
| $\sigma(H) \times B(H \to hh) \times B(h \to bb)^2$   | $260 < m_\Phi < 2000~{\rm GeV}$   | Fig. 9(a) in [ <u>4</u> ] |
| $\sigma(H) \times B(H \to WW)$                        | $200 < m_\Phi < 2000~{\rm GeV}$   | Fig. 5 in [5]             |
| $\sigma(H) \times B(H \to ZZ)$                        | $200 < m_\Phi < 2000~{\rm GeV}$   | Fig. 6 in <u>6</u>        |
| $\sigma(A) \times B(A \to Zh) \times B(h \to bb)$     | $200 < m_\Phi < 2000~{\rm GeV}$   | Fig. 6(a) in [7]          |
| $\sigma(A(bb)) \times B(A \to Zh) \times B(h \to bb)$ | $200 < m_{\Phi} < 2000~{\rm GeV}$ | Fig. 6(b) in [7]          |
| $\sigma(tH^{\pm}) \times B(H^{\pm} \to tb)$           | $200 < m_{\Phi} < 2000~{\rm GeV}$ | Fig. 8 in [8]             |
| $\sigma(tH^{\pm}) \times B(H^{\pm} \to \tau\nu)$      | $200 < m_\Phi < 2000~{\rm GeV}$   | Fig. 8(a) in [9]          |



 $gg \rightarrow bbH/bbA$ 



 $sin(\beta-a) = 0.995, cos(\beta-a) < 0$ 



 $m_{\phi} = 1000 \text{ GeV}$ 

 $m_{\phi} = 1200 \text{ GeV}$ 

| $s_{\beta-\alpha}$ | Type-I                                      | Type-II                           | Type-X                                                      | Type-Y |
|--------------------|---------------------------------------------|-----------------------------------|-------------------------------------------------------------|--------|
| 0.995              | $t_{\beta} \ge 0.54 \ (t_{\beta} \ge 0.54)$ | $0.57 \le t_{\beta} \le 1.63$ (-) | $0.42 \le t_{\beta} \le 4.2 \ (0.43 \le t_{\beta} \le 4.1)$ | - (-)  |
| 0.990              | $t_{\beta} \ge 0.86 \ (t_{\beta} \ge 0.86)$ | - (-)                             | $0.72 \le t_{\beta} \le 2.5 \ (0.71 \le t_{\beta} \le 2.0)$ | - (-)  |
| 0.980              | $t_{\beta} \ge 1.3 \ (t_{\beta} \ge 1.3)$   | - (-)                             | - (-)                                                       | - (-)  |

TABLE III. Allowed range of  $\tan \beta$  for the case with  $c_{\beta-\alpha} > 0$  ( $c_{\beta-\alpha} < 0$ ) from the signal strength data of the discovered Higgs boson at the LHC [10]. The hyphen denotes no allowed region.