Distinguishing W' Signals at Hadron Colliders Using Neural Networks

Ting-Kuo Chen

Collaborators: Spencer Chang, Cheng-Wei Chiang

Department of Physics, NTU

October 5, 2020

Department of Physics, NTU

Image: A matrix and a matrix

Charged Resonance Searches

- As the mass limit of new physics (NP) charged bosons is pushed above TeV level → focus on high-energy hadron colliders.
- In this case, $\ell \nu$ channel is favorable.
 - Clean from QCD background.
 - Single final-state object \rightarrow simple kinematic signature.
- If we consider exotic Higgs sectors, charged scalars are then also included → we are interested in the identification of the spin and coupling properties of possible NP bosons.

Challenges

Challenges:

- Missing longitudinal momentum.
- Unrecognizable incidental partons \rightarrow for *pp* colliders, this is even severed by the symmetry of the proton beams.
- Some ideas for workarounds:
 - Empirical fitting.
 - Derivative observables, e.g. p_T , η .
- In our study, we focus on 14 TeV LHC collisions, and explore the potential of neural network (NN) upon this problem.

Formulation and Method

- Instead of individual-event studies, we consider a 2D "global distribution" spanned by p_T^{ℓ} and $\eta^{\ell} \rightarrow$ we can rephrase the problem as an image recognition problem¹.
- If we further include an extra QCD order to form one additional final-state jet, the system would possess 5 degrees of freedom (in the massless limit).
- Convolutional neural network (CNN) turns out to be a suitable candidate for this problem.

WIMPs.

Formulation and Method

We consider three simple effective models:

- Vector/Axial (VA): W' with vector/axial-like couplings.
- Chiral (CH): W' with LH/RH couplings.
- Scalar (SC): $H^{\pm}(H)$ with Yukawa-like couplings.
- The following conditions are assumed, although it is straightforward to extend the study beyond them:
 - The pole mass is 1 TeV for all three models.
 - The couplings are universal to both the quark/lepton sectors, and to all generations.
 - Only the decay to $e\nu$ is studied.
 - The interference between the NP and the SM processes is neglected.

Formulation and Method

- Assuming an integrated luminosity of $\mathcal{L} = 60 \text{ fb}^{-1}$ (about half the expected annual luminosity of LHC Run-III), we define $B = \sigma_{\rm SM} \times \mathcal{L}$ in a specific phase space and form scenarios of different S/B or S/\sqrt{B} , S being the number of NP events \rightarrow let CNN recognize histograms made from these events.
- For comparison, we propose a Bayesian hypothesis (BH) tests with the posteriors defined as the following:
 - $e\nu$ (LO): $P(D|H_k) = \prod_{m,n} p(h_{mn}^D, H_{mn}^k)$
 - $e\nu + j$ (NLO): $P(D|H_k) = \prod_{m,n,ch} p(h_{mn}^{D,ch}, H_{mn}^{k,ch}), ch = 1, 2, 3$

where we have assumed bin-wise Poisson likelihood models.

Theoretical Analysis

First consider parton-level LO spin-0 and -1 processes. The differential p_T^e and η^e distributions are given by:

$$\begin{split} \frac{d\hat{\sigma}}{dp_T^e} &= \begin{cases} y_H^4 \cdot J(p_T, p^2, m_H^2, \Gamma_H^2), \text{ for } H\\ (c_V^2 + c_A^2) (1 - \frac{2p_T^2}{p^2}) \cdot J(p_T, p^2, m_{W'}^2, \Gamma_{W'}^2), \text{ for } W'\\ \frac{d\hat{\sigma}}{d\eta^e} &= \begin{cases} y_H^4 \cdot F(\eta, p^2, m_H^2, \Gamma_H^2, E_1, E_2), \text{ for } H\\ (c_V^2 + c_A^2) \cdot G(\eta, p^2, m_H^2, \Gamma_H^2, E_1, E_2)\\ + c_V^2 c_A^2 \cdot H(\eta, p^2, m_H^2, \Gamma_H^2, E_1, E_2), \text{ for } W' \end{cases} \end{split}$$

 $\rightarrow \eta^e$ allows us to probe different couplings of W'.

Outline	Introduction	Sample Generation and Analysis	Network Structure and Training Specifications	Results and Discussion
		0000		

Normalized 2D LO Distribution

Figure 1: LO p_T^e vs. η^e distributions for $\Gamma \approx$ (a) 100 and (b) 10 GeV. The resolutions for these and the upcoming plots are all 40 × 40.

Challenge for NLO Processes

- \blacksquare There are 5 degrees of freedom in a 3-body massless system \rightarrow which observables should be used?
- We propose 3 schemes:
 - Physics Relation (Scheme 1): p_T^e vs. η^e , p_T^j vs. η^j , $\Delta \phi_{e\nu}$ vs. $\Delta \phi_{j\nu}$.
 - Principal Component Analysis (Scheme 2): p_T^e vs. \not{E}_T , η^e vs. η^j , $\Delta \phi_{e\nu}$ vs. $\Delta \phi_{j\nu}$
 - Common Axis (Scheme 3): p_T^e vs. \mathcal{E}_T , p_T^e vs. η^e , p_T^e vs. $\Delta \phi_{ej}$.
 - \rightarrow It turns out that the results are quite consistent.

We only study $\Gamma\approx 10$ GeV as the training outcomes are similar for different widths.

< □ > < 同 > < 回 >

Training Samples

We use S + B number of events in every single sample histogram for each significance scenario.

Figure 2: Examples of LO VA sample histograms for S/B = 1.0 with $\Gamma \approx 10$ GeV.

Department of Physics, NTU

CNN Structure

- For LO processes, we only have 1 color channel; for NLO processes, we have 3 color channels.
- The aim is to find the simplest model that is able to produce the same level of results as BH test does.

	LO	NLO	
	40×40 images		
		RGB Color Schemes	
Input		Scheme 1: p_T^e vs. η^e, p_T^j vs. $\eta^j, \Delta \phi_{eE}$ vs. $\Delta \phi_{jE}$	
	P _T vs. η	Scheme 2: p_T^e vs. $\not\!\!E_T, \eta^e$ vs. $\eta^j, \Delta \phi_{eE}$ vs. $\Delta \phi_{jE}$	
		Scheme 3: p_T^e vs. $\not\!$	
		batch normalization layer	
	convolutional 2D layer: 3-32 ^a		
1	max pooling 2D layer: 2-2 ^b		
Layers	convolutional 2D layer: 3-32		
	max pooling 2D layer: 2-2		
	flatten layer		
		dense layer: 128 ^c	
T	hidden layer activation = $relu$		
Layer settings	output layer activation = softmax		
	loss = categorical_crossentropy		
Compilation	optimizer = adam		
		metric = accuracy	

 a This means that the filter kernel dimension is $3\times 3,$ and that there are 32 nodes in the convolutional layer.

 b This means that the max pooling kernel dimension is 2 × 2, and that each stride is 2 pixels. c This means that there are 128 nodes in the dense layer.

Figure 3: CNN structure.

Bepartment of Filly.

Training Specifications

- For each effective model (including the SM), we have roughly 700*K* events.
- For each S/B or S/\sqrt{B} scenario, we use the events to generate roughly 15K sample histograms.
- The sample histograms are split into training, validation, and testing sets with the ratio 0.64 : 0.16 : 0.20.

Outline	Introduction	Sample Generation and Analysis	Network Structure and Training Specifications	Results and Discussion
				•••••

Figure 4: LO low-significance training results for $\Gamma \approx$ (a) 100, (b) 10, and (c) 1 GeV.

Department of Physics, NTU

Figure 5: LO high-significance training results for $\Gamma\approx 10$ GeV.

- The AUCs still steadily improve, and reach nearly perfect identification rates for *S*/*B* ≳ 0.8.
- CH class is always the easiest to be identified \rightarrow bottleneck: VA vs. SC.

Outline introduction sample Generation and Analysis Network Structure and Training Specifications Results and Dis	cussion
<u> </u>	

Figure 6: NLO low-significance training results for $\Gamma\approx 10$ GeV, using scheme (a) 1, (b) 2, and (c) 3.

Department of Physics, NTU

Outline	Introduction	Sample Generation and Analysis	Network Structure and Training Specifications	Results and Discussion
				00000000

Figure 7: NLO high-significance training results for $\Gamma \approx 10$ GeV, using scheme 3.

perfect identification rates for $S/B\gtrsim 1.0.$

The AUCs reach nearly

Department of Physics, NTU

Outline	Introduction	Sample Generation and Analysis	Network Structure and Training Specifications	Results and Discussion
				000000000

Figure 8: NLO high-significance training results for $\Gamma \approx 10$ GeV, using (a) p_T^e vs. η^e , (b) p_T^j vs. η^j , and (c) $\Delta \phi_{e\nu}$ vs. $\Delta \phi_{j\nu}$.

Outline	Introduction	Sample Generation and Analysis	Network Structure and Training Specifications	Results and Discussion
				000000000

Figure 9: NLO high-significance training results for $\Gamma \approx 10$ GeV, using (a) p_T^e vs. \not{E}_T , (b) η^e vs. η^j , and (c) p_T^e vs. $\Delta \phi_{ej}$.

Department of Physics, NTU

- Different variable pairs have different importances, but using all of them does lead to better results.
- p_T^e vs. η^e plays the most important role, as the angular and coupling information should mostly be preserved in e.
- p_T^e vs. η^e and η^e vs. η^j are best at identifying the CH class.
- p_T^e vs. $\Delta \phi_{ej}$ and p_T^e vs. \not{E}_T are best at identifying the SC class.
- VA is always the most difficult to be identified.

(日)

Comparison with BH Tests

Figure 10: LO results using CNN (solid) and BH test (dashed).

- At *S*/*B* ≤ 0.3, the BH test outperforms the CNN.
- Above that threshold, the CNN then becomes competitive with the BH test.

Comparison with BH Tests

• There are a few issues about a typical BH test:

- It is highly sensitive to small expected distributions, and cannot tolerate 0 expectation values. Preprocessing such as symmetrization, extrapolation, and interpolation might solve the problem, but is not guaranteed.
- Such problems become more complicated when the resonance mass gets higher, or when the analysis dimension increases.
- Other than the efforts needed to optimize the network, these concerns are tolerable for a typical NN
- Mathematically, the best results can be obtained by performing a maximum likelihood test in the multi-dimensional space → this is technically challenging when the dimension becomes greater than 2.

Comparison with BH Tests

Figure 11: NLO results using CNN (solid) and BH test (dashed).

- At *S*/*B* ≤ 0.2, the BH test and CNN are competitive with each other.
- Above that threshold, the CNN then outperforms the BH test.

Summary

- It is possible to study the spin and coupling properties of hypothesis charged bosons through its leptonic decay channel which involves missing energy at hadron colliders.
- These properties can be studied using 2D kinematic distributions.
- Neural networks can classify the effective models with roughly the same efficiencies as the Bayesian hypothesis tests do, and even better in some versions of higher dimensional studies.

