
The Role of Jet Geometry in Jet Classification
Understanding and Improving jet classification  

using “Minkowski Functional”  

Mihoko Nojiri　& Sung Hak Lim  
In preparation+ 2003.11787(JHEP), 1904.02092(JHEP)



JET CLASSIFICATION  
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JET CLASSIFICATION 

• LHC -> HL-LHC -> FCC-hh (far future)  

• Better sensitivity using ML (BDT)→ Deep 
Learning (Many architecture in market. ) 

• QCD jet vs top, Higgs, W, new physics  

• Anomaly                           

• High level inputs  →low level 
inputs (Jet image ）　better 

performance.  CNN, Recurrent 
neural network(RNN), particle 
net,,, 
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on
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CLASSIFICATION USING DEEPLERNING

1. Inputs  
2. Trainable parameters w, b  
3. Activation function φ(wx+b )  
4. Cross entropy minimization to get 

best classification  

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron
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inputs weights bias activation output reduced notation

Build a network architecture
x1
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ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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Signal (t=0）vs background (t=1 ） 

L= -t log y - (1-t) log (1-y) 

Merit Using NN:   
    general function any reaction can be constructed 　 
   Fast with GPU!  

But it is not easy to identify how they achieved good sensitivity.  

Structure 



CNN(CONVOLUTIONAL NEURAL NETWORK) AND TOP TAGGING

•  Transfer image by NxN filter ->  some cutoff 
(pooling ) ->  to find correlation.  

• CNN, ResNeXT, Particle Net use correlation of 
particles and show simmer performance.  

• Why one is better than the other?  What kind 
of event  is excluded additionally. What is the 
key? 

Introduction Neural Network Crash Course A spectral function of jet substructure Spectral Analysis of Jet Substructure: Higgs Spectral Analysis of Jet Substructure: Sgluon Spectral Analysis of Jet Substructure: A Quick Sketch on Top Jets Spectral Analysis of Jet Substructure: Understanding Neural Networks Conclusion

Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer
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Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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Figure 5: ROC curves for all algorithms evaluated on the same test sample, shown as the
AUC ensemble median of multiple trainings. More precise numbers as well as uncertainty
bands given by the ensemble analysis are given in Tab. 1.

Instead of extracting these performance measures from single models we can use ensembles.
For this purpose we train nine models for each tagger and define 84 ensemble taggers, each time
combining six of them. They allow us to evaluate the spread of the ensemble taggers and define
mean-of-ensemble and median-of-ensemble results. We find that ensembles leads to a 5 ... 15%
improvement in performance, depending on the algorithm. For the uncertainty estimate of the
background rejection we remove the outliers. In Tab. 1 we see that the background rejection
varies from around 1/600 to better than 1/1000. For the ensemble tagger the ParticleNet,
ResNeXt, TreeNiN, and PFN approaches again lead to the best results. Phrased in terms
of the improvement in the signal-to-background ratio they give factors ✏S/✏B > 300, vastly
exceeding the current top tagging performance in ATLAS and CMS.

Altogether, in Fig. 5 and Tab. 1 we see that some of the physics-motivated setups remain
competitive with the technically much more advanced ResNeXt and ParticleNet networks.
This suggests that even for a straightforward task like top tagging in fat jets we can develop
e�cient physics-specific tools. While their performance does not quite match the state-of-
the-art standard networks, it is close enough to test both approaches on key requirements in
particle physics, like treatment of uncertainties, stability with respect to detector e↵ects, etc.

The obvious question in any deep-learning analysis is if the tagger captures all relevant
information. At this point we have checked that including full or partial information on
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TWO QUANTITY FOR JET CLASSIFICATION.

• IRC safe object: :subjet, Energy correlation( C-correlator)  

• Objects Sensitive to Soft collinear splittings  number of tracks, particles 　
MC modeling  Is bad  (Pythia vs Hewig  vs real data ）  

• Jet image contains both of them and jet classifier  use it without prejudges 

• Color coherence etc.. Soft particle distribution also have parent information 

part. 

Real event  



IT IS KNOWN THAT IRC SAFE OBJECT DOES NOT GIVE BEST 

Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

use the N -subjettiness observables. In this section, we also prove that the set of observables

is complete and minimal. In Sec. 3, we discuss our event simulation and machine learning

implementation. We present the results of our study, and compare discrimination power from

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

– 3 –

In the next section, we will study the information contained in this basis and use it to

identify the features that are exploited in the discrimination of hadronically decaying Z boson

jets from QCD jets.

3 Deep Learning Implementation

In this section, we describe our event simulation and implementation of machine learning to the

N -subjettiness basis of observables introduced in the previous section. We generate pp ! Z+

jet and pp ! ZZ events at the 13 TeV LHC with MadGraph5 v2.5.4 [35]. The Z boson in

pp ! Z+ jet events is decayed to neutrinos, while one Z boson in pp ! ZZ events is decayed

to neutrinos, while the other is decayed to quarks. These tree-level events are then showered

in Pythia v8.223 [36, 37] with default settings. In App. B, we will show results showered with

Herwig v7.0.4 [38, 39], however with one-tenth the number of events as the Pythia samples.

Ignoring the neutrinos in the showered and hadronized events, we use FastJet v3.2.1 [40, 41]

to cluster the jets. On the clustered anti-kT [42] jets with radius R = 0.8 and minimum pT

of 500 GeV, we then measure the basis of N -subjettiness observables using the code provided

in FastJet contrib v1.026. We emphasize that observables are measured on the particles as a

proof of concept; we do not apply any detector simulation.

The precise set of observables we measure on the jet that we use for discrimination are the

following. We measure the jet mass and the collection of N -subjettiness observables su�cient

to completely determine up through 6-body phase space. That is, we measure the collection

of N -subjettiness observables defined with kT axes:
n

⌧
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We will see that this collection of N -subjettiness observables is more than su�cient to de-

scribe all of the information useful for discrimination in the jet. Additionally, for comparison,

we will measure a collection of standard observables that have been defined for discrimina-

tion of boosted, hadronic decays of Z bosons from jets initiated by QCD. We measure the

N -subjettiness ratios ⌧
(1)
2,1 and ⌧

(2)
2,1 with one-pass winner-take-all (WTA) axes [32–34], and

(generalized) energy correlation function ratios D
(1)
2 and D

(2)
2 [43] and N

(1)
2 and N

(2)
2 [28].

The discrimination power of these observables will provide a benchmark for the information

extracted in the machine learning of the collection of N -subjettiness observables.

All deep learning analysis was carried out on the NVIDIA DIGITS DevBox, with four

GeForce GTX TitanX GPUs, built on the 28 nm Maxwell architecture. The specifications of

the GPU are listed in Table 1. Only one GPU was used during training and testing.

CUDA
cores

Base/Boost.
clock (MHz)

Memory size
(GB)

Memory
clock (Gbps)

Interface
width

Memory
Bandwidth
(GB/s)

3072 1000/1075 12 7.0 384-bit 336.5

Table 1: Manufacturer specifications of the GTX TitanX.

– 7 –
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Sample mass + CNN1 mass + 3-body mass + 5-body
Top pT 2 [350� 400] GeV 0.9626 0.9503 0.9613
Top pT 2 [500� 550] GeV 0.9678 0.9535 0.9658

Top pT 2 [1300� 1400] GeV 0.9698 0.9607 0.9723

Table 2: The area-under-curve (AUC) values for a selection of our ROC curves. Larger values
are better and AUC=1 corresponds to perfect signal and background discrimination.

Figure 4: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [350, 400] GeV. Adding mass information improves the performance of the
image networks and the n-subjettiness network.

Figure 5: ROC curves for top quark tagging without mass on the left and with mass on the
right, for pT 2 [500, 550] GeV. In this case the performance after adding mass information is
very similar.
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CNN vs N-subjettniess  
 Liam Moore et al  1807.04769

arXiv 1704.08249 Datta Larkoski 

N-subjettiness MLP classification 
𝞃2 LARGE Τ3 SMALL 

Coaster 2 

Need very higher order τ, does 
not looks interesting thing to do 



MINKOWSKI FUNCTIONAL AND  
JET CLASSIFICATION 



Figure 2: (a) The Minkowski functionals are calcu-
lated by imposing discs on the point pattern. This
new secondary structure can be characterized using
topological measures, which vary for different radii
(b) The three reduced Minkowski functionals for a
2-D Poisson (random) process. These functionals are
unitless due to the normalization by the same mea-
sure one would expect for a set of non-overlapping
discs

of the underlying point interactions, including infor-
mation from all possible groupings of points.

When comparing patterns, one actually uses the re-
duced Minkowski functionals, namely the Minkowski
functionals for the pattern divided by what is ex-
pected for a set of non-overlapping discs. These are
given by

a(r) =
A(r)

πNr2
(3)

p(r) =
P (r)

2πNr
(4)

e(r) =
χ(r)

N
(5)

The functionals for a Poisson process are shown in
figure 2.b. The analysis in this paper relies exclu-
sively on these reduced functionals, so we will not
differentiate between the two.

2.2 Sorting the patterns

Our aim is to automatically sort patterns by perform-
ing FPCA on their approximated Minkowski func-
tionals, clustering the patterns with their individual
scores on the principal components. We will do the
same with the pairwise correllation function so that
we can directly compare our method with that of
[13]. For each pattern set, we will use enough prin-
cipal components to account for 95% of the varia-
tion. For the Minkowski functionals, we will calcu-
late the principal component scores individually for
the area, perimeter,and Euler number and then con-
catenate the scores into a larger vector. Then, we will
use these scores as coordinates, applying two different
clustering algorithms:

• Ward’s method [25]: An agglomerative technique
which seeks to minimize the total intercluster
variance of the distances between objects. We
chose this method because it is well known to
the pattern analysis community, and allows us
to directly compare our method with that of Il-
lian et al [13].

• Fast Weighted Modularity [26, 27]: To implement
this routine, we first calculate the pair-wise Eu-
clidean distance between all patterns, Dij , and
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In N dim → only N+1 functional that satisfy 

Area

Perimeter 

Euler  
characteristic  The definition of N

(i) is also described as area. Define P(i) as the surface of the pixels whose
center is at v 2 Vi, and A

(i) is the area of P(i),

A
(i) = (�R)2 ⇥ N

i (3.8)

Therefore, our N
i (i = 0, 1, ...) essentially works as A(r).

According to Hadwiger’s theorem, there are only d + 1 functionals ! R, M
(i)(i=1,...d+1), in

d dimension, that satisfies the feature associated with rigid body,

• Motion invariance: M(gB) = M(B) where g is element of the group of rigid motion G,
and B convex ring R of all finite unions of convex bodies in R

n.

• Additivity M(B1
S

B2) = M(B1) + M(B2) � M(B1
T

B2) for any B1 and B2 2 R

• Conditional continuity M(Ki) ! M(K) as K1 ! K for K, Ki 2 R,

and they are called Minkowski functional. For K(r) they are is length of boundary (L(r)) and Euler
characteristic �(r) in addition to the area A(r). For digitalized version, P(i) we can also define the
boundary length L

i and Eular characteristic of �
(i). If P(i) is the sum of the su�ciently isolated �

convex, N
(1) = N

(0) + 4L
(0) + 4�. Therefore, N

1 might be sensitive to the number of isolated soft
clusters.

(Mihoko: up to here)

Note that the quantity has been applied in astrophysics to quantity the distribution of astro-
physical objects. In [38, 39], Minkowski function is used to identify the topologically nontrivial void
structure of the astrophysical objects. In more recent papers, persistent topology turns out to be
useful tool to identify the topology and scale of the seeming random distribution of the points by
identifying the value of r where Eular characteristic change its value. refer everybody Figure
..(4) shows an example that non-trivial change of the topology occurs by increasing i. In this case,
Eular characteristic and L

(i) behaves as

�
(i) = (6, 0, 0, 1, · · · )

L
(i)

/(0.1) = (24, 55, 52, 54, · · · ). (3.9)

We can see the change of Eular characteristic, together with non-trivial decrease of L
(i) Utilizing

such topological information might be interesting additional information to classify jets, but it is
outside the scope of this paper. Figure... shows example of Pi (i = 0, 1, 2, 3, 4) of a top and QCD
jets. Each jet has di↵erent sequence of A

(i), L
(i) and �

(i), however, as we will see in the next section,
N

(0) and N
(1) turns out to be su�cient information to describe contribution of soft structure to

the top-QCD jet classification using CNN.

4 Implementation of top tagger

(Network inputs)

In this section, we discuss the setup of classifiers using the inputs discussed in the previous
sections. We use the discretized input to feed them to the neural networks. Since we use calorimeter
deposit to construct jet, we bin the spectrum S2,ab by the calorimeter angular resolution �R = 0.1,
i.e.,

S
i

2,ab
=

1

�R

Z (i+1)�R

i�R

dR S2,ab(R) =
1

�R

X

i2Ja,j2Jb
Rij2[i�R,(i+1)�R)

pT,ipT,j (4.1)

We categorize the inputs into 4 set x2,trim, xJ1 , xkin, and xgeometry ,

– 11 –

and rot  and trans invariant. 



APPLICATION OF MF 

• Astrophysics : star and galaxy 
distribution, simulation study, non-
Gaussinaity of CMB, weak lensing..  

Additivity, Convexity, and Beyond 113

Fig. 1. Porous media (left) can be described by overlapping grains (spheres, discs)
distributed in space. If the density of grains (white) decreases below a threshold, an
infinite cluster of connected pores (black area) is spanning through the whole system.
This cluster of pores enables the transport of fluids, for instance. The knowledge of
the dependence of the so-called percolation threshold on the shape and distribution
of the grains is essential for many applications. Inhomogeneous domains of thermo-
dynamic stable phases of complex fluids may also be described by overlapping grains
[9,35,38,39,43]. Such configurations resemble, for instance, the structure of microemul-
sions (figure in the middle) or an ensemble of hard colloidal particles (black points
in the figure on the right) surrounded by a fluid wetting layer (white). The interac-
tions between these colloids, as well as the free energy of the homogeneous oil phase
in a microemulsion are given by a bulk term (volume energy), a surface term (surface
tension), and curvature terms (bending energies) of the white region covered by the
overlapping shapes. Thus, the spatial structure of the phases, i.e., the morphology of
the white regions determines the configurational energy which determines itself the
spatial structure due to the Boltzmann factor in the partition function of a canonical
ensemble. A main feature of complex fluids is the occurrence of different length scales:
the clusters of the particles, i.e., the connected white regions are much larger than the
‘microscopic’ radius of the discs and the typical nearest neighbor distance within a
cluster.

tions, the scientist faces the problem of reducing the information to a limited
number of relevant quantities. So far powerful methods have been developed
in Fourier space, namely structure functions and more recently wavelet anal-
ysis. But techniques to analyze spatial information directly in real space may
be very useful for physicists in order to get more relevant spatial information
out of their data which may be complement to structure functions measured
by scattering techniques in Fourier space. Such techniques and measures have
been developed in spatial statistics and the interested reader is referred to the
papers by D. Stoyan and W. Nagel in this volume. To this world also belong
the additive Minkowski functionals which may offer robust morphological mea-
sures as powerful tools which is illustrated by three examples: they can be used
as order parameters characterizing pattern transitions in dissipative systems, as
dynamical quantities characterizing spinodal decomposition, or as generalized
molecular distribution functions characterizing the atomic structure of simple
fluids. The additivity of the Minkowski functionals seems to be the relevant

Statistical Physics  
          Left  Porous medium  
         Middle: microemulsion 
         Right : Colloid  
Occupation V, Surface(S) → material 
physics  

　Mecke and Stoyan (2000)
6

-0.124                            -0.009                             0.106                              0.221

FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the fiducial cosmology, with intrinsic

ellipticity noise from source galaxies and ✓G = 1 arcmin Gaussian smoothing. A source galaxy density of ngal = 15/arcmin
2

at redshift zs = 2 was assumed. Other three panels: the excursion sets above three di↵erent convergence thresholds , i.e. all
pixels with values above (below) the threshold are black (white). The threshold values are  = 0.0 (top right),  = 0.02 (bottom

left), and  = 0.07 (bottom right). The Minkowski Functionals V0, V1, and V2 measure the area, boundary length, and Euler

characteristic (or genus), respectively, of the black regions as a function of threshold.

find excellent agreement out to ` ⇠ 20, 000 for zs = 1 and
out to ` ⇠ 30, 000 for zs = 1, 5 and 2, corresponding to
our resolution limit. Because of this limitation, we will
employ smoothing scales no smaller than 1 arcmin below.
Comparing Figure 4 to Figure 3 in [33], we notice that
the drop-o↵ in power has been pushed out to higher `,

due to the increased resolution of the density planes.
Our results rely mostly on the cosmology-dependence

of the power spectrum (and MFs), rather than its abso-
lute value. We therefore compare the di↵erences of the
power spectra in various cosmologies from the fiducial
case. The results are shown in Figure 5, which shows
that the agreement is excellent for the dependence of the

Kratochvil  1109.6334   Proving Cosmology  
with Weak Lensing Minkowski Functinal s

Powerful to quantitatively describe point distribution 



APPLICATION TO JET PHYSICS

• only good things.  

• MF treats distance between points 
equally.  

• No loss of information 

•  Pixel by pixel fluctuation of CNN input  
reduces to  1/Npixel fluctuation of MF.   
This improve loss function minimization.   

•  The concept common to modern jet 
algorithm.  (Jet area)  

• MF is stable in collinear splitting 
because it does not double count 
overlapping area.  

Figure 2: (a) The Minkowski functionals are calcu-
lated by imposing discs on the point pattern. This
new secondary structure can be characterized using
topological measures, which vary for different radii
(b) The three reduced Minkowski functionals for a
2-D Poisson (random) process. These functionals are
unitless due to the normalization by the same mea-
sure one would expect for a set of non-overlapping
discs

of the underlying point interactions, including infor-
mation from all possible groupings of points.

When comparing patterns, one actually uses the re-
duced Minkowski functionals, namely the Minkowski
functionals for the pattern divided by what is ex-
pected for a set of non-overlapping discs. These are
given by

a(r) =
A(r)

πNr2
(3)

p(r) =
P (r)

2πNr
(4)

e(r) =
χ(r)

N
(5)

The functionals for a Poisson process are shown in
figure 2.b. The analysis in this paper relies exclu-
sively on these reduced functionals, so we will not
differentiate between the two.

2.2 Sorting the patterns

Our aim is to automatically sort patterns by perform-
ing FPCA on their approximated Minkowski func-
tionals, clustering the patterns with their individual
scores on the principal components. We will do the
same with the pairwise correllation function so that
we can directly compare our method with that of
[13]. For each pattern set, we will use enough prin-
cipal components to account for 95% of the varia-
tion. For the Minkowski functionals, we will calcu-
late the principal component scores individually for
the area, perimeter,and Euler number and then con-
catenate the scores into a larger vector. Then, we will
use these scores as coordinates, applying two different
clustering algorithms:

• Ward’s method [25]: An agglomerative technique
which seeks to minimize the total intercluster
variance of the distances between objects. We
chose this method because it is well known to
the pattern analysis community, and allows us
to directly compare our method with that of Il-
lian et al [13].

• Fast Weighted Modularity [26, 27]: To implement
this routine, we first calculate the pair-wise Eu-
clidean distance between all patterns, Dij , and

4

}



N1/N0=16/9=1.78 

IMPLEMENTATION 

•  What is the information in,   for example, N1/N0 
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Integral Geometry of Soft Emission

One may borrow idea from integral geometry to analyze the

geometry of soft emission. Consider a Minkowski sum of jet images

and square and count number of pixels of the sum. 

3x3 square

See also: 

   Minkowski Functionals for cosmology: arXiv: astro-ph/9508154

   Hadwiger’s theorem

3x3 mask N(1)N0 =Npixel=3
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.

N1/N0=9
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Geometry and Number of Pixels
Example: isolated activity

Example: four isolated activities

Example: square with side length 2

Example: square with side length 3

The ratio is smaller than 9, and encodes useful information, such as cluster size.

all pixel appear in 3x3 

• Jet image  prepare mask of size 　3x3 , 5x5, to all active pixel 

VS 

Isolated points 



A CASE OF DARK JET 

• Dark Jet 　pp →Z’ → qD qDbar→dark Parton shower → ρdiag→qqbar 

• Multiple “color singlet” cluster in the jet 
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

Lim, Nojiri   in preparation

mρ=20GeV



WHAT CNN TRAINING DOES?

CNN  allowing 10% rejection of signal 

Original distribution 
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Dark QCD jet is from a (SM) color neutral parton, so that the energy deposits are con@ned 
within a small area.

We may use neural network in order to fully utilize relevant features of 
Minkowski functionals in the Dark QCD jet tagging.

Average plots

Smaller MF endpoint suggests 
Compact soft activities 
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IMPROVING JET CLASSIFICATION WITH MF 

• Training MLP with MF +global variable(Jet mass, jet pT, trimmed jet 
PT, the leading subjet and their mass)  already  reject significant events 
for Dark jet  

• In addition we introduce relation network(RN)  

• Namely, aggregated  two point energy correlation 
of jet and trimmed jet S_2 (θ）=Ei Ej δ(θーθij)     

• S2 is  C- correlator and IRC safe (Tkachov hep-ph 9601308)  and EFP2(n) can 
be reproduced from S2. Lim, Nojiri 1807.03312, Chakraborty, Lim Nojiri 
1904.02092     

• S2[Leading subjet ] x [its counter J/J1]　and S2[J/J1]x [J/J1]: For 
top, three point correlation is important 

θ12

Θ23Θ31 0.0 0.5 1.0 1.5 2.0

R

0.0

0.2

0.4

� b
in

dR
S

2,
a
b
(R

)/
�

dR
S

2
(R

)

Top jet MG5+PY8+Delphes

Rbq

Rbq̄

Rqq̄

S2(R)

S2,trim(R)

(a) (b) (c)

Figure 3: The S2 and S2,trim distributions of the top jets and the QCD jet in figure 2. The dashed
lines are the characteristic angular scales of the top jets in the parton level.

Here, b is a bottom quark from a top quark decay, and q and q̄ are quarks from the subsequent W

boson decay. Figure 3(a) is the S2,trim of the top jet that has those four peaks clearly. This pattern
is relatively rare for QCD jets. Figure 3(c) is the S2,trim of a typical QCD jet.

In the case where the characteristic angular scales of the top quark, Rbq, Rbq̄, and Rqq̄, are
close to each other, it is not possible to see all peak structures in the S2,trim(R) distributions.
Such an example is shown in figure 3(b), although the relative strength of the peaks in the S2,trim

distribution contains partial information of the three-prong structures.2

The information of the three-prong substructure is more clearly encoded in S2,11, S2,1c, and
S2,cc. The two-point correlations of the top jets corresponding to figure 2(a) and figure 2(b) are
shown in figure 4 and figure 5, respectively. This decomposition of a given jet into J1 and J \ J1

factorizes the identification of a three-prong structure into that of two-prong substructures and its
relative position from the J1. Those S2,ab in parton level are as follows,

S2,11(R) = p
2

T,i1�(R), (2.17)

2 S2,1c(R) = 2pT,i1pT,i2�(R � Ri1i2) + 2pT,i1pT,i3�(R � Ri1i3), (2.18)

S2,cc(R) = (p2

T,i2 + p
2

T,i3)�(R) + 2pT,i2pT,i3�(R � Ri2i3), (2.19)

where ik is the k-th leading pT parton. Figure 4 shows that the two peaks are in S2,1c and the
other two peaks are in S2,cc. Figure 5 is the case where values of Rbq and Rbq̄ are similar. The S2,cc

distribution has a peak at R ⇡ 0.6, and the peak intensity is comparable to that of the peak at
R = 0 because the J \J1 has a two-prong substructure. In addition, the S2,1c distribution suggests
that the high pT constituents of J\J1 are away from J1 by a distance of 0.5. Note that the analysis
on S2,1c is essentially telescoping jets [147, 148] with respect to J1.

3 Morphological Analysis of Soft Emissions

The number of particles of top jets and QCD jets is significantly di↵erent. For the boosted top quark
decaying hadronically, i.e., t ! bW ! bqq̄

0, the significant fraction of energy goes to color singlet W

boson. The number of particles in a top jet is less than that of a gluon jet with the same jet mass

2
For example, if all the partons from three-prong decay carry an equal fraction of momenta and their angular

distances are the same, the ratio between the intensity of the two peaks is 1:2 in the parton level, while it is 1:1 for

a two-prong decay [19].
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RESULTS FOR DARK JET VS QCD 
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Dark QCD jet tagging e±ciency
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CNN: image, xkin

RN: S2, xkin

RN: S2, A(n), xkin

RN: S2, A(n), L(n), ¬(n), xkin

MF only   reject lots of QCD jet 

MF+ S2 is better than CNN 
L and χ is not essential for this case  

CNN using ReLU 

Jet PT 150~300GeV  Jet mass 30~ 70GeV

RN + MF also improve Top vs QCD (but improvement is smaller ) 

Even though CNN using more information  
 RN+ MF reach better classification 



GUESSING WHY CNN IS WORSE
• Convolutional neural net( CNN) can access MF if the 

distributions of QCD  and DJ are different.

A&A 555, A38 (2013)
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Counts map
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Area A
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Perimeter P
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Euler characteristic χ
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Fig. 1. Structure quantification via Minkowski functionals. a) Counts
map, simulated Poisson-distributed random number of counts k. To
characterize the morphology, the image is turned into a black-and-white
image via thresholding – see b); the three Minkowski functionals are
then evaluated for the b/w image. b) Area A. c) Perimeter P. d) Euler
characteristic χ.

is explained in Sect. 3.1 using a global null hypothesis. The
technique is extended in Sect. 3.2 to local structure deviations
found with Minkowski sky maps, which allows one to resolve
and localize the gamma-ray sources. Section 3.3 applies the
analysis to simulated data. Finally, the results for counts maps
observed with H.E.S.S. are given in Sect. 4.

2. Structure characterization

This section describes the structure characterization of a
gamma-ray counts map. While similar methods may be used to
quantify the morphology of extended gamma-ray sources, this
is not the subject of this paper. Although the following struc-
ture analysis has not yet been applied in gamma-ray astronomy,
it is often used in integral geometry and in statistical physics
(Schneider & Weil 2008; Mecke 1998; Mecke & Stoyan 2000).

A gray-scale image, here the counts map, is turned into a
black-and-white (b/w) image (Mecke 1996). For each threshold
value ρ, all pixels with counts k ≥ ρ are set to black, the others
remain white – see Fig. 1. The structure of the image is then
analyzed as a function of the threshold ρ.

The structure of each b/w image is quantified by the
Minkowski functionals1. In two dimensions there are three of
them. They are proportional to well-known geometric quantities:
the area A of the black pixels, their perimeter P, and the Euler
characteristic χ, which is the integral of the Gaussian curvature.
It is a topological constant; for closed domains it is given by the
number of components minus the number of holes. Figure 1 vi-
sualizes how a counts map (a) is turned into a b/w image (b),
which is then quantified by Minkowski functionals (b)−(d). The

1 Other names are valuations, quermaßintegrals, intrinsic volumes, or
Hadwiger measures.

Table 1. Look-up table for Minkowski functionals.

Conf. A P χ Conf. A P χ

1 0 0 0 9 1/4 1 1/4
2 1/4 1 1/4 10 1/2 2 −1/2
3 1/4 1 1/4 11 1/2 1 0
4 1/2 1 0 12 3/4 1 −1/4
5 1/4 1 1/4 13 1/2 1 0
6 1/2 1 0 14 3/4 1 −1/4
7 1/2 2 −1/2 15 3/4 1 −1/4
8 3/4 1 −1/4 16 1 0 0

Notes. The functional values of area A, perimeter P, and Euler charac-
teristic χ are assigned to each 2 × 2 neighborhood of the image. The
unit of length is the edge-length of a pixel. Similar data can be found in
Mecke (1996) and Mantz et al. (2008).

area as a function of the threshold contains the knowledge about
the number of counts. However, it does not supply any informa-
tion about their arrangement, for which additional information is
provided by the perimeter and the Euler characteristic.

The Minkowski functionals are powerful shape measures.
Because of their additivity and continuity, they are robust against
noise and have short computation times. There are several linear
time algorithms for calculating the area, perimeter, and Euler
characteristic (e.g. Mantz et al. 2008; Schröder-Turk et al. 2010)
and for 3D data (e.g. Arns et al. 2010; Schröder-Turk et al.
2011, 2012). The straightforward algorithm used here is based
on Table 1. The image is decomposed into 2 × 2 neighborhoods.
The values of the Minkowski functionals are assigned to each
of the 16 possible configurations. Because of their additivity, the
sum of the local contributions yields their global value. The unit
of length is defined as the edge-length of a single pixel, thus
the area of a pixel is one. To avoid multiple countings when
iterating over the whole image, only that part may contribute
which is unique to a 2 × 2 neighborhood, i.e., each quarter of
the four pixels next to the center. For example, a single black
pixel has area and Euler characteristic one and perimeter four.
However, when iterating over the image, it will appear in four
different 2× 2 neighborhoods, namely configurations two, three,
five, and nine. Thus, Table 1 assigns to each of them area and
Euler characteristic one fourth and perimeter one. The white
pixel in configuration 15 can be interpreted as part of a hole;
it contributes negatively to the Euler characteristic. In configu-
rations seven and ten in Table 1 the black pixels sharing only
a vertex are chosen to be connected. If they were disconnected,
the weights for the Euler characteristic would be positive. The
choice is arbitrary, as long as the probability distribution for the
Euler characteristic is calculated consistently. However, connect-
ing them helps to distinguish a single cluster of black pixels from
two domains distant from each other2.

The choice of boundary conditions has a strong influence
on the structure quantification and its efficiency (Stoyan et al.
1987). Throughout this work, closed boundary conditions are
applied. This means all pixels outside the window of observa-
tion are set to white, thus all domains are closed. A discussion

2 If a marching square algorithm is used to find a more complex tri-
angulation of the domain of black pixels, the weights for area and
perimeter have to be adjusted – see Mantz et al. (2008). The proba-
bility distributions for the Minkowski functionals have to be calculated
consistently. However, no significant effect on the final results has yet
been observed.

A38, page 2 of 7

Realization of MF by 2x2 filters   
v: lookup table from  2x2 partition to 3 vectors that sum up to MF 
              v (fi ) →（Ai , Pi ,  𝟀i ）、(A, P, 𝟀）＝ Σi v( fi )

However  

1. Jet image is weighted by energy.  

2. To access MF, you need to construct the 
function with no energy dependence 
( function of binary image)  



SCORE DISTRIBUTION 
• Loss function minimization suffers from fake minimum.   

• Systematics estimate by changing event ordering in batch training: 
Correlation among the same model is typically above 0.9.  CNN vs RN+MF is 
0.79. 
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ŷ0
(i
m

ag
e,

x
ki

n
),

d
iÆ

er
en

t
se

ed

£101Dark QCD jets ΩXY = 0.954

0

P
D

F
[a

rb
.

sc
al

e]

CNN vs CNN RN vs RN CNN vs RN 

°1.5 °1.0 °0.5 0.0 0.5 1.0 1.5
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MF FOR MC CALIBRATION 

• Herwig, Pythia, Sherpa: MC does 
not agree on soft particle 
distributions, especially for QCD 
jets.  

• Improving the model  using 
data takes time. 

• Event reweighing  via MF  rather 
than bin by bin event distribution: 
IRC safe distribution is not affected 
and   improve the overall agreement 
in “classification” 
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Figure 18: The ŷ
0 distributions of PY8 and HW7 test samples for the model trained on the

PY8 events. The neural networks used in the plots are (a) RNS2 , (b) RNS2,N(0),N(0)(4 GeV), (c)
RNS2,N(0),N(1) , and (d) CNN.

and the reweighting is then e↵ective for transforming the PY8 samples to HW7 samples. The opposite
is not true because there are QCD jets which are not in HW7 generated samples. The reweighting is
not exact because we have only a small number of events in some phase space region, and we see
some deviation in ŷ distribution, as shown in figure 18(b). If one wishes to describe real data by
assigning an appropriate weight for each simulated events, it is better to use a generator setup that
covers wider phase space so that we can correct the event distribution by using experimental data
afterwords.

– 23 –

Pythia trained classifier  classifying 　 
Herwig QCD jet

Reweighting  to reproduce A(0)



SHORT SUMMARY

• Minkowski functional is good tool to describe  the n dim 
distributions of featureless points, and it works in Jet Physics too.  

• Dark Jet vs QCD: CNN discover MF (without being told)  

• MF + RN is better than CNN although(and because) it uses only 
part of the jet image. Reducing fluctuation by aggregation is the 
key.  

• Application to other physics?  (Such as displaced vertex, other 
detector such as water tank, cosmic shower) … 



BACK UP : OUR RELATION NETWORK

S2
S2 

to/without  
1st subejt

KIN MINKOWSKI 
INFO  

MLP

MLP

MLP

5 outputs 5 outputs

30 input 25 inputs 14 inputs 6 inputs

MLP

GOAL! 

LOSS function 


