The Role of Jet Geometry in Jet Classification Understanding and Improving jet classification using "Minkowski Functional"

Mihoko Nojiri & Sung Hak Lim In preparation+ 2003.11787(JHEP), 1904.02092(JHEP) JET CLASSIFICATION AND DEEP LEARNING

JET CLASSIFICATION

- LHC -> HL-LHC -> FCC-hh (far future)
- Better sensitivity using ML (BDT)→ Deep Learning (Many architecture in market.)
 - QCD jet vs top, Higgs, W, new physics
 - Anomaly
 - High level inputs →low level inputs (Jet image) better
 performance. CNN, Recurrent neural network(RNN), particle net,,,

CLASSIFICATION USING DEEPLERNING

Structure

- 1. Inputs
- 2. Trainable parameters w, b
- 3. Activation function $\phi(wx+b)$
- 4. Cross entropy minimization to get best classification

Signal (t=0) vs background (t=1)

 $L = -t \log y - (1-t) \log (1-y)$

Merit Using NN:

general function any reaction can be constructed Fast with GPU!

But it is not easy to identify how they achieved good sensitivity.

TWO QUANTITY FOR JET CLASSIFICATION.

- IRC safe object: :subjet, Energy correlation(C-correlator)
- Objects Sensitive to Soft collinear splittings number of tracks, particles MC modeling Is bad (Pythia vs Hewig vs real data)
- Jet image contains both of them and jet classifier use it without prejudges
- Color coherence etc.. Soft particle distribution also have parent information

IT IS KNOWN THAT IRC SAFE OBJECT DOES NOT GIVE BEST

N-subjettiness MLP classification

$$\tau_N^{(\beta)} = \frac{1}{p_{TJ}} \sum_{i \in \text{Jet}} p_{Ti} \min\left\{ R_{1i}^{\beta}, R_{2i}^{\beta}, \dots, R_{Ni}^{\beta} \right\}.$$

 $\left\{\tau_1^{(0.5)}, \tau_1^{(1)}, \tau_1^{(2)}, \tau_2^{(0.5)}, \tau_2^{(1)}, \tau_2^{(2)}, \tau_3^{(0.5)}, \tau_3^{(1)}, \tau_3^{(2)}, \tau_4^{(0.5)}, \tau_4^{(1)}, \tau_4^{(2)}, \tau_5^{(1)}, \tau_5^{(2)}\right\}$

arXiv 1704.08249 Datta Larkoski

CNN vs N-subjettniess Liam Moore et al 1807.04769

Need very higher order τ , does not looks interesting thing to do

MINKOWSKI FUNCTIONAL AND JET CLASSIFICATION

"MINKOWSKI FUNCTIONAL MAP" POINT DISTRIBUTION TO REAL FUNCTIONWITHOUT LOSING INFORMATION

In N dim \rightarrow only N+1 functional that satisfy

 $M(B_1 \bigcup B_2) = M(B_1) + M(B_2) - M(B_1 \bigcap B_2)$ and rot and trans invariant.

APPLICATION OF MF

Statistical Physics Left Porous medium Middle: microemulsion Right : Colloid Occupation V, Surface(S) → material physics

Mecke and Stoyan (2000)

 Astrophysics : star and galaxy distribution, simulation study, non-Gaussinaity of CMB, weak lensing..

Powerful to quantitatively describe point distribution

Kratochvil 1109.6334 Proving Cosmology with Weak Lensing Minkowski Functinal s

FIG. 1: Top left panel: example of a simulated 12-square-degree convergence map in the falucial cosmology, with intrinsic ellipticity noise from source galaxies and $\theta_G = 1$ arcmin Gaussian smoothing. A source galaxy density of $n_{gal} = 15/\text{arcmin}^2$ at redshift $z_s = 2$ was assumed. Other three panels: the excursion sets above three different convergence thresholds κ , i.e. all pixels with values above (below) the threshold are black (white). The threshold values are $\kappa = 0.0$ (top right), $\kappa = 0.02$ (bottom left), and $\kappa = 0.07$ (bottom right). The Minkowski Functionals V_0 , V_1 , and V_2 measure the area, boundary length, and Euler characteristic (or genus), respectively, of the black regions as a function of threshold.

APPLICATION TO JET PHYSICS

• only good things.

- MF treats distance between points equally.
- No loss of information
- Pixel by pixel fluctuation of CNN input reduces to 1/Npixel fluctuation of MF. This improve loss function minimization.
- The concept common to modern jet algorithm. (Jet area)
- MF is stable in collinear splitting because it does not double count overlapping area.

IMPLEMENTATION

• Jet image prepare mask of size 3x3, 5x5, to all active pixel

• What is the information in, for example, N_{1/N_0}

A CASE OF DARK JET

Lim, Nojiri in preparation

- Dark Jet $pp \rightarrow Z' \rightarrow q_D q_D bar \rightarrow dark Parton shower \rightarrow \rho_{diag} \rightarrow qqbar$
- Multiple "color singlet" cluster in the jet

m_p=20GeV

CNN allowing 10% rejection of signal

IMPROVING JET CLASSIFICATION WITH MF

- Training MLP with MF +global variable(Jet mass, jet pT, trimmed jet PT, the leading subjet and their mass) already reject significant events for Dark jet
- In addition we introduce relation network(RN)
- Namely, aggregated two point energy correlation of jet and trimmed jet S_2 (θ) =Ei Ej $\delta(\theta - \theta_{ij})$

- S2 is C- correlator and IRC safe (Tkachov hep-ph 9601308) and EFP₂⁽ⁿ⁾ can be reproduced from S2. Lim, Nojiri 1807.03312, Chakraborty, Lim Nojiri 1904.02092
- S2[Leading subjet] x [its counter J/J1] and S2[J/J1]x [J/J1]: For top, three point correlation is important

RESULTS FOR DARK JET VS QCD

RN + MF also improve Top vs QCD (but improvement is smaller)

GUESSING WHY CNN IS WORSE

 Convolutional neural net(CNN) can access MF if the distributions of QCD and DJ are different.

Realization of MF by 2x2 filters v: lookup table from 2x2 partition to 3 vectors that sum up to MF $v(f_i) \rightarrow (A_i, P_i, \chi_i) \ (A, P, \chi) = \Sigma_i v(f_i)$

However

1. Jet image is weighted by energy.

2. To access MF, you need to construct the function with no energy dependence(function of binary image)

Conf.	A	Р	X	Conf.	Α	Р	χ
1	0	0	0	9	1/4	1	1/4
2	1/4	1	1/4	10	1/2	2	-1/2
3	1/4	1	1/4	11	1/2	1	0
4	1/2	1	0	12	3/4	1	-1/4
5	1/4	1	1/4	13	1/2	1	0
6	1/2	1	0	14	3/4	1	-1/4
7	1/2	2	-1/2	15	3/4	1	-1/4
8	3/4	1	-1/4	16	1	0	0

 Table 1. Look-up table for Minkowski functionals.

SCORE DISTRIBUTION

- Loss function minimization suffers from fake minimum.
- Systematics estimate by changing event ordering in batch training:
 Correlation among the same model is typically above 0.9. CNN vs RN+MF is 0.79.

MF FOR MC CALIBRATION

- Herwig, Pythia, Sherpa: MC does not agree on soft particle distributions, especially for QCD jets.
- Improving the model using data takes time.
- Event reweighing via MF rather than bin by bin event distribution: IRC safe distribution is not affected and improve the overall agreement in "classification"

Pythia trained classifier classifying Herwig QCD jet

Reweighting to reproduce A(0)

SHORT SUMMARY

- Minkowski functional is good tool to describe the n dim distributions of featureless points, and it works in Jet Physics too.
- Dark Jet vs QCD: CNN discover MF (without being told)
- MF + RN is better than CNN although(and because) it uses only part of the jet image. Reducing fluctuation by aggregation is the key.
- Application to other physics? (Such as displaced vertex, other detector such as water tank, cosmic shower) ...

BACK UP : OUR RELATION NETWORK

