Light Dark Matter Scattering in Gravitational Wave Detectors

Chrisna Setyo Nugroho

NCTS

Energy Frontier in Particle Physics: LHC and Future Colliders 5-6 October 2020

Based on arXiv:2007.07908 in collaboration with Chun-Hao Lee and Martin Spinrath

DM Scattering in GW Detectors

Toy Model for DM Hit

KAGRA

DM Signal at KAGRA

Summary

Toy Model for DM Hit

KAGRA

DM Signal at KAGRA

Summary

Interferometer Used by GW Experiments

Figure: The interferometer with the arm length (distance between front mirror and end mirror) equals to L. [Taken from KAGRA PhD Thesis: D.Chen, 2016]

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

NTU Workshop 2020 3 / 26

The change in the interference of the light is proportional to

$$\Delta L = \Delta L_x - \Delta L_y$$

A gravitational wave will induce a strain, h_{GW}

$$h_{
m GW}\sim rac{\Delta L}{L}\leq 10^{-20}$$

- What about strain induced by DM ?
- Is it visible compared to the noises? What noises?

Strain Amplitude Budgets

Figure: Example of the strain amplitude of the noises. [https://gwcenter.icrr.u-tokyo.ac.jp/en/researcher/parameter]

Interferometer Isolation

Figure: Schematic of the interferometer isolation. [Taken from KAGRA PhD Thesis: D.Chen, 2016]

Toy Model for DM Hit

KAGRA

DM Signal at KAGRA

Summary

Toy Model to Estimate DM Induced Strain

Simple pendulum describing the TM and its suspension system

$$m\ddot{x}_{c} + k_{c}(1 + \mathrm{i}\phi)x_{c} = \frac{F_{\mathrm{ext},c}}{L}$$

We model the total displacement [Moore, Cole, Berry '14]

$$x_{\text{tot},c}(t) = x_{\text{th},c}(t) + x_{\text{qu},c}(t) + x_{\text{DM},c}(t)$$

 The strain can be obtained from one-sided power spectral density (PSD)

$$h_i(\omega) = \sqrt{S_i(\omega)}$$

 According to fluctuation-dissipation theorem, the thermal noise PSD is given by [Callen, Welton '51]

$$S_{\text{th}}(\omega) = rac{4k_BT}{L^2\omega^2} \Re[Y(\omega)]$$

• The admittance for $F_{\text{ext}} \sim exp(i\omega t)$ in this case

$$Y(\omega) \equiv \frac{\dot{x}_{\text{th},c}}{F_{\text{ext}}/(mL)} = i\omega D_c^{-1}(\omega) = \frac{i\omega}{(-m\omega^2 + k_c(1 + i\phi))}$$

• $D_c(\omega)$ is the Fourier transform of the differential operator.

• The Thermal noise PSD of the Toy model ($\omega_c^2 \equiv k_c/m$)

$$S_{\text{th},c}(\omega) = \frac{4k_BT}{L^2} \frac{\phi \, \omega_c^2 / (m \, \omega)}{(\omega^2 - \omega_c^2)^2 + \omega_c^4 \phi^2}$$

The associate Thermal noise strain

$$h_{\rm th}(\omega) = \sqrt{S_{\rm th}(\omega)}$$

For quantum noise, we use the standard quantum limit (SQL)

$$S_{qu}(\omega) = rac{8\hbar}{m\omega^2 L^2}$$

The corresponding strain

$$h_{\mathsf{qu}}(\omega) = \sqrt{\mathcal{S}_{\mathsf{qu}}(\omega)}$$

The total noise reads

$$h_{\sf n}(\omega) = \sqrt{h_{\sf th}^2(\omega) + h_{\sf qu}^2(\omega)}$$

DM Signal

Recall the simple pendulum motion

$$m\ddot{x}_{\text{DM}} + k_c(1 + i\phi) x_{\text{DM}} = \frac{F_{\text{ext}}}{L}$$

Using Fourier expansion

$$m{g}(t) = \int_{-\infty}^{\infty} \, m{d}\omega \, ilde{m{g}}(\omega) m{e}^{{
m i}\omega t}$$

- We assume single DM hit at t = 0 [Lee, Nugroho, MS '20; Tsuchida et al.'19] $F_{\rm ext}(t) = q_R \, \delta(t)$
- The displacement induced by DM in frequency domain reads

$$\widetilde{x}_{\mathsf{DM}}(\omega) = rac{q_R}{mL} rac{1}{(-\omega^2 + \omega_c^2(1+\mathrm{i}\phi))}$$

The DM induced strain

$$h_{\mathsf{DM}}(\omega) = \sqrt{rac{2\,\omega}{\pi}} | ilde{x}_{\mathsf{DM}}(\omega)|$$

The Strain for the Toy Model

Figure: Thermal noise, SQL, DM Signal.

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

The optimal SNR [Moore, Cole, Berry '14]

$$arrho^{2} = \int_{f_{\min}}^{f_{\max}} df \, rac{4 \, | ilde{x}_{\mathsf{DM}}(2\pi f)|^{2}}{S_{n}(2\pi f)}$$

- ► For: $f_0 = 175.4 \text{ Hz}$, $\phi = 6.32 \times 10^{-12}$, m = 22.8 kg, T = 19 K, L = 3 km, $m_{\text{DM}} = 1 \text{ GeV}/c^2$, and $|\vec{v}_{DM}| = 220 \text{ km/s}$
- Around the peak at full width half maximum (FWHM)

$$arrho_{ ext{th}}^2 = rac{1}{2\pi} rac{q_R^2}{m \, k_B \, T} = rac{1}{2\pi} rac{E_R}{E_{ ext{th}}} = 4.09 imes 10^{-24}$$

- $E_R = 3.37 \times 10^{-45} \,\text{J}$ and $E_{\text{th}} = 1.31 \times 10^{-23} \,\text{J}$
- Lighter mirror and colder for better SNR.

Toy Model for DM Hit

KAGRA

DM Signal at KAGRA

Summary

- KAGRA is GW detector currently running in Japan
- Equipped with cryogenic system with mirror temperature around 20 K
- The suspension system is modelled as triple pendulum consist of: IM, Blade Springs, and TM

Figure: [KAGRA PhD Thesis: D.Chen, 2016]

KAGRA Suspension Thermal Noise

Vertical suspension thermal noise [KAGRA Document, JGW-T1707038v9]

$$\left(Mrac{d^2}{dt^2}+K_{
m v}
ight)ec{x}_{
m v}(t)=rac{ec{F}_{{
m ext},
m v}(t)}{L}$$

$$M = \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}, \quad K_v = \begin{pmatrix} K_{1v} + K_{2v} & -K_{2v} & 0 \\ -K_{2v} & K_{2v} + K_{3v} & -K_{3v} \\ 0 & -K_{3v} & K_{3v} \end{pmatrix}$$
$$\vec{x}_v(t) = \begin{pmatrix} x_{1v}(t) \\ x_{2v}(t) \\ x_{3v}(t) \end{pmatrix} \text{ and } \vec{F}_{\text{ext},v}(t) = \begin{pmatrix} F_{\text{ext},1v}(t) \\ F_{\text{ext},2v}(t) \\ F_{\text{ext},3v}(t) \end{pmatrix}.$$

$$K_{iv} \equiv k_{iv} (1 + \mathrm{i} \, \phi_{iv})$$

The index i = (1, 2, 3) stands for (IM, BS, and TM)

KAGRA Suspension Thermal Noise

The equation in frequency domain

$$D_{\nu}(\omega)\vec{\tilde{x}}_{\nu} \equiv (-\omega^2 M + K_{\nu})\vec{\tilde{x}}_{\nu} = \frac{\vec{\tilde{F}}_{\mathrm{th},\nu}}{L}$$

The vertical admittance reads

$$Y_{v}(\omega) \equiv i\omega D_{v}^{-1}(\omega)$$

Thermal noise PSD of the vertical thermal noise

$$S_{\mathrm{th},\nu}(\omega) = rac{4 \, k_B \, T \Re(Y_{
u}(\omega))_{33}}{L^2 \omega^2}$$

The strain amplitude of vertical suspension thermal noise

$$h_{\mathsf{th}, v}(\omega) = \mathsf{VHC}\sqrt{4|\mathcal{S}_{\mathsf{th}, v}(\omega)|}$$

VHC due to the tilt of the baseline. Its value is ¹/₂₀₀

- Horizontal thermal noise proceed in similar manner as the verctical one
- Mirror thermal noise and quantum noise
- Sum over the total noise

$$h_{\text{tot}}(\omega) = \sqrt{h_{\text{th},v}^2 + h_{\text{th},h}^2 + h_{\text{qu}}^2(\omega) + h_{\text{mir}}^2(\omega)}$$

Figure: total noise: vert.susp., horz.susp., mirror noise, quantum noise (solid blue), and SQL (dashed blue) [Lee, Nugroho, MS '20; JGW-T1707038v9]

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

Toy Model for DM Hit

KAGRA

DM Signal at KAGRA

Summary

DM hit the j-th component from vertical direction [Lee, Nugroho, MS '20]

$$F_{\mathsf{DM},jv}(t) = q_{\mathsf{R},jv}\delta(t)$$

The Fourier transform of the displacement of the i-th component

$$ilde{x}_{i
u}(\omega) = \sum_{j=1}^{3} (D_{v}^{-1}(\omega))_{ij} rac{ ilde{F}_{j,v}(\omega)}{L}$$

Since we probe the third component, we have

1

$$|\tilde{x}_{\mathsf{DM},\nu}(\omega)|^2 \equiv |\tilde{x}_{3\nu}(\omega)|^2 = \left|\sum_{j=1}^3 (D_{\nu}^{-1}(\omega))_{3j} \frac{\tilde{F}_{j,\nu}(\omega)}{L}\right|^2$$

The strain is given by

$$h_{\mathsf{DM}, v}(\omega) = \mathsf{VHC}\sqrt{rac{2\,\omega}{\pi}} | ilde{x}_{\mathsf{DM}, v}(\omega)|^2$$

The DM induced strain in horizontal direction

$$h_{\mathsf{DM}, \mathbf{v}}(\omega) = \sqrt{rac{2\omega}{\pi} | ilde{x}_{\mathsf{DM}, h}(\omega)|^2}$$

The total DM signal

$$|\tilde{x}_{\mathsf{DM}}(\omega)|^2 = \mathsf{VHC}^2 |\tilde{x}_{\mathsf{DM}, v}(\omega)|^2 + |\tilde{x}_{\mathsf{DM}, h}(\omega)|^2$$

Figure: total noise, DM vertical hit, and DM horizontal hit

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

NTU Workshop 2020

Figure: total noise, DM vertical hit, and DM horizontal hit

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

Figure: total noise, DM vertical hit, and DM horizontal hit

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

23/26

For horizontal DM hit

$$\varrho_h^2 = \int_{f_{\min,h}}^{f_{\max,h}} df \frac{4|\tilde{x}_{\mathsf{DM}}(2\pi f)|^2}{S_{\mathsf{tot}}(2\pi f)}$$

We integrate around the peak which is located at 175.4 Hz

$$f_{\min,h} = 170$$
Hz and $f_{\max,h} = 180$ Hz

This gives the SNR

$$\varrho_h^2 = 6.94 \times 10^{-18}$$

For vertical hit around 31.4 Hz

$$f_{\min,h} = 30.4$$
Hz and $f_{\max,h} = 32.4$ Hz

The corresponding SNR

$$\varrho_v^2 = 1.89 \times 10^{-21}$$

► LISA path finder sensitivity within 0.1 mHz $\leq f \leq$ 30 Hz [LISA Pathfinder '16]

$$\sqrt{S_{\Delta g}} \leq 3\sqrt{2} \,\,\mathrm{fm}\,\mathrm{s}^{-2}/\sqrt{\mathrm{Hz}} imes \sqrt{1+(f/8\,\mathrm{mHz})^4}$$

DM induced strain

$$\sqrt{S_{\Delta g, \text{DM}}} \sim 4.1 imes 10^{-7} \sqrt{rac{f}{\text{Hz}}} \, \text{fm} \, \text{s}^{-2} / \sqrt{\text{Hz}}$$

Toy Model for DM Hit

KAGRA

DM Signal at KAGRA

Summary

Chrisna Setyo Nugroho (NCTS)

DM Scattering in GW Detectors

NTU Workshop 2020 25 / 26

- The current interferometer used in GW experiments are very sensitive.
- DM can excite mechanical resonance as suspension thermal noise does.
- ► For DM detection, lighter and colder mirror are needed.
- ► LPF is quite sensitive, but not sensitive enough to detect DM.