

Modeling of t-channel Single Top Production at the LHC

Jun Gao Shanghai Jiao Tong University

based on 2005.12936 with Ed. Berger and 2007.15527 with Mei Seng Gao, Shu Run Yuan

Energy Frontier in Particle Physics: LHC and Future Colliders, NTU Oct 6, 2020

Top Priority

 Top quark plays an unique role in phenomenology studies of both electroweak and QCD sectors of the SM due to its large mass and short lifetime

Probe of BSM physics

 Many well motivated extensions of the SM can modify production and decays of the top quark that can be tested at the (HL-)LHC for its high energy and great precision

Charge vs. F-B asymmetry

FCNC decays

Single top-quark production

 Top quark can be produced singly at LHC via electroweak interactions, including t-channel, s-channel, and associated production

t-channel production

 t-channel production mode enjoys special interest for its large cross section and several strong physics motivations

Measurements on total/differential cross sections

 Experimental precision of ~5-10% for total cross section and with a precision of ~5-20% at 13 TeV, unfolded back to parton level for easy comparison to theory

1902.07158

Run 1 combined measurement on cross sections/Vtb

CMS 35.9 fb⁻¹ (13 TeV) $1/\sigma \times d\sigma/dp_T$ (1/GeV) 10-2 10⁻³ $\mu^{\pm}/e^{\pm}+jets$ Data (] exp, | total) **POWHEG 4FS** aMC@NLO 4FS aMC@NLO 5FS 10-Pred. / Data 1.2 0.8 0.6 200 100 300 0 Parton-level top quark p_T (GeV)

1907.08330

יי איי אוען

6

SM value of 0.436, found using POWHEG at NLO

Measurements on top quark mass

 Single-top quark production offers an opportunity to measure top quark mass that could be largely independent with those from pair production in theory and experimental uncertainties

8

Modeling of t-channel single top production

 Surprisingly uncertainties due to theoretical modeling of the signal are far dominant in the final experimental results, e.g., for the total cross sections and thus Vtb

1902.07158, ATLAS+CMS, 8TeV

$\sigma_{t-\text{chan.}}, \sqrt{s} = 8 \text{ TeV}$			
Combined cross-section	Combined cross-section 87.7 pb		
Incontainty actagony	Uncertainty		
Uncertainty category	[%]	[pb]	
Data statistical	1.3	1.1	
Simulation statistical	0.6	0.5	
Integrated luminosity	1.7	1.5	
Theory modelling	5.3	4.7	
Background normalisation	1.2	1.1	
Jets	2.6	2.3	
Detector modelling	1.8	1.6	
Total syst. unc. (excl. lumi.)	6.3	5.5	
Total syst. unc. (incl. lumi.)	6.5	5.7	
Total uncertainty	6.7	5.8	

1812.10514, CMS 13 TeV, 36 fb-1

	$\Delta R_{t-ch}/R_{t-ch}$	$\Delta \sigma / \sigma(t)$	$\Delta \sigma / \sigma(\overline{t})$
Nonprofiled	uncertainties		
$\mu_{\rm R}/\mu_{\rm F}$ scale <i>t</i> channel	1.5	6.1	5.0
ME-PS scale matching <i>t</i> channel	0.5	7.1	7.8
PS scale <i>t</i> channel	0.9	10.1	9.6
PDF <i>t</i> channel	3.0	3.1	5.8
Luminosity		2.5	2.5
Profiled u	ncertainties		
JES	0.9	1.5	1.8
JER	0.2	< 0.1	0.2
Unclustered energy	< 0.1	0.1	0.2
b tagging	0.1	1.1	1.2
Muon and electron efficiencies	0.2	0.8	0.6
Pileup	0.1	0.9	1.0
QCD bkg. normalization	< 0.1	0.1	0.1
MC sample size	2.5	2.2	3.2
tt bkg. model and normalization	0.2	0.6	0.6
Top quark $p_{\rm T}$	< 0.1	< 0.1	< 0.1
tW bkg. normalization	0.1	0.5	0.6
W/Z+jets bkg. normalization	0.3	0.6	0.9
$\mu_{\rm R}/\mu_{\rm F}$ scale t \bar{t} , tW, W/Z+jets	0.1	0.2	0.3
PDF tī, W/Z+jets	< 0.1	0.2	0.2

 $\sigma_{t-ch,t+\bar{t}} = 207 \pm 2 \text{ (stat)} \pm 6 \text{ (prof)} \pm 29 \text{ (sig-mod)} \pm 5 \text{ (lumi) pb}$

=
$$207 \pm 2$$
 (stat) ± 31 (syst) pb
= 207 ± 31 pb

State of art calculation

 We will address two questions with the state of art calculations at NNLO in QCD in a 5-flavor scheme, for t-channel production with leptonic decays

- double deep inelastic scattering (DIS) approximation
- narrow width approximation (NWA)

[Berger, JG, Yuan, Zhu, 2016] [Berger, JG, Zhu, 2017]

- ☆ What are the true theoretical uncertainties in modeling of the t-channel production, especially related to heavy-quark schemes?
- ☆ Is it possible to extract top-quark mass without relying directly on kinematics of the b-jet?

Heavy-quark schemes

 The production can be calculated either in a factorization scheme based on 4 flavor of quarks in the initial state (4FS) or also treats the bottom quark as a massless parton in initial hadrons (5FS)

Total inclusive cross sections

 Shown below are predictions on total cross section as a function of QCD scales at various orders and in both 4FS and 5FS

LHC 13 TeV, top quark

- resummation leads to fast convergence and stability against scale choice at higher orders in 5FS, less than 2%
- preferable scale of mt/4 or mt/2 in 5FS
- predictions of the two schemes do approach each other at high orders
- the collinear logarithms beyond 4FS@NLO are still significant

Top quark distributions

 A direct comparison of the two schemes at the highest order available, i.e. 5FS@NNLO and 4FS@NLO, on normalized distributions

transverse momentum of top quark

 excellent agreement at a few percent level in bulk region of cross sections

rapidity of top quark

even better agreement, differ by a few permille for rapidity up to 2.4

Top quark distributions

 A direct comparison of the two schemes at the highest order available, i.e. 5FS@NNLO and 4FS@NLO, on absolute distributions

absolute distribution with extended pT range

 ☆ 4FS and 5FS converge in tail region; 4FS is off exactly in region sensitive to resummation

impact of power corrections of bottom mass, SACOT@NLO

 ☆ increase the total cross section by 0.1%, distribution at most 1% wrt. 5FS

Predictions vs LHC measurements

 Select two measurements from ATLAS at 8 TeV and CMS at 13 TeV, comparing to predictions of both 5FS and 4FS with their nominal scale choices, for transverse momentum of top quark

- very good agreement with ATLAS data for 5FS@NNLO
- ☆ 4FS@NLO is off on normalization comparing to ATLAS data
- none of predictions describesCMS data particularly well
- interestingly CMS data agrees better with 4FS@NLO on normalization
 [not the case for measurement on total inclusive cross sections]

Extraction of top quark mass

 Mass of the top quark can be extracted from transverse momentum of the charged lepton without explicit dependence on hadronic activities

<P_{T,I}> for top quark at rest

 $\langle p_{T,l} \rangle \equiv \frac{\int p_{T,l} d\Gamma}{\int d\Gamma} = \frac{\pi}{16} \frac{1 + 2\bar{y} + 3\bar{y}^2}{1 + 2\bar{y}} m_t$

P_{T,I} in t-channel production

relative change of <P_{T,I}> when varying m_t by 1 GeV

☆ optimal observable: <P_{T,I}> within a region of P_{T,I} < 100 GeV and with $|y_j|>2.5$

Theory predictions for signal

 NNLO predictions in 5FS shows a theoretical uncertainty on the average P_T of lepton of 0.1~0.3%; uncertainties from other sources are well under control

P_{T,I} in t-channel production

NNLO vs. NLO with scale variations

predictions on <P_{T,I}> at fixed orders

$\langle p_{T,l} \rangle$	CMS-SB		
[GeV]	$< 100 { m GeV}$	$< 200 { m ~GeV}$	
LO	$47.38^{+0.01}_{-0.02}(47.38)$	$48.73_{-0.04}^{+0.05}(48.73)$	
NLO	$47.49^{+0.13}_{-0.09}(47.84)$	$49.66^{+0.36}_{-0.27}(50.02)$	
NNLO	$47.35_{-0.03}^{+0.14}(47.75)$	$49.25_{-0.12}^{+0.17}(49.67)$	

with NLO+parton showering and hadronization

$\langle p_{T,l} \rangle$	CMS-SB		
[GeV]	$< 100 { m ~GeV}$	$< 200 { m GeV}$	
PYTHIA8	47.41(47.48)	49.29(49.25)	
PYTHIA6	47.43(47.23)	49.34(49.08)	
HERWIG7	47.15(46.91)	48.89(48.73)	
NNLO	47.35	49.25	

Background estimation

 Uncertainties from modeling of SM backgrounds, e.g. from top-quark pair or W+jets production, are another major theoretical error in the proposed measurement of top quark mass

[GeV]/[pb]			S-SB	
		$< 100 { m GeV}$	$< 200 { m GeV}$	
$tar{t}$	$\langle p_{T,l} \rangle$	51.9	59.1	
	σ_{fid}	0.40	0.44	
$tW^-(\bar{t}W^+)$	$\langle p_{T,l} \rangle$	52.5	61.1	
	σ_{fid}	0.019	0.021	
s-channel t	$\langle p_{T,l} \rangle$	47.2	49.4	
	σ_{fid}	0.007	0.007	
s-channel \bar{t}	$\langle p_{T,l} \rangle$	47.4	49.1	
	σ_{fid}	0.004	0.004	
QCD W^+JJ	$\langle p_{T,l} \rangle$	51.0	58.8	
	σ_{fid}	0.157	0.174	
QCD W^-JJ	$\langle p_{T,l} \rangle$	52.9	62.8	
	σ_{fid}	0.107	0.117	
t-channel t	$\langle p_{T,l} \rangle$	47.35	49.25	
	σ_{fid}	0.493	0.506	
t -channel \bar{t}	$\langle p_{T,l} \rangle$	47.70	49.54	
	σ_{fid}	0.250	0.257	

<P_{T,I}> and fiducial cross sections

 can utilize charge symmetry/ asymmetry to remove impact of most backgrounds almost completely

$$\langle p_T \rangle_{obs} \equiv \frac{\int p_{T,l} [d\sigma^{l^+} - d\sigma^{l^-}]}{\sigma^{l^+} - \sigma^{l^-}} = \langle p_T \rangle_S + \frac{r}{1+r} [\langle p_T \rangle_B - \langle p_T \rangle_S]$$

 ☆ remaining theoretical uncertainty from BKs are dominated by predictions on normalization and <P,TI> of W+jets production

Projections for (HL-)LHC

 Projections for (HL-)LHC are found to be very promising with a total uncertainty on extracted top-quark mass of about 1 GeV, from theory modeling on both signal and background processes

theo. unc. (BKs) vs theo. unc. (signal)

- statistical uncertainties (300/3000 fb⁻¹) are much smaller than theoretical ones \mathbf{x} from modeling of the signal (t-channel) process with the latter ~1 GeV
- theoretical uncertainty due to modeling of background processes are $\mathbf{\mathbf{x}}$ comparable, ~0.8 GeV

Summary and outlook

- The predictions in the 5FS show strong stability for both normalization and distributions, and are superior to those of the 4FS at comparable orders
- The NNLO predictions in 5FS shows perturbative uncertainty of a few percents; large modeling uncertainty in experimental measurements possibly deserves a careful examination
- More works on matching 5FS@NNLO to parton showering would be desirable to further test stability of predictions from 5FS
- Extraction of top quark mass with our precision calculation and using leptonic observables are proposed and shows promising sensitivities

Thank you for your attention!