Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	00000000000000	00

Flavor changing neutral Higgs meet top and tau at Hadron colliders

Rishabh Jain, Chung Kao and Phillip Gutierrez

Energy Frontiers in Particle Physics: LHC and Future Colliders

October 5, 2020

Flavor Violation in SM 0	gTHDM 000	Experimental Constraints 0	Collider Study 00000000000000	Conclusion 00

Outline

Flavor Violation in SM

General Two Higgs Doublet Model

Experimental Constraints

Collider study for $pp \rightarrow t\bar{t} \rightarrow t\bar{c}h^0 + \bar{t}ch^0 \rightarrow t\bar{c}\tau^+\tau^- + \bar{t}c\tau^+\tau^-$

Conclusion

Flavor Violation in SM ●	gTHDM 000	Experimental Constraints 0	Collider Study 000000000000000	Conclusion 00

- In SM, there are no tree level flavor violating neutral Higgs decays.
- At one loop, CKM Unitarity suppresses channels like $t \rightarrow ch^0 \propto 10^{-15}$.(Aguilar-Saavedra (2004))

• $\sum_{j} V_{ij} V_{jk}^* = 0$ (Dattoli.et.al (1996))

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	●00	0	00000000000000	00

Higgs potential(Gunion and Haber, 2002)

$$m_{11}^{2}\varphi_{1}^{\dagger}\varphi_{1} + m_{22}^{2}\varphi_{2}^{\dagger}\varphi_{2}$$

$$- [m_{12}^{2}\varphi_{1}^{\dagger}\varphi_{2} + h.c]$$

$$+ \frac{1}{2}\lambda_{1}(\varphi_{1}^{\dagger}\varphi_{1})^{2} + \frac{1}{2}\lambda_{2}(\varphi_{2}^{\dagger}\varphi_{2})^{2}$$

$$+ \lambda_{3}(\varphi_{1}^{\dagger}\varphi_{1})(\varphi_{2}^{\dagger}\varphi_{2}) + \lambda_{4}(\varphi_{1}^{\dagger}\varphi_{2})(\varphi_{1}^{\dagger}\varphi_{2})$$

$$+ \left\{\frac{1}{2}\lambda_{5}(\varphi_{1}^{\dagger}\varphi_{2})^{2} + [\lambda_{6}(\varphi_{1}^{\dagger}\varphi_{1}) + \lambda_{7}(\varphi_{2}^{\dagger}\varphi_{2})]\varphi_{1}^{\dagger}\varphi_{2} + h.c\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○

(1)

EFPP

æ

Flavor Violation in SM gTHDM Experimental Constraints Collider Study Conclusion Conclusion of the constraints Collider Study Conclusion of the constraints Collider Study Conclusion of the constraints Collider Study Conclusion of the constraints of the constr

- $-i\operatorname{sgn}(Q_F)\rho^F A^0 \Big\} P_R F + \mathrm{H.c.}$
- ρ_F is the Extra Yukawa matrix, with a possibility for off diagonal terms and a CP phase.

ヘロト 人間 とくほとく ほとう

Flavor Violation in SM 0	gTHDM 00●	Experimental Constraints 0	Collider Study 000000000000000	Conclusion 00

- This model leads to CP violation and can potentially enhance tree level flavor changing neutral Higgs currents at LHC.
- Current results favor mostly SM results, but Higgs-top flavor changing can potentially give new physics signature at LHC

•
$$t \to ch^0$$
, $\lambda_{tc} = \rho_{tc} \cos(\beta - \alpha)$ (Hou 1991)

• $H \rightarrow tc$, $\lambda_{tcH} = \rho_{tc} \sin(\beta - \alpha)$ (Altunkaynak.et.al 2015)

Constraint on FCNH coupling

- Recent experiemental results from ATLAS (2019) put a tight constraint on λ_{tc} and λ_{ct}.
 - $\mathcal{B}(t \rightarrow ch^0) < 0.011$
 - $\sqrt{\lambda_{tc}^2 + \lambda_{ct}^2} < 0.064$
- If we choose ρ^F matrix to be hermitian, then $b \rightarrow s\gamma$ and $B \overline{B}$ mixing requires $|\rho_{ct}| < 0.1$
- If we choose ρ^F matrix to be non hermitian then we must have |ρ_{ct}| < 0.1, where ρ_{tc} can be close to 1.

イロト イ理ト イヨト ・

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	●00000000000000	00

Channel of Interest

ミ▶ ≮ ミト ミ りへの

Other Studies

- X.Chen and L.Xia, Phys Rev. D 93, no 11, 113010 (2016)
- M. Aaboud *et al.* [ATLAS Collaboration], JHEP 1905, 123 (2019)
- In this study we have done Parton level, and event level study with BDT.
- ► We have only considered leptonic channel with *e*µ state only.

Mass Reconstruction with Collinear Approximation

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	000●0000000000	00

Power of Collinear Approximation, Energy of Charm

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

Important Selection Cuts

- $|M(j_1, j_2) m_W| \le 0.20 \times m_W$ and $|M(b, j_1, j_2) m_t| \le 0.25 \times m_t$
- ▶ 40 GeV ≤ $M_T(\ell, \ell, E_T)$ ≤140 GeV and 80 GeV ≤ $M_T(c, \ell, \ell, E_T)$ ≤ 180 GeV
- $|M_{col}(\tau, \tau) m_h| \le 0.20 \times m_h$ and $|M_{col}(c, \tau, \tau) m_t| \le 0.25 \times m_t$
- 29 GeV $\leq E_c \leq 54$ GeV

Parton Level Estimates

\sqrt{s}	tt jj	bbjjττ	bbjjWW	tĪV	Total
13	0.67	0.021	3.2×10^{-4}	3.5×10^{-3}	0.69
14	0.78	0.025	3.8×10^{-4}	3.8×10^{-4}	0.8
27	2.91	0.074	1.3×10^{-3}	9.8×10^{-3}	2.99

Table: Background Cross sections after applying the mass cuts, in fb at PL.

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	0000000●0000000	00

Parton Level Estimates

$\sqrt{s}(TeV)$	$h \to WW^*$	$h^0 \rightarrow \tau^+ \tau^-$
13	0.127	0.073
14	0.123	0.069
27	0.09	0.049

Table: Minimum λ_{tc} at $\mathcal{L} = 139 f b^{-1}$ for 5 σ .

$\sqrt{s}(TeV)$	$h \to WW^*$	$h^0 ightarrow au^+ au^-$
13	0.06	0.033
14	0.057	0.031
27	0.041	0.023

Table: Minimum λ_{tc} at $\mathcal{L} = 3000 fb^{-1}$ for 5 σ .

æ

ヘロト 人間 とくほ とくほとう

Parton Level Estimates

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	000000000000000	00

Event Level Estimates

	_			_	
\sqrt{s}	tt jj	bbjjττ	bbjjWW	ttV	Total
13	0.14	0.004	6.7×10^{-5}	7.1×10^{-4}	0.15
14	0.21	0.007	9.9×10^{-5}	9.9×10^{-5}	0.22
27	0.71	0.02	3.1×10^{-4}	2.4×10^{-3}	0.74

Table: Background Cross sections after applying the mass cuts, in fb at PL.

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	0000000000000000	00

BDT response

BDT vs Cut Based (Event Level)

\sqrt{s} (TeV)	Cut-Based	BDT
13	1.2	2.7
14	1.3	3.2
27	2.2	5.5

Table: Comparison between the statistical significance at $\lambda_{tc} \sim 0.064$ and $\mathcal{L} = 3000 f b^{-1}$ for cut-based and BDT.

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	0	00000000000000	00

Event Level estimates

\sqrt{s} (TeV)	$\mathcal{L} = 300 fb^{-1}$	$\mathcal{L} = 3000 fb^{-1}$
13	0.099	0.055
14	0.092	0.051
27	0.068	0.038

Table: 95 % C.L Limits on λ_{tc} at different center of mass energies and Integrated Luminosities.

\sqrt{s} (TeV)	$\mathcal{L} = 300 fb^{-1}$	$\mathcal{L} = 3000 fb^{-1}$
13	0.21	0.088
14	0.16	0.082
27	0.11	0.061

Table: Minimum λ_{tc} for discovery at different center of mass energies and Integrated Luminosities.

Flavor Violation in SM	gTHDM	Experimental Constraints	Collider Study	Conclusion
0	000	o	0000000000000	00

Event level estimates

Conclusion

- The t → ch⁰ decay is an exciting new physics mode to study extra Yukawa couplings.
- We have studied h⁰ → τ⁺τ⁻ → e[±]μ[∓] + MET decay of SM-Higgs. We find that ττ holds a very promising study channel and with the inclusion of Energy of Charm variable we can really improve the reach for the LHC. Same can be repeated for h⁰ → γγ, ZZ* → 4ℓ.
- Here we have constrained ourself just eµ, but remaining leptonic modes and hadronic modes of tau decay can further improve the reach of this channel.
- We also just used the traditional collinear approximation for tau reconstruction, with more powerful method like Missing Mass calculator can also improve the search.

Flavor Violation	in SM	gTHDM

THANK YOU FOR YOUR LISTENING

DO YOU HAVE ANY QUESTIONS?