Topologically stable, finite-energy electroweak monopoles and the prediction of $\sin^2 \theta_W$

P. Q. Hung

UNIVERSITY OF VIRGINIA

NCTS Annual Theory Meeting: Dec. 9-11, 2020

P. Q. Hung Topologically stable, finite-energy electroweak monopoles and the prediction

- TOPOLOGICALLY STABLE: The monopole is stable due to a topological conservation law characterized by an integer n. A monopole with n = 1 cannot change into a trivial configuration with n = 0 for example.
- FINITE ENERGY: A soliton with finite mass and finite size.
- ELECTROWEAK-SCALE MONOPOLE: Monopoles whose masses $\sim O(TeV) \rightarrow$ Accessible at the LHC and can be searched for at MoEDAL
- Who cares about monopoles? Many people: Dirac, Schwinger, 't Hooft, Polyakov,...
- For what reasons? Symmetry of Maxwell's equations, charge quantization,..., Consequences of Spontaneous Symmetry Breaking

. MAXWELL'S EQUATIONS (without monopoles)

$$\nabla . \vec{E} = 4\pi \rho_e$$
$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
$$\nabla . \vec{B} = 0$$
$$\nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{J_e}$$
.

$$\partial_{\mu}F^{\mu\nu}=j^{
u}$$
 ; $\partial_{\mu}\tilde{F}^{\mu
u}=0$

$$\left(\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\sigma\rho} F^{\sigma\rho} \right)$$

Symmetry for $j^{\nu} = 0$: $F^{\mu\nu} \rightarrow \tilde{F}^{\mu\nu}$; $\tilde{F}^{\mu\nu} \rightarrow -F^{\mu\nu}$. $\vec{E} \rightarrow \vec{B}$; $\vec{B} \rightarrow -\vec{E}$

. MAXWELL'S EQUATIONS (with monopoles)

$$\nabla . \vec{E} = 4\pi \rho_e$$

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t} + \frac{4\pi}{c} \vec{J}_m$$

$$\nabla . \vec{B} = 4\pi \rho_m$$

$$\nabla \times \vec{B} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4\pi}{c} \vec{J}_e$$

$$. \Downarrow$$

$$\partial_{\mu}F^{\mu
u}=j^{
u}\;;\quad\partial_{\mu} ilde{F}^{\mu
u}=k^{
u}$$

Symmetry: $F^{\mu\nu} \rightarrow \tilde{F}^{\mu\nu}$; $\tilde{F}^{\mu\nu} \rightarrow -F^{\mu\nu}$. $j^{\nu} \rightarrow k^{\nu}$; $k^{\nu} \rightarrow -j^{\nu}$

- A 🖻 🕨

3

Coulomb-like magnetic field of a point-like magnetic monopole of magnetic charge g_M :

 $\vec{B} = g_M \frac{\vec{r}}{\vec{r}^3}$ $g_M = \oint \vec{B}.d\vec{S}$ But $\oint \vec{B}.d\vec{S} = 0$ if $\vec{B} = \nabla \times \vec{A}. \oint \vec{B}.d\vec{S} \neq 0$ if $g_M \frac{\vec{r}}{\vec{r}^3} = \nabla \times \vec{A} + 4\pi g_M \theta(-z)\delta(x)\delta(y)$

Dirac string

• QM: we use \vec{A} . Northern patch: $\vec{A}^{(N)}$. Southern patch: $\vec{A}^{(S)}$. Related by gauge transformation: $\vec{A}^{(N)} - \vec{A}^{(S)} = \nabla(2g_M\phi)$. $\psi_{N,S}$: Solutions of the Schrödinger equation for each patch. Can show: $\psi_S(r, \theta, \phi) = e^{i2eg_M\phi}\psi_N(r, \theta, \phi)$. $(\psi_S(r, \theta, 0) = \psi_N(r, \theta, 0))$

Suppose $\psi_N(r, \theta, 2\pi) = \psi_N(r, \theta, 0)$ i.e. single-valued.

• $\psi_{\mathcal{S}}(r,\theta,2\pi) = e^{i2eg_{\mathcal{M}}(2\pi)}\psi_{\mathcal{N}}(r,\theta,0) = e^{i2eg_{\mathcal{M}}(2\pi)}\psi_{\mathcal{S}}(r,\theta,0)$

 ψ_S is single-valued, i.e. $\psi_S(r, \theta, 2\pi) = \psi_S(r, \theta, 2 = 0)$ if and only if

$$eg_M = \frac{m}{2}$$

Dirac Quantization Condition (DQC)

P. Q. Hung Topologically stable, finite-energy electroweak monopoles and the prediction

MAGNETIC MONOPOLES with NO STRING ATTACHED

- Dirac monopole: Point-like object with a singular string attached. Just pure $U(1)_{em}$. No idea how heavy it could be.
- U(1)_{em} ⊂ G could get rid of the Dirac string and predict the monopole mass.
- 't Hooft-Polyakov monopole: Topologically-stable, finite-energy solution to the field equations for the Georgi-Glashow model SO(3) → U(1): the monopole is a soliton with finite size and finite mass. The Dirac string is just a gauge artifact. Far away from the core of the monopole, it looks exactly like a Dirac monopole.
- Topologically stable? Finite energy?
- How does one find such a solution for a general class of models that contain U(1)_{em} as a subgroup?
- What could the experimental and theoretical implications be?

- A gauge group is spontaneously broken down to a subgroup by a Higgs multiplet φ^a: φ^aφ^a = v². This is a "sphere" in internal symmetry space: A vacuum manifold *M* (space of vacuum expectation values of the Higgs field).
- Higgs triplet of SU(2) with 3 real components: $\phi_1^2 + \phi_2^2 + \phi_3^2 = v^2$. That's a 2-sphere S^2 (surface of a 3-dim internal symmetry sphere).
- Complex Higgs doublet with 4 real components: $\phi_1^2 + \phi_2^2 + \phi_3^2 + \phi_4^2 = v^2$. A 3-sphere S^3 .
- We are interested in how solutions to the classical field equations map the vacuum manifold *M* to the boundary of 3-dimensional space, also S².
- Trivial (perturbative) vacuum: (φ) = (0, 0, ..., ν), independent of spatial direction.
- Question: How many times one goes around in *M* when one goes around once in spatial S²?

- The number of times is classified by Π₂(M): The second Homotopy Group.
- For a real triplet, $\mathcal{M} = S^2$.
- Homotopy: $\Pi_2(S^2) = Z = n$. n = 0, 1, 2, ...
- Georgi-Glashow SO(3) model with a real triplet: $\Pi_2(S^2) = Z$.
- 't Hooft-Polyakov monopole: Hedgehog änsatz (static): $\xi^{a} = \frac{r^{a}}{gr^{2}}H(v_{M}gr); W_{n}^{a} = \epsilon_{aji}\frac{r^{j}}{gr^{2}}[1 - K(v_{M}gr)]; W_{0}^{a} = 0$

This corresponds to n = 1.

- Non-trivial vacuum: $\xi^i
 ightarrow v_M rac{r^i}{r}$ as $r
 ightarrow \infty$
- This monopole is topologically stable because it takes an infinite amount of energy to go from n = 1 to n = 0! It also has a finite energy!
- Far from the core (more on this later): $B_i \approx \frac{g_M}{r^2} \hat{r}_i$

3.5 3

- $\Pi_2(S^n) = 0$ for n > 2.
- SM with complex Higgs doublets: M = S³ ⇒ Π₂(S³) = 0. No topologically stable monopole!
- Cho-Maison: SM with a Higgs doublet but now $\mathcal{M} = CP^1 \approx S^2 \Rightarrow \Pi_2(CP^1 \approx S^2) = Z.$
- Cho-Maison monopole is topologically stable but it has an infinite energy. To have a finite energy (more on this below), C-M modifies the kinetic term of the U(1)_Y gauge field ⇒ Unknown Physics BSM!
- Can one have a topologically stable (T-S), finite energy (F-E) monopole à la 't Hooft-Polyakov solely within the gauge group SU(2) × U(1)_Y? Yes but one needs a real Higgs triplet of SU(2) !

EW- ν_R MODEL AND T-S, F-E MONOPOLE (PQH)

- What do neutrinos have to do with monopoles?
- The EW- ν_R model (PQH) has a real Higgs triplet. Why?
- The EW- ν_R model: A model of non-sterile ν_R s with Majorana masses M_R proportional to the electroweak scale $\Lambda_{EW} \sim 246 \, GeV$. Gauge group: $SU(3) \times SU(2)_W \times U(1)_Y$.
- Non-sterile: $I_R^M = \begin{pmatrix} \nu_R^M \\ e_R^M \end{pmatrix}$ Mirror lepton doublet.
- Majorana mass term: $L_M = g_M l_R^{M,T} \sigma_2 \tau_2 \tilde{\chi} l_R^M$, where $\tilde{\chi} = (\chi^0, \chi^+, \chi^{++})$ is a complex triplet.
- $\langle \chi^0 \rangle = v_M \Rightarrow M_R = g_M v_M.$
- $M_R > M_Z/2$ (Z boson decay width constraint). $\Rightarrow M_W \neq M_Z \cos \theta_W$ at tree level. VERY BADLY!
- CURE: Add a real triplet $\xi(Y/2=0) = (\xi^+, \xi^0, \xi^-)$ with $\langle \xi^0 \rangle = v_M \Rightarrow M_W = M_Z \cos \theta_W!$
- $\xi \Rightarrow$ Monopoles!

EW- ν_R MODEL AND T-S, F-E MONOPOLE

- The EW-ν_R model has a rich Higgs spectrum: Doublets Φ^{SM,MF}_i Complex triplet χ̃, and ξ. (Also a singlet, irrelevant here.)
- Vacuum manifolds: $\Phi_i^{SM,MF} \to S^3$, $\tilde{\chi} \to S^5$, $\xi \to S^2$.
- Vacuum manifold of the EW- ν_R model: $\mathcal{M} = S^2 \times S^5 \times \prod S_i^3$.
- $\Pi_2(\mathcal{M}) = \Pi_2(S^2) \oplus \Pi_2(S^5) \oplus \Pi_2(\prod S_i^3) = \Pi_2(S^2) = Z.$
- The electroweak monopole is topologically stable.
- Hedgehog änsatz (static):

 $\xi^{a} = rac{r^{a}}{gr^{2}}H(v_{M}gr); W^{a}_{n} = \epsilon_{aji}rac{r^{j}}{gr^{2}}[1 - K(v_{M}gr)]; W^{a}_{0} = 0$

• Classical static solution: $Mass = Energy \Rightarrow$

 $M = \frac{4\pi v_M}{\sigma} f(\lambda/g^2) \sim 889 GeV - 2.993 TeV$

 $(87GeV > v_M > 45.5GeV, f = 1 - 1.78 \text{ and}$ $(\sum_{i=1,2} v_i^2 + v_i^{M,2}) + 8v_M^2 = (246GeV)^2)$. It is finite!

• The monopole is a finite-energy soliton with a core of radius $R_c \sim (gv_M)^{-1} \sim 10^{-16} cm$, with virtual W^{\pm} and Z inside the core.

EW- ν_R MODEL AND T-S, F-E MONOPOLE

• Topological Quantization Condition: With $W_3^{\mu\nu} = \partial^{\mu}W_3^{\nu} - \partial^{\nu}W_3^{\mu} + \frac{1}{v_M^3 g} \varepsilon_{abc} \xi^a \partial^{\mu} \xi^b \partial^{\nu} \xi^c$, one constructs a topological current: $k_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\sigma\rho} \partial^{\nu} W_3^{\sigma\rho}$. the topological magnetic charge is defined as $g_M = \int d^3 x k_0$. One obtains

$$g g_M = n$$

•
$$g_M = \frac{1}{g}$$
 for $n = 1$.

• $SU(2)_W \times U(1)_Y \rightarrow U(1)_W \times U(1)_Y \rightarrow U(1)_{em} \Rightarrow g = e / \sin \theta_W$

$$g_M = rac{\sin \theta_W}{e}$$

• Magnetic field of the electroweak monopole far from the core:

$$ec{B} = (rac{\sin heta_W}{ ext{e}}) rac{\hat{r}}{r^2}$$

. Prediction of $\sin^2 \theta_W$ (John Ellis, Nick Mavromatos, PQH)

• DQC for an electron circling around the electroweak monopole: $eg_M = \frac{m}{2}$. Compare this DQC with the TQC: $g_M = \frac{\sin \theta_W}{e} \Rightarrow$ $\sin \theta_W = m/2$. Only m = 1 is allowed \Rightarrow

$$\sin^2\theta_W = \tfrac{1}{4}$$

P. Q. Hung Topologically stable, finite-energy electroweak monopoles and the prediction

. Prediction of $\sin^2 \theta_W$

• Evolving $\sin^2 \theta_W = 1/4$ from the monopole mass scale down to the Z-boson mass M_Z , gives $\sin^2 \theta_W(M_Z) = x_W \approx 0.231$ compatible with experiment.

M_M (TeV)	F	n _H	<i>n</i> ₃	\bar{n}_3	XW
2.3	3	1	0	0	0.232
3	3	3	0	0	0.2314
3	3	1	1	1	0.2318
3	4	1	0	0	0.2328
3.5	4	1	0	0	0.232

- The compatibility with experiment appears to indicate that some (or all) mirror fermions are very heavy ($F \le 4$). (The model contains 3 generations of SM fermions and 3 generations of mirror fermions.)
- The lightest mirror fermions are long-lived (details are in the EW- ν_R model-related papers). These are LLPs.

. Implications

- The existence in the EW- ν_R model of a real Higgs triplet ξ gives rise to topologically-stable, finite-energy electroweak monopole.
- The model predicts $\sin^2 \theta_W = \frac{1}{4}$ which is evolved down to $\sin^2 \theta_W \approx 0.231$ at the Z-mass.
- Monopole masses 2-3 TeV are accessible to the LHC and MoEDAL.
- The electroweak monopole mass $M = \frac{4\pi v_M}{g} f(\lambda/g^2)$ is related to the non-sterile right-handed neutrino mass $M_R = g_M v_M!$
- Apparently, the best production mechanism is to use heavy-ion collision because the production process is very different from that of a p-p collision (*exponentially-suppressed* as $\sigma \sim \exp(-4/\alpha = -548)$), coming mainly from a thermal Schwinger thermal pair production process.
- LHC signals in conjunction with those of the electroweak monopole signals?

. Implications

• The signals to look for are lepton-number violating signals at high energy: Like-sign dileptons from the decays $\nu_R \nu_R$ $(q\bar{q} \rightarrow Z \rightarrow \nu_R \nu_R)$. Remember that ν_R s are non-sterile and *Majorana*! One has $\nu_{Ri} \rightarrow e_{Ri}^M + W^+$ followed by $e_{Ri}^M \rightarrow e_{Lk} + \phi_S$ which occurs at *displaced vertices* due to the smallness of $g_{SI} < 10^{-4}$. The signals at the LHC would be $q\bar{q} \rightarrow Z \rightarrow \nu_R i + \nu_{Ri} \rightarrow e_{Ik} + e_{II} + W^+ + W^+ + \phi_S + \phi_S$: Like-sign dileptons $e_{lk} + e_{ll}$ plus 2 jets (from 2 W) plus missing energies (from ϕ_{S}) \Rightarrow Lepton-number violating signals! The appearance of like-sign dileptons e^-e^- , $\mu^-\mu^-$, $\tau^-\tau^-$, $e^-\mu^-$, ... could occur at displaced vertices > 1mm or even tens of centimeters depending on the size of g_{SI} .

. EPILOGUE

Thank you and stay safe!