Novel Probes for Fermionic Gases

J. Meineke, T. Müller, B. Zimmermann, D. Stadler J.-P. Brantut, H. Moritz, T. Esslinger

ETH Zürich

Experimental setup

ETH

Microscope setup

Microscopic manipulation

Atoms in micro-traps

ETH

B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, H. Moritz, New Journal of Physics 13, 043007 (2011)

Imaging through the microscope

ETH

entanglement?

ETH

Microscopic probing ...

... of in-situ density fluctuations

Quantum statistics and fluctuations

ETH

For 1D Bose gases: J. Esteve et al., PRL 96,130403 (2006) & J. Armijo et al., PRL 105, 230402 (2010) For 2D Bose gases: C.-L. Hung, X. Zhang, Na. Gemelke, C. Chin, Nature 470, 236 (2011)

Data

T. Müller, B. Zimmermann, J. Meineke, J.-P. Brantut, T. Esslinger. H. M., PRL 105,040401 (2010)

Manifestation of antibunching

<u>Similar work at MIT in TOF:</u> PRL **105**, 040402 (2010)

Thermodynamic properties

model independent measurement of temperature

Q. Zhou and T. L. Ho, Phys. Rev. Lett. 106, 225301 (2011); κ in SF-MI: N. Gemelke, X. Zhang, C.-L. Hung, C. Chin, Nature 460, 995 (2009).

Fluctuation-based thermometry

$$\partial N^{2} = \frac{k_{B}T}{U_{0}} \cdot \left(U_{0} \cdot \frac{\partial \langle N \rangle}{\partial \mu} \right)$$

ETH

Temperature:	Conventional	Fluctuation-based
degenerate	205±30 nK	145±31 nK
thermal	1,6 ±0.2 μK	1,1 ±0.06 μK

T. Müller, B. Zimmermann, J. Meineke, J.-P. Brantut, T. Esslinger, H. Moritz, Phys. Rev. Lett. **105**, 040401 (2010)

Also: Structure factor see Chin/Greiner/Bloch groups

Temperature Suszeptibilities, e.g. compressiblity

ETH

Microscopic probing ...

... of in-situ <u>spin</u> fluctuations

Local Spin-Fluctuations

Two-component quantum gas

$$\langle m^2 \rangle = \langle (n_{\uparrow} - n_{\downarrow})^2 \rangle = \langle n_{\uparrow}^2 \rangle + \langle n_{\downarrow}^2 \rangle - 2 \langle n_{\uparrow} n_{\downarrow} \rangle$$
$$\langle n_{\uparrow} n_{\downarrow} \rangle = \langle \Psi_{\uparrow}^{\dagger} \Psi_{\uparrow} \Psi_{\downarrow}^{\dagger} \Psi_{\downarrow} \rangle$$

G. M. Bruun et al., PRL 102, 030401 (2009)

The Interferometer

Spin polarised sample, close to resonance

J. Meineke, J.-P. Brantut, D. Stadler, T. Müller, H. Moritz, T. Esslinger, Nature Phys. DOI: 10.1038 (2012)

Suppression of Spin-Fluctuations

ETH

Distribution of Spin-Polarization

ETH

Spin-Susceptibility

Fluctuation-Dissipation Theorem

• δm^2 and $T \Rightarrow$ spin-susceptibility

$$\chi = \frac{\partial (n_{\uparrow} - n_{\downarrow})}{\partial (\mu_{\uparrow} - \mu_{\downarrow})}$$

$$k_B T \ \chi = \delta m^2$$

Other measurements of spin-susceptibility: Salomon, Zwierlein, Ketterle groups

Entanglement

Inequality for Collective Spin Observable

Collection of 2-Level Systems:

$$\vec{J} = \sum \vec{\sigma_i}$$

• For separable states and symmetry under spin rotations:

$$\frac{\Delta J_z^2}{\langle N \rangle} \ge \frac{2}{3} \quad \Rightarrow \quad \frac{A\delta m^2}{n_{col}} \ge \frac{2}{3}$$

Wiesniak et al., NJP 7, 258 (2005); Toth et al., PRA 79, 042334 (2009)

Novel Probes

Jakob Meineke David Torben Stadler Müller

n Sebastian Krinner

an Jean-Philippe Brantut

Henning Moritz

Tilman Esslinger