Quantum simulations of gauge potentials using ultracold neutral atoms

Yu-Ju Lin

Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan

QC2013, August 31, 2013

Outline

- Laser cooling and Trapping of neutral atoms
- Probe of cold atoms
- Ultracold quantum gases: properties
- Quantum simulation using ultracold quantum gases
 * synthetic vector gauge potentials

Cooling methods

1. Cryogenics

- Liquid Nitrogen: 77K
- Liquid Helium: 4.2K
- He³-He⁴ dilution refrigerator: 0.01K
- 2. Laser cooling
 - Doppler cooling: 10⁻⁴ K
 - Polarization gradient cooling: $10^{-6} \text{ K} = 1 \mu \text{ K}$
- 3. Evaporative cooling: no lower limit (< 10⁻⁷ K)

External and internal states of the atoms

Cooling of atoms: reduce velocity spread: external center of mass motion

Internal degree of freedom: spin states

L=0 _____
$$S_z = +1/2 \uparrow Z_z = -1/2 \downarrow$$
 _____ L=0, S=1/2

Doppler cooling

- Two counter-propagating laser beams, red-detuned ($\omega_{laser} < \omega_0$)
- Radiation pressure and Doppler shift: atoms moving to the right observe frequency of the right beam closer to $\omega_0 \rightarrow$ absorb more photons from the right beam, net force to the left
- Friction force for atoms against their motion: $F=-\alpha v$

*1997 Nobel Prize in Physics *Slide adapted from Ite Yu, NTHU, Taiwan

Evaporative cooling

remove hot atoms \rightarrow remaining atoms rethermalize and are cooled down

Magnetic trapping potentials: Zeeman shift

An atom in an external magnetic field

Energy
$$E = -\vec{\mu} \cdot \vec{B}$$

Force
$$\vec{F} = -\vec{\mu} \cdot \nabla \vec{B}$$

Optical trapping potentials : AC stark shift

Trapped atoms in light fields

Dipole moment $\vec{d} = \alpha \vec{E}$

Energy
$$U_{dip} = -\vec{d} \cdot \vec{E}$$

 $\propto \alpha(\omega) I(r)$

Ultracold quantum gases

ultracold atoms: degenerate, non-classical gases

Quantum statistics: Bose-Einstein: bosons, e.g. photons, ⁴He Fermi-Dirac: e.g. electrons, protons, ³He

$$\frac{N}{V}$$
 : density

 $\lambda_{\text{dB}}\!\!:$ de Broglie thermal wave length

Ex. Bose-Einstein condensate (BEC), Degenerate Fermi gas (DFG)

General references:

1. Many body physics with ultracold atoms, Rev. Mod. Phys. 80, 885 (2008).

2. Making, probing, and understanding Bose-Einstein condensates, arxiv cond-mat 9904034

Bose-Einstein condensate (BEC)

• macroscopic occupation of a single-particle state $\varphi_0(x)$ described by the order parameter $\psi(x) = \sqrt{N}\varphi_0(x)$: macroscopic wavefunction (exist for weakly interacting bosons)

$$i\hbar \frac{\partial \psi(r,t)}{\partial t} = \frac{\hbar^2}{2m} \nabla^2 \psi(r,t) + V(r)\psi(r,t) + \frac{g|\psi(r,t)|^2}{\psi(r,t)} \psi(r,t)$$

Time dependent Gross-Pitaevskii Equation (TDGPE)

***2001 Nobel Prize in Physics**

Introduction: ultracold quantum gases

ultracold atoms: degenerate, non-classical gases

(1) cold and dilute: contact interaction $V(r-r') = \frac{4\pi\hbar^2 a}{m}\delta(r-r')$

a : s-wave scattering length

(2) tunable interaction: Feshbach resonance

(3) nearly disorder free

precisely controlled <u>magnetic</u> and <u>optical potentials</u> Zeeman shift AC stark shift

→ ideal for quantum simulation: model systems for condensed-matter physics

Probing atoms: absorption imaging

Absorption: Optical density $OD = \frac{I - I}{I}$ for OD <<1 $OD = \frac{\text{total scattered photon}}{\text{incoming probe photon}} = \frac{N\Gamma_{sc}}{IA/\hbar\omega}$ $= \frac{N\sigma}{A}$

 Γ_{sc} : scattered photon# per atom σ : scattering cross section per atom

Probe the atoms: time-of-flight (TOF) imaging

- Switch off trap, free expansion \rightarrow imaging
- measure momentum k distribution : k mapped to x

 (1) ballistic expansion: no interaction during TOF
 (2) after long expansion t >> 1/ω

thermal \rightarrow thermal+BEC \rightarrow ~ pure BEC

Ultracold atoms have realized iconic condensed matter systems

• superfluid \rightarrow Mott-insulator transition: BEC in optical lattices

 BEC-BCS (Bardeen-Cooper-Schrieffer) crossover: two-component Fermi gas, interaction tuned from repulsive →attractive

Ref: JILA, MIT, 2004

Simulating Quantum Magnetism

Condensed matter system

Ultracold atoms in optical lattices

Fermions in a lattice: Towards understanding high-T_c superconductors

Cold atom systems can provide insights into origin of high T_c SC

Ref: Hofstetter et al., PRL, 2002.

New type of simulation: synthetic gauge potentials

to "charge" neutral atoms by creating a "synthetic vector gauge potential A*"

Charged particles in external electric and magnetic fields

$$H = \frac{(p - qA)^2}{2m} + q\phi(x)$$
$$B = \nabla \times A$$
$$E = -\nabla \phi - \frac{\partial A}{\partial t}$$

\$\overline{\phi}\$: scalar potential
A: vector potential
p: canonical momentum
H: Hamiltonian operator
B: magnetic field
E: electric field

New type of simulation: synthetic gauge potentials

to "charge" neutral atoms by creating a "synthetic vector gauge potential A*"

• new approach to generate large B* to study quantum-Hall physics

2D system and $v = N_{2D}/N_v \le 1$ N_{2D}= atom#, N_v= # of flux quanta

 bosonic v =1 state: w/ binary contact interaction, nonabelian, for topological quantum computation

Ref: N. R. Cooper, 2008

• Spin-dependent $\vec{A}^*(\vec{\sigma})$: spin-orbit coupling TR preserved topological insulators, topological superconductors: nonabelian gauge potentials $\frown [A_i^*, A_j^*] \neq 0$

Importance of SO coupling

- Realizing topological insulators w/o breaking time reversal symmetry
- w/ interaction → topological superconductors
 leading to anyons, Majorana fermions,
 non-Abelian statistics, topological quantum computing

Ref: Qi and Zhang, Physics Today (2009), Fu and Kane, PRL (2008) Sau et al., PRL (2010), Nayak et al., Rev. Mod. Phys. (2008)

- Spin-dependent A^{*}: $A_i^*(\vec{\sigma})$ non-abelian gauge potentials $[A_i^*, A_j^*] \neq 0$
- Promising for spintronics

Datta-Das spin field-effect transistor

Datta and Das (1990); Vaishnav et al. (2008)

Spin Hall effects

Kato. et al. (2004); Beeler et al. in Spielman group (2012)

Introduction of synthetic gauge potentials

• Optically induced vector gauge potential A^{*} for neutral atoms:

$$H = \frac{(p - q^*A^*)^2}{2m^*} + V(x)$$

 \rightarrow synthetic electric and magnetic fields

 Create synthetic field B^{*} for neutral atoms: effective Lorentz force F = qv × B to simulate charged-particles in real magnetic fields

 $\boldsymbol{E}^* = -\frac{\partial \boldsymbol{A}^*}{\boldsymbol{A}_{t}}, \boldsymbol{B}^* = \boldsymbol{\nabla} \times \boldsymbol{A}^*$

rotation: technical limit on B*

Principles

- charged particle q in a real field $\vec{B} = B\hat{z}$, Landau gauge $A_x = By$ $H_B = \frac{\hbar^2}{2m} \left[(k_x - \frac{qA_x}{\hbar})^2 + k_y^2 \right]$ $\delta k_x = \frac{qA_x}{\hbar} = \frac{qBy}{\hbar}$ $\vec{B} = \nabla \times \vec{A}$ $\vec{B} = \nabla \times \vec{A}$
- to simulate w/ laser-atom interaction
- laser photons : create δk_x = momentum shift along x \rightarrow make $\delta k_x(\Delta)$ Δ =laser-atom detuning

→ make
$$\Delta = \Delta' y$$
: $\delta k_x(y)$
→ synthetic field $\frac{q^* B^*}{\hbar} = \frac{\partial(\delta k_x)}{\partial y}$ along z

Synthetic vector potentials (I): synthetic magnetic field B^{*}

c. Vector potential A_x^* vs. position y

b. Level diagram

Reference: Y.-J. Lin et al., Nature **462**, 628 (2009), Y.-J. Lin et al., PRL **102**, 130401 (2009).

Adiabatic loading into the dressed state: uniform A*

Time-of-Flight images of $|-1,k_x+2\rangle$, $|0,k_x\rangle$, $|+1,k_x-2\rangle$

Uniform vector potential A* vs. detuning Δ

effective vector potential q^*A^*/\hbar = measured quasi-momentum k_x

Ref: Y.-J. Lin et al., PRL **102**, 130401 (2009).

Quasi-momentum k_x/k_L

Spin m_F (y)

-1

0

+1 '

Synthetic vector potentials (II): spin-orbit coupling

Reference: Y.-J. Lin, K.J.-Garcia and Ian Spielman, Nature 471, 83 (2011).

Setup: BEC production

- load Magneto-Optical trap (MOT) from Zeeman slower: ~ 10⁹ atoms in 3 s
- rf-evaporative cooling in a quadrupole magnetic trap for 3 s, $|F=1,m_F=-1\rangle$
- single beam optical dipole trap + weak magnetic trap: evaporate in hybrid potential for ~ 7 s→ 2 x10⁶ atoms in BEC
- load the BEC into the crossed dipole trap: 5 x10⁵ atoms
- total cycle time~ 15 s

Actual experimental Setup in NIST

Current experiment in IAMS: towards BEC

Diode lasers for laser cooling

Current status of experiment in IAMS:

cold atoms in magnetic traps

laser cooled and trapped atoms

MOT

 $\begin{array}{l} \mbox{Magneto-Optical Trap (MOT)} \\ \rightarrow \mbox{ sub-Doppler cooling} \\ \rightarrow \mbox{ captured in magnetic traps} \end{array}$

Acknowledgements

NIST

IAMS

Karina Jimenez-Garcia

Robert Compton

James Trey Porto

William Phillips

Ian Spielman

Cheng-An Chen

Jung-Bin Wang

Gergely Imreh

Chin-Yeh Yu

Summary

- Ultracold quantum gases: precisely known Hamiltonian, w/ tunable parameters quantum simulation as model systems of condensed-matter physics
- Cold atoms:
 - * superfluid→Mott-insulator transition
 - * BEC-BCS crossover
 - * synthetic vector gauge potentials
 - * quantum magnetism