
Quantum Quench of
P -wave Superfluid Fermi Gases

Gentaro Watanabe

APCTP, POSTECH
Pohang, Korea

Collaboration: Sukjin Yoon (APCTP)

NCTS Workshop on Quantum Condensation (QC13)
National Center for Theoretical Sciences (NCTS),

National Cheng Kung University

Sep 04, 2013



Outline

Non-Equilibrium Dynamics and Cold Atomic Gases

Quench Dynamics

Dynamics of Order Parameter

S-wave Fermi Gas
BCS regime
Unitary Fermi Gas
BEC regime

Single-species P -wave Fermi Gas
Quantum Phase Transition
Quenching Polar State

Summary

Discussion

Conclusion



Non-Equilibrium Dynamics and Cold Atomic Gases

Cold Atomic Gases are good playgrounds for the experimental
observation and control of the dynamics

I Intrinsic time scale is large compared with the conventional
solid/condensed-matter systems

I Large characteristic length scales

I Can be controlled to be well isolated from the environment for
the unitary evolution (just to see the effect of quench alone)
after quench



Quench Dynamics

| i = | 0i| i = | 0i | (t)i = e�iH1t| 0i| (t)i = e�iH1t| 0i

H = H0H = H0 H = H1H = H1

t = 0t = 0

At t = 0, a sudden quench (change of system parameter, e.g.
coupling constant) is made faster than any time scale of the
system.



Dynamics of Order Parameter
Dynamics of Pairing Field in Superfluid

Spontaneous Symmetry Breaking of U(1) symmetry
→ dynamics of a complex order parameter Ψ = |Ψ|eiφ
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-Bogoliubov-Anderson (Nambu-Goldstone)
mode : phase dynamics of ∆(t)
-Higgs mode : amplitude dynamics of ∆(t)

I ’Higgs‘ mode in S-wave Fermi Gas (next section)

I ’Higgs‘ mode at the 2d Superfluid/Mott insulator transition :
M. Endres et al. , Nature (2012).



Dynamics of Order Parameter
Caveat

I Gas sample with size L smaller than correlation length.
→ Inhomogeneous phase fluctuation and vortices are ignored.
(Kibble-Zurek mechanism (KZM), a theory of defect
formation, wiil NOT be discussed here.)

I Non-dissipative limit



S-wave Fermi Gas
Pairing Dynamics in the BCS regime

H =
∑
p,σ

ξpa
†
p,σap,σ −

λ(t)

2

∑
p,q

a†p,↑a
†
−p,↓a−q,↓aq,↑ (1)

Time-dependent many-body BCS state is represented by

|Ψ(t)〉 =
∏
k

[uk(t) + vk(t)a
†
p,↑a

†
−p,↓]|0〉 (2)

Time-dependent mean-field pairing function

∆(t) = λ(t)
∑
k

uk(t)v
∗
k(t) (3)

Bogoliubov-de Gennes equation

i∂t

(
uk
vk

)
=

(
ξk ∆
∆∗ −ξk

)(
uk
vk

)
(4)



S-wave Fermi Gas
BCS regime

Barankov et al. PRL (2004)

λ(t) =

{
λs at t < 0,
λ at t > 0.

(∆0 : Equilibrium value of gap at the final coupling λ)
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I The system oscillates between the normal/superfluid and
superfluid state.

I Integrable : mapped to Bloch precession of Anderson
pseudospins

I detectable with the rf-absorption spectroscopy technique
: M. Dzero et al. PRL (2007)



S-wave Fermi Gas
BCS regime

Barankov et al. PRL (2006), Yuzbashyan et al. PRL (2006)
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strate that these results are consistent with the spectral
analysis [20] based on the integrability of the problem.

We also address the behavior on a long time scale, t *
!", after dissipation sets in. We find that energy relaxation
in a closed system, such as an atom trap, makes it evolve to
a new equilibrium state. Both the temperature T! and the
gap !"T!# exhibit a nonmonotonic dependence on the
initial conditions (Fig. 1).

In our analysis of the BCS problem we employ the well-
known pseudospin formulation [21] in which spin 1=2
operators s$p % sxp $ isyp describe Cooper pairs "p;&p#.
The BCS Hamiltonian takes the form

H % &
X

p
2"pszp & #"t#

X
p;q
s&p s'q ; (1)

where "p % p2=2m&$ is the free particle spectrum with
$ the Fermi energy. Here we consider the time evolution
induced by an instantaneous change of interaction from #s
at t < 0 to # at t > 0. In the spin formulation, Eq. (1), the
dynamics is of a Bloch form

drp

dt
% 2bp ( rp; bp % &"!x;!y; "p#; (2)

where rp % 2hspi are classical vectors, and the effective
magnetic field bp depends on the pairing amplitude !. The
latter is defined self-consistently:

! % !x ' i!y %
#"t#

2

X
p
r'p ; r'p % rxp ' iryp: (3)

We first present numerical results for the dynamics (2) and
(3). The Runge-Kutta method of the 4th order was used
with N % 104; 105 equally spaced discrete energy states
within a band W % 50!0 with a constant density of states
%"EF#. As an initial state we take

r'p "0# %
!s!!!!!!!!!!!!!!!!!!

!2
s ' "2

p

q ; rzp"0# %
"p!!!!!!!!!!!!!!!!!!

!2
s ' "2

p

q : (4)

which describes the T % 0 paired ground state [21].
Without loss of generality we set !"t# % !x, since the
phase of ! is a constant of motion due to the particle-
hole symmetry of the model. The interaction constants #s
and # define, via the self-consistency relation (3), the
initial and final equilibrium BCS gap values, !s %
We&1=gs , gs % #s%) 1, !0 % We&1=g, g % #%, which
we use to parameterize the system.

We observe three qualitatively different dynamical re-
gimes. The initial states with a relatively small gap give
rise to undamped oscillations [Fig. 2(a)]. In this case !"t#
oscillates nonharmonically between !& and !' (the re-
gime A in Fig. 1). Synchronization of different Cooper pair
states results from their interaction with the mode singled
out by BCS instability of the initial state, similar to the
evolution from the normal state [13].

Desynchronization takes place at !s * !AB % 0:21!0
giving rise to two different regimes exhibiting dephasing,
underdamped and overdamped (B and C, Fig. 1). The
former, illustrated in Fig. 3(a), is simplest to understand

for a small initial deviation, !s ’ !0 [18], by linearizing
Bloch equations about the equilibrium state. The analysis
predicts damped oscillations at long times:

!"t# % !a ' A"t# sin"2!at' &#; A"t# / t&1=2: (5)

The power-law decay of A"t# was explained in Ref. [18] by
interaction of the collective mode with the continuous
spectrum of excitations with energies above 2!a and
linked to the linear Landau damping. In the spin formula-
tion, the dephasing results from the Larmor frequency of
spin precession bp being a continuous function of "p. An
extension of this argument to the nonlinear regime was
proposed recently in Ref. [19] which, however, did not
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FIG. 2 (color online). (a) The pairing amplitude !"t# for the
initial state (4) with !s % 0:05!0 as recorded from the simula-
tion, oscillating between !' % 0:97!0 and !& % 0:31!0;
Synchronization (b) of the phase 'p time dependence, Eq. (7),
for "p % 0;!0; 2!0, and (c) frequency !p vs "p.
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FIG. 3 (color online). Dephased dynamics. (a) Simulated !"t#
for the initial states (4) with !s % 0:21!0; 4:5!0 with the
asymptotic values !a % 0:81!0; 0:12!0; Overdamped dynam-
ics. (b) Same as in (a) with !s % 4:81!0 and !a % 0; (c) The
phase 'p time dependence, Eq. (7), for energies "p % 0;!0;
2!0 (bottom to top) for !s % 0:21!0; (d) The frequency !p vs
"p for !s % 0:21!0 (dashed line) and !s % 4:81!0 (solid line).
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strate that these results are consistent with the spectral
analysis [20] based on the integrability of the problem.

We also address the behavior on a long time scale, t *
!", after dissipation sets in. We find that energy relaxation
in a closed system, such as an atom trap, makes it evolve to
a new equilibrium state. Both the temperature T! and the
gap !"T!# exhibit a nonmonotonic dependence on the
initial conditions (Fig. 1).

In our analysis of the BCS problem we employ the well-
known pseudospin formulation [21] in which spin 1=2
operators s$p % sxp $ isyp describe Cooper pairs "p;&p#.
The BCS Hamiltonian takes the form

H % &
X

p
2"pszp & #"t#

X
p;q
s&p s'q ; (1)

where "p % p2=2m&$ is the free particle spectrum with
$ the Fermi energy. Here we consider the time evolution
induced by an instantaneous change of interaction from #s
at t < 0 to # at t > 0. In the spin formulation, Eq. (1), the
dynamics is of a Bloch form

drp

dt
% 2bp ( rp; bp % &"!x;!y; "p#; (2)

where rp % 2hspi are classical vectors, and the effective
magnetic field bp depends on the pairing amplitude !. The
latter is defined self-consistently:
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We first present numerical results for the dynamics (2) and
(3). The Runge-Kutta method of the 4th order was used
with N % 104; 105 equally spaced discrete energy states
within a band W % 50!0 with a constant density of states
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which describes the T % 0 paired ground state [21].
Without loss of generality we set !"t# % !x, since the
phase of ! is a constant of motion due to the particle-
hole symmetry of the model. The interaction constants #s
and # define, via the self-consistency relation (3), the
initial and final equilibrium BCS gap values, !s %
We&1=gs , gs % #s%) 1, !0 % We&1=g, g % #%, which
we use to parameterize the system.

We observe three qualitatively different dynamical re-
gimes. The initial states with a relatively small gap give
rise to undamped oscillations [Fig. 2(a)]. In this case !"t#
oscillates nonharmonically between !& and !' (the re-
gime A in Fig. 1). Synchronization of different Cooper pair
states results from their interaction with the mode singled
out by BCS instability of the initial state, similar to the
evolution from the normal state [13].

Desynchronization takes place at !s * !AB % 0:21!0
giving rise to two different regimes exhibiting dephasing,
underdamped and overdamped (B and C, Fig. 1). The
former, illustrated in Fig. 3(a), is simplest to understand

for a small initial deviation, !s ’ !0 [18], by linearizing
Bloch equations about the equilibrium state. The analysis
predicts damped oscillations at long times:

!"t# % !a ' A"t# sin"2!at' &#; A"t# / t&1=2: (5)

The power-law decay of A"t# was explained in Ref. [18] by
interaction of the collective mode with the continuous
spectrum of excitations with energies above 2!a and
linked to the linear Landau damping. In the spin formula-
tion, the dephasing results from the Larmor frequency of
spin precession bp being a continuous function of "p. An
extension of this argument to the nonlinear regime was
proposed recently in Ref. [19] which, however, did not
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FIG. 2 (color online). (a) The pairing amplitude !"t# for the
initial state (4) with !s % 0:05!0 as recorded from the simula-
tion, oscillating between !' % 0:97!0 and !& % 0:31!0;
Synchronization (b) of the phase 'p time dependence, Eq. (7),
for "p % 0;!0; 2!0, and (c) frequency !p vs "p.
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S-wave Fermi Gas
Unitary Fermi Gas

Gap in a unitary regime is large enough to be measurable.
- Density functional approach : A. Bulgac, PRA (2007)
- Dynamics of the Pairing Correlations in a Unitary Fermi Gas
: A. Bulgac and S. Yoon, PRL (2009)
Only one scale (n−1/3) exists at the unitary and the simplest
energy density functional is, by dimensional analysis,

E = α
τc
2

+ β
3(3π2)2/3n5/3

10
+ geff |νc|2 ,

1

geff
=
n1/3

γ
+ Λc

i∂t

(
uk
vk

)
=

(
h− µ ∆

∆∗ −(h− µ)

)(
uk
vk

)
(5)

h = −α∇
2

2
+
δE
δn

, ∆ = −geffνc (6)



S-wave Fermi Gas
Unitary Fermi Gas
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Higgs modes (excitations of |∆(t)|) exist also in a unitary regime
by superfluid local density approximation (SLDA) formulation.



S-wave Fermi Gas

I BEC regime : V. Gurarie, PRL (2009)

|∆(t)| = ∆a +
A

t3/2
cos(2

√
µ2 + ∆a t+ α)

t−3/2 : probability of the molecular decay as a function of time

I Crossover regime : R. Scott et al. PRA (2012) - BdG eqs.

50

0.65

0.60

0.70

|D
|
/
E

f

1510
t /hE

f

20 64

(a) (b)

lo
g

(
)

A

-3

-5

31

20
t /hE

f

0.55

1.55

1.50

1.45

1.40

1.35
log( )t /hE

f

-4

lo
g

(
)

A

-5

-7

20

-6

log( )t /hE
f

(a) 1/kfa0 = 0.2 to 0 (b) 1/kfa0 = 0.8 to 1



Single-species P -wave Fermi Gas

I Superfluids paired at a finite angular momentum :
richer order parameters and phase transitions within the
superfluid phase

I Single-species Fermi gas :
p-wave scattering dominates due to Pauli exclusion principle



P -wave Fermi Gas
Splitting of p-wave FRs by dipolar interaction

Ticknor et al. PRA (2004) :
-Valence electron spins are polarized along B.
-Magnetic dipole-dipole interaction splits FRs with |ml| = 0 and 1.
40K: large splitting



Single-species P -wave Fermi Gas
Quantum Phase Transitions across a P -Wave Feshbach Resonance

V. Gurarie et al. PRL (2005), V. Gurarie et al. Ann. Phys. (2007)
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P -wave Fermi Gas I
Formulation

T. Ho and R. Diener, PRL (2005)

H =
∑
k

ξkâ
†
kâk +

1

2

∑
k,k′,q

Vl=1(k,k
′)â†

k+q
2
â†−k+q

2
â−k′+q

2
âk′+q

2

V1(k,k
′) = −4πgΓ∗(k)Γ(k′)

Γ(k) =
kk0

k2 + k20
Y1,m(k̂)

- Determine g and k0 (momentum cutoff) matching the low-energy
scattering amplitude for the p-wave channel (a1: scattering length,
r1: effective range, b: range of potential)

fl=1(k)
kb�1

=
(kb)2

− 1
a1

+ r1k2

2 − i(kb)2k
=

k2

− 1
ap

+
rpk2

2 − i(k)2k
(7)



P -wave Fermi Gas II
Formulation

1

4πg
=− MV

16π2apk20
+
∑
k

|Γ(k)|2
2ε(k)

, rp=−
(
k0+

4

k20ap

)
(ap ≡ a1b2 and rp = r1/b

2 have the dimensions of volume and
inverse length.)
- Time evolution of an initial state |Ψ(t = 0)〉

|Ψ(t)〉 = e−iHt|Ψ(t = 0)〉 =
∏
k

[uk(t) + vk(t)â
†
kâ
†
−k]|0〉

i
∂

∂t

(
uk(t)
vk(t)

)
=

(
hk ∆k(t)

∆∗k(t) −hk

)(
uk(t)
vk(t)

)
(8)

∆k(t) =
∑
k′

V1(k,k
′)u∗k′(t)vk′(t) (9)



P -wave Fermi Gas
Equilibrium Properties of the Polar State

Iskin and Sá de Melo, PRL (2006)
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v‘ ! 2‘!=". Here, the vector !"y"q# ! $"y"q#;""%q#&
is the order parameter fluctuation field, and the matrix
F%1"q# is the inverse fluctuation propagator. The saddle
point action is S0 ! "j#0j2="8!g# '

P
p$"#"k#=2%

Tr ln""G%1
0 =2#&, where " ! 1=T and the inverse Nambu

propagator is G%1
0 ! iw‘$0%#"k#$3'#(0$"k#$% '

$("k##0$'. The fluctuation term in the action leads to a
correction to the thermodynamic potential, which can be
written as %Gauss ! %0 '%fluct with %0 ! S0=" and
%fluct ! "%1P

q ln det$F%1"q#="2"#&.
The saddle point condition %S0=%#(0 ! 0 leads to an

equation for the order parameter

1
4!g

!
X

k

j$"k#j2
2E"k# tanh

"E"k#
2

; (3)

where E"k# ! $#2"k# ' j#"k#j2&1=2 is the quasiparticle
energy, and #"k# ! #0$"k# is the order parameter. For
the p-wave channel, the scattering amplitude [9] f"k# !
k2="%1=ap ' rpk2 % ik3# depends on two parameters (ap
is the scattering volume, and rp has dimensions of inverse
length), instead of only one parameter as in the s-wave case
[13]. Using f"k#, we can eliminate g in favor of ap via the
relation

1
4!g

! % MV
16!2apk2

0

'
X

k

j$"k#j2
2&"k# ; (4)

where V is the volume. Thus, all superfluid properties
depend on ap and rp (or k0) as discussed next.

The order parameter equation has to be solved self-
consistently with the number equation N ! %@%=@'
which leads to two contributions N ! N0 ' Nfluct. N0 !
%@%0=@' is the saddle point number equation given by

N0 !
X

k
n0"k#; n0"k# !

1
2
% #"k#

2E"k# tanh
"E"k#

2
;

(5)

where n0"k# is the momentum distribution. Similarly,
Nfluct ! %@%fluct=@' is the fluctuation contribution
to N given by Nfluct ! %"%1P

qf@$detF%1"q#&=@'g=
detF%1"q#.

For T ) 0, Nfluct is small ( / T4) compared to N0 [13]
for any interaction strength leading toN ) N0. In Fig. 1(a),
we plot #r ! #0=&F and 'r ! '=&F at T ! 0 as a func-
tion of 1="k3

Fap#, where &F ! k2
F="2M# is the Fermi en-

ergy. Here, we choose k0 ) 200kF. Notice that the BCS to
BEC evolution range in 1="k3

Fap# is *k0=kF. The weak
coupling ' ! &F changes continuously to the strong cou-
pling ' ! %1="Mk0ap# when k3

0ap + 1. In strong cou-
pling, ap has to be larger than ap > 2=k3

0 for the order
parameter equation to have a solution with '< 0, which
reflects the Pauli exclusion principle. In addition, the weak
coupling #0 ! 24"k0=kF#&F exp$%8=3' !k0="4kF# %
!="2k3

Fjapj#& evolves continuously to a constant #0 !

8&F$&0="9&F#&1=4 in strong coupling, where &0 !
k2

0="2M#. The evolution of #0 and ' are qualitatively
similar to recent T ! 0 results for THS fermion [9] and
SHS fermion-boson [8] models. Because of the angular
dependence of #"k#, the quasiparticle spectrum E"k# is
gapless [minE"k# ! 0] for '> 0, and fully gapped
[ minE"k# ! j'j] for '< 0. Furthermore, both #0 and
' are nonanalytic exactly when ' crosses the bottom of
the fermion energy band ' ! 0 at 1="k3

Fap# ) 0:5. The
nonanalyticity does not occur in the first derivative of #0 or
' as it is the case in two dimensions [10], but occurs in the
second and higher derivatives. Therefore, the evolution
from BCS to BEC is not a crossover as in the s-wave
case [13]; instead a topological gapless to gapped quantum
phase transition [7,10] occurs when ' ! 0.

In Fig. 2, we show the momentum distribution n0"kx !
0; ky; kz# in the BCS side ('> 0) for 1=k3

Fap ! %1 and in
the BEC side ('< 0) for 1=k3

Fap ! 1. When kz=kF ! 0,
n0"kx ! 0; ky; kz# is largest in the BCS side, but it vanishes
along kz=kF ! 0 in the BEC side. As the interaction in-
creases the Fermi sea with locus #"k# ! 0 is suppressed,
and pairs of atoms with opposite momenta become more
tightly bound. As a result, the large momentum distribution
in the vicinity of k ! 0 splits into two peaks around finite
k, reflecting the p-wave symmetry of these tightly bound
states. Thus, n0"k# for the p-wave case has a major re-
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FIG. 1. Plots of reduced (a) order parameter amplitude #r !
#0=&F and chemical potential 'r ! '=&F, and (b) average
Cooper pair size kF#pair at T ! 0 and GL coherence length
kF#

zz
GL at T ! Tc in a logarithmic scale versus 1="k3

Fap#.

FIG. 2 (color online). Contour plots of momentum distribution
n0"kx ! 0; ky; kz# in (a) BCS side "'> 0# for 1="k3

Fap# ! %1
and (b) BEC side "'< 0# for 1="k3

Fap# ! 1 versus momentum
ky=kF and kz=kF.
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(a) BCS (µ > 0) (b) BEC (µ < 0)

I Near 1/k3Fap = 0, µ changes sign.

I Quasiparticle spectrum : E =
√

(εk − µ)2 + |∆0 cos θ|2
gapless for µ > 0 to gapped for µ < 0 : QPT at µ = 0



P -wave Fermi Gas
Quenching Polar State (m = 0)
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Within BCS side :
- Two time-scales appear
- Large time-scale is connected
with a large depletion of
momentum occupation inside the
Fermi sea (will be shown later)
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P -wave Fermi Gas
Quenching Polar State (m = 0)
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Decaying oscillation with one
time-scale.
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P -wave Fermi Gas
Quenching Polar State (m = 0)
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Close to QPT point :
µeq/εF = +0.03 at 1/ap = 0
µeq/εF = −0.03 at 1/ap = 1

long time-scale disappears
after quenching across QPT.
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P -wave Fermi Gas
Quenching Polar State (m = 0)

Quasiparticle momentum distribution (Quench within BCS side)
1/ap = −20→ −15

from -20 to -15

from -20 to -15

1/ap = −20→ −5

from -20 to -5

from -20 to -5



P -wave Fermi Gas
Quenching Polar State (m = 0)

Quasiparticle momentum distribution
1/ap = −20→ 0

from -20 to 0

from -20 to 0

1/ap = −20→ +10

from -20 to +10

from -20 to +10



Summary
Quenching Polar State (m = 0)

Quench Dynamics of |∆0| (solid red line).
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Discussion
Quantum dynamics of the 1D dipole model of the Mott insulator
in a potential gradient : K. Sengupta et al. PRA (2004)
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adiabaticN=11

H1D[E] = −w
√
n0(n0 + 1)

∑
`

(d†` + d`) + (U − E)
∑
`

d†`d`

Study the dynamics of the Ising density wave order parameter
O = 1

N 〈Ψ|
∑

`(−1)`d†`d`|Ψ〉 as E is changed rapidly across the
QCP (Ec = 41.85)

I 〈O〉t stays close to Oad as long as there is a large overlap
between the initial and the new ground states.



In the case of the P-wave polar mode, the qualitative behavior is
similar to the case studied by K. Sengupta et al. PRA (2004) :

I The change of the magnitude of the order parameter is very
small when the final couplings are at the BEC side while the
initial coupling is at the BCS side.

I When the coupling is changed within BCS side, longer
time-evolution is need for the clarification.



Conclusion

Quench Dynamics of |∆0| (Pairing field of a polar state is
expressed as ∆(k) ∼ ∆0f(k)Y1,0(k̂)).

I Two time-scales appear in the dynamics of a p-wave Fermi
gas after a sudden quench within BCS side (µ > 0).

I Large time-scale oscillation disappears after a sudden quench
across the QPT point.

I Large depletion of momentum occupation inside the Fermi sea
approaches the center of the Fermi sea when the final
coupling approaches the QPT point from BCS side and it
disappears when the final coupling is at the BEC side. The
time-scale of large depletion of momentum occupation
corresponds to large time-scale of pairing field dynamics.
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