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What do we want to describe?

System In laser field:
Generic situation




What do we want to describe?

System In laser field:
Generic situation

~ 5~ A 2 L,
HO)=T +W_+ ) -%zﬁe| + 1, E(t)-sin ot
Jo j- o

Electronic transport: Generic situation

left lead L central right lead R
region C

Bias between L and R isturned on: U(t) — V



HO=T, + W, +Y - Z& + {-E@)-sin ot

Strong laser (Vi () > Vv,) :

Non-perturbative solution of full TDSE required

Weak laser (V... (t) <<v,,) :

Calculate 1. Linear density response  p,(Ft)

2. Dynamical polarizability o(m)= —%jz p, (T, 0)d’r

: : At
3. Photo-absorption cross section  o()=———Imo
c



Photo-absorption in weak lasers
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Standard linear response formalism

H(t,) = full static Hamiltonian at t,

H (to)‘ m> =E, ‘ m> < exact many-body eigenfunctions
and energies of system

full response function

w(rrie) =lim Y (0[p(r)[m){m|p(r')|0) _<0|;3(r')|m><m|§(r)|o>]

N o—(E, —E,)+in o+(E, —E;)+in

= The exact linear density response
p; (@) = (@) vy
has poles at the exact excitation energies Q=E_ - E,



Why don’t we just solve the many-particle SE?

Example: Oxygen atom (8 electrons)

P(r

",--+,T,) depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: = 107 entries

1 byte per entry: = 10% bytes
1010 bytes per DVD: = 10% DVDs
10 g per DVD: = 10> g DVDs

=10°t DVDs




ESSENCE OF DENSITY-FUNTIONAL THEORY

« Every observable quantity of a
guantum system can be calculated
from the density of the system
ALONE

« The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles




ESSENCE OF DENSITY-FUNTIONAL THEORY

« Every observable quantity of a
guantum system can be calculated
from the density of the system
ALONE

« The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles

Hohenberg-Kohn theorem (1964)
Kohn-Sham theorem (1965) ¥
(for the ground state of matter) I ff <7 Kobn, Nobel Laurears

UC Santa Barbara




Static Density Functional Theory:

Some remarks




compare ground-state densities p(r) resulting from different

external potentials v(r).

p(r)

v(r)

QUESTION:

(

\

)

VeV U

Are the ground-state densities coming from
different potentials always different?



single-particle ground-state
: : ground-state "
potentials having densities

wavefunctions
nondegenerate
ground state

Hohenberg-Kohn-Theorem (1964)

G:v(r) — p (r) isinvertible




HOHENBERG-KOHN THEOREM

1—1
1. v(r) «—— p(n)
one-to-one correspondence between external potentials v(r) and ground-state
densities p(r)

2. Variational principle

Given a particular system characterized by the external potential v (r). Then the
solution of the Euler-Lagrange equation

)
Sp(l’) E [p] =0

yields the exact ground-state energy E, and ground-state density p,(r) of this
system

3. Eux p] F _‘.p

Flp] is UNIVERSAL. In practice, F[p] needs to be approximated




Expansion of F[p] in powers of e?

Flp] = FO[p] + e?FO[p] + e*F@[p] + ---

where: FO[p] =T, [p] (kinetic energy of non-interacting particles)

=0 [p] — 622 H p(:)_pr('r') d°rd3r'+ E, [p] (Hartree + exchange energies)

i(ez )i =0 [p]=E.[p] (correlation energy)

= F[p]=T [p]+622 2 (:)_pr(f ) et +E, [p]+E. [p]



HK 1-1 mapping for HK 1-1 mapping for
interacting particles non-interacting particles

. J J
Y Y

Veu [P](r) < - p(r) - Ve [p](r)

Kohn-Sham Theorem

Let p,(r) be the ground-state density of interacting electrons moving in the external
potential v,(r). Then there exists a local potential v,.(r) such that non-interacting
particles exposed to v, ,(r) have the ground-state density p,(r), 1.e.

V? \ 2
—7+vs,o(r) ¢;(r)=¢; ¢;(r), Po(l‘):_(zth: “Pi(r)‘
J(wi
Iowestej)

proof: v, (r)=V,[p,](r)

Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability theorem



By construction, the HK mapping is well-defined for all those functions p(r)
that are ground-state densities of some potential (so called V-representable
functions p(r)).

QUESTION: Are all “reasonable” functions p(r) V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))

On a lattice (finite or infinite), any normalizable positive function p(r), that
IS compatible with the Pauli principle, is (both interacting and non-
Interacting) ensemble-V-representable.

In other words: For any given p(r) (normalizable, positive, compatible with
Pauli principle) there exists a potential, v..[p](r), yielding p(r) as interacting
ground-state density, and there exists another potential, v [p](r), yielding
p(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the
given p(r) is representable as a linear combination of the degenerate
ground-state densities (ensemble-V-representable).




Define v, [p](r) by the equation

wIple) = v ] )d3r+vxc[p1<>

il

v [p] and v [p] are well
Vi [p](r) defined through HK.

KS equations

)0+ 1)+ v 0210 () 0,1
(1

fixed
to be solved selfconsistently with pO Z ‘(P J ‘

Note: The KS equations do not follow from the variational principle.
They follow from the HK 1-1 mapping and the V-representability
theorem.



Four steps needed

Step 1: Basic Theorems, exact features
Step 2: Find approximate functionals for v,.{ p(r')|(r)
Step 3: Write code that solves the equations

Step 4: Run code for interesting systems/questions



“Functional Theories”

MBPT RDMFT DFT
G(r,r', t—t) y(r,r)Y=G(r,r',07) p(r) =vy(r,r)
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Functional: Functional: Functional:
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“Functional Theories”

MBPT RDMFT DFT
G(r,r', t—t) y(r,r)Y=G(r,r',07) p(r) =vy(r,r)
Functional: Functional: Functional:

D,.[G] E,.[V] E,.[P]
or X, [G] or Vylp]
easy (e.g. GW) difficult very difficult
numerically

heavy moderate light



“Functional Theories”

MBPT RDMFT DFT
G(r,r', t—t) y(r,r)Y=G(r,r',07) p(r) =vy(r,r)
Functional: Functional: Functional:

D,.[G] E, V] E,[P]
or X, [G] or Vylp]
easy (e.g. GW) difficult very difficult

For each of these functional theories there exist static and TD versions



Time-dependent density-functional formalism
(E. Runge, E.K.U.G., PRL 52, 997 (1984))

Basic 1-1 correspondence:
11 The time-dependent density determines uniquely
V(rt) — P(rt) the time-dependent external potential and hence all
physical observables for fixed initial state.

KS theorem:
The time-dependent density of the interacting system of interest can

be calculated as density N
p(rt)=2 (Pj(rt)
j=1

of an auxiliary non-interacting (KS) system

0 h°v?
10, (r) = <o e p1(r) o, (0
with the local potential

vs[p(r't')}(rt):v(rt)Jrjd3r'p(r't.)+vXC p(rt)|(rt)

r-r]

2




Proof of basic 1-1 correspondence between v(Ft)and p(Ft)

define maps |F V(T’[)H‘P(t) F ‘P(t)Hp(ft)

potentials

v(Tt)

F wave
functions

solve tdSE
with fixed
¥(t,)="Y,




The TDKS equations follow (like in the static case)
from:

I. the basic 1-1 mapping and

Il. the TD V-representability theorem (R. van
Leeuwen, PRL 82, 3863 (1999)).



Reminder: Photo-absorption in weak lasers
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No absorption if ® < lowest excitation energy



LINEAR RESPONSE THEORY

t =1, : Interacting system in ground state of potential v,(r) with density p,(r)
t > t, : Switch on perturbation v,(r t) (with v,(r t,)=0).

Density: p(r t) = py(r) + dp(r t)

Consider functional p[v](r t) defined by solution of interacting TDSE

Functional Taylor expansion of p[v] around v,
p[v] (rt)=p[vo+ Vi ] (rt)
=p[vo](rt) — Po(r)

+j v rt (r't')drdt — p, (rt)

Vo

v, (rit)v, (ret) drdirdedt” — p, (rt)

Vo

j j v ( rt' 8v "t")




w(re,r't')=

p,(r,t) = linear density response of interacting system

Sp[v] (rt)

Sv (r't')

Vo

= density-density response function of
Interacting system

Analogous function p[v.](r t) for non-interacting system

ps[Vs](rt)=ps [Vs,o + Vg, [(rt) =pg [Vs,o} (rt) +J Ops [vs] (rt) Vg, (rt) dr'dt'+---

Svg (r't')

VS,O

%s (rt,r't') =

&ps [ vs](rt)

Svg (r't')

= density-density response function of
v,, Don-interacting system




GOAL: Find a way to calculate p,(r t) without explicitly evaluating
v (r t,r't") of the interacting system

starting point: Definition of xc potential

Ve [PJ(rt) = Vs [p](rt) = veq [P](rt) = viy [p] (rt)
\ \

Notes:  « v, is well-defined through non-interacting/ interacting 1-1
mapping.




v, [p](rt)

Sp(ff)

~ dv[p](r)

Bp(fﬂ)

8V [P](rt)

Sp(ff)

5(t—t)

r-r]



v, [p](rt)

Sp(ff)

I

f.(rtrt)

Po

~ dv[p](r)

Sp(fﬂ)

I

Xgl (rt, r't')

Po

8V [P](rt)

Sp(ff)

I

(e, rt)

Po

5(t—t)

r-r]

I

W (rt,r't)




v [p(rt)|  dve[p](rt)|  dva[pl(rt)|  8(t-t)

Sp(r't') N Sp(r't') B Sp(r't') - ‘r—r"

I I I I

f(rtrt) Ys (rt,rt) (rert) W (rtrt)

Po Po

T +We :X:_X_l

XC



v, [p](rt)

Sp(fﬂ)

I

f.(rtrt)

Xs®

Po

~dv[p](rt)
Bp(fﬂ)

I

Xgl (rt, r't')

XC

Po

8V [P](rt)

Sp(ff)

I

(e, rt)

Fot We =5 =27 |+

Po

5(t—t)

r-r]

I

W (rt,r't)



v, [p](rt)

Sp(fﬂ)

I

f.(rtrt)

Po

Xs®

Xs(

_ 3 [p](rt)]  dve.[p](rt)
Bp(rT) . Sp(ff)
I I
Ys (rt,rt) (e, rt)
fxc +W XS —X B ° X
fx +W )X X~ XS

Po

5(t—t)

r-r]

I

W (rt,r't)



X =%s+xs (We +fc ) x

Act with this operator equation on arbitrary v,(r t) and use { v, = p; :

p,(rt) = Idsr'dt'xs (rt,r't') |:V1 (rt)+ j drdt"{ W, (r't,r't") + . (rt,rt")} p, (r"t")

 Exact integral equation for p,(r t), to be solved iteratively

* Need approximation for f (rt,rt”) = 5"6xc [(P](r)'t')
p I.Ht!!

(either for f,. directly or for v, ) o




Adiabatic approximation

adlab [P] (I‘t) _ Vstatlc DFT [p(t)] (rt)

In the adiabatic approximation, the xc potential v, (t) at time t
only depends on the density p(t) at the very same point in time.

e.g. adiabatic LDA: VALDA (I’t) = VLDA (p(rt)) = —Q p(rt)]/?’ +

XC

ALDA ALDA
= foo0(rt,rt) = Wy '('rt) =8(r—1)3(t—t Ve
Sp(r't') N op(r) "
82 hom

=3(r—1')3(t—t anxc

Po(r)



Total photoabsorption cross section of the Xe atom versus photon
energy in the vicinity of the 4d threshold.

o(w) | I I I I | T

(Mb)
30 4

20

10
<
Xxxx
| 1 | i N 1
5 6 7 8 9 0 11

fiw (Ry)

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P.
Soven, Phys. Rev. A 21, 1561 (1980)]
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Aequored victorid

Ribbon diagram of the wt-GFP
structure. The a-helices are shown in
red, the [-strands are shown in
green, and the chromophore is
shown as a ball-and-stick model.

Brejc et al., Proc. Natl. Acad. Sci. 94, 2306
(1997)




o (arb. units)

GFP-chromophore

Computed photoabsorption cross section
of the neutral (thick solid line) and
anionic (thick dashed line) GFP
chromophores, along with experimental
results (thin solid line and crosses,
respectively).

For comparative purposes, the anionic
results is divided by 4 with respect to the
neutral results.

Inset: decomposition of the

computed spectra of the
neutral chromophore in the
three directions, showing the
inherent anisotropy of the GFP

molecule.

Marques et al., PRL 90, 258101 (2003)

Energy (eV)




Photo-absorption in weak lasers
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Looking at those frequencies, €, for which p,(®) has poles,
leads to the (non-linear) eigenvalue equation

(T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) 501, 353 (2000))

Z (Aqq' (Q) + 0404 )Bq =QB,

q

where

Aqq.:aq.deFIdSr'®q(r)( 1 +fxc(r,r',Q)jCDq.(r')

o

g = (j,a) double index Ol = f. - fj

, (r)= 0, (ro; (r) g =&, —



Atom

Be
Mg
Ca

Zn

Sr
Cd

Experimental Excitation

KS energy
differences

Aeks (Ry)
0.259

0.234
0.157
0.315
0.141
0.269

AEKS + K

0.391
0.327
0.234
0.423
0.210
0.391

Energies 'S—»'P
(in Ry)

0.388

0.319

0.216

0.426

0.198

0.398

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)
AE =Aes + K

——~
Ej - Ek

cfafora s o[ o)




Excitation enerqgies of CO molecule

State Qg KS-transition Aexs Aegs+K

A TI 03127 52—211 0.2523 0.3267
a TI  0.2323 0.2238
| Iy 03631 1IT->211 0.3626 0.3626
D ‘A 0.3759 0.3812
a %" 03127 0.3181
e 3% 03631 0.3626
d A 0.3440 0.3404

T. Grabo, M. Petersilka and E.K.U. Gross, J. Mol. Struct. (Theochem) 501, 353 (2000)

approximations made: v:°* and fA2-PA



Quantum defects in Helium E, =- - [au]
2(n _Mn)
3P Series
o—o Bare KS
Oo—0 exact
A ~—4a X-ALDA
Y *--% xc-ALDA (VWN)
N oo X-TDOEP
0.10 | Ao _ i
~—ae__
e S
= o o o N '
----- v — - — 2 Qs o, f
—————— A7 —-__'"'\‘:P““'—‘7--—-——*7———-—__\7______j
0.05 | 4
o—9— -0—— Q@ Q@ @ O O
0.00
2 3 q 5 6 7 8 9

M. Petersilka, U.J. Gossmann and E.K.U.G., in: Electronic Density
Functional Theory: Recent Progress and New Directions, J.F. Dobson, G. Vignale,
M.P. Das, ed(s), (Plenum, New York, 1998), p 177 - 197.



KS Eigenvalue diff. S

Accurate vye!

Accurate vye:  ALDA e
Accurate vye: TDOEP x-only voe oo
Accurate v,.: TDOEP SIC R
SIC-KLIvye:  KS Eigenvalue diff. ==g
SIC-KLIw,: ALDA ——gp-
SIC-KLIv,: TDOEP SIC -
x-only KLI vy.: KS Eigenvalue diff, -+
x-only KLY vy.: ALDA eeedians

! _ x-only KLY v, TDOEP x-only R
i i i i i {

3s 3p 3d ds 4p 4d S5s 5p 6s 6p
Final State

Figure 3.3: Errors of singlet excitation energies from the ground state of Be, calculated from
the accurate, the OEP-SIC and x-only KLI exchange correlation potential and with different
approximations for the exchange-correlation kernel (see text). The errors are given in mHartrees.
To guide the eye, the errors of the discrete excitation energies were connected with lines.

(M. Petersilka, E.K.U.G., K. Burke, Int. J. Quantum Chem. 80, 534 (2000))



Failures of ALDA In the linear response regime

e H, dissociation Is incorrect:

E(lz+)—E(1z+) s> 0(in ALDA)

u g R—>
(see: Gritsenko, van Gisbergen, Gorling, Baerends, JCP 113, 8478 (2000))

e response of long chains strongly overestimated
(see: Champagne et al., JCP 109, 10489 (1998) and 110, 11664 (1999))

* In periodic solids, fxi\;LDA (q, 0, p) = C(p) whereas,

. exact 2 .
for insulators, T, o 1/g? divergent.

 charge-transfer excitations not properly described
(see: Dreuw et al., JCP 119, 2943 (2003))



Solid Argon

4.0

— BSE
Ar — GW

—— RPA

L. Reining, V. Olevano, A. Rubio, G. Onida, PRL 88, 066404 (2002)

Excitons are completely missing for simple xc functionals like ALDA!
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