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OUTLINE

LECTURE I

• Phenomena to be described by TDDFT
• Some generalities on “functional theories”
• Basic framework of TDDFT 
• TDDFT in the linear-response regime: Calculation of optical 

excitation spectra 

LECTURE II:

• Approximations of the static xc energy functional derived from TDDFT
• TD Electron Localization Function
• Optimal Control Theory
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Electronic transport: Generic situation
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Weak laser (vlaser(t) << ven) :
Calculate 1. Linear density response ρ1(r t)

2. Dynamical polarizability

3. Photo-absorption cross section

→
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Strong laser (vlaser(t) ≥ ven) :
Non-perturbative solution of full TDSE required
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Standard linear response formalism

H(t0) = full static Hamiltonian at t0

full response function

( )0 mH t m E m= ← exact many-body eigenfunctions
and energies of system

⇒ The exact linear density response

has poles at the exact excitation energies Ω = Em - E0

ρ1 (ω) = χ (ω) v1

( ) ( ) ( )
( )

( ) ( )
( )m0 m 0 m 0

ˆ ˆ ˆ ˆ0 r m m r ' 0 0 r ' m m r 0
r, r ';

E E i E E ilim
+η→

 ρ ρ ρ ρ
χ ω = −  ω − − + η ω + − + η 

∑
 

 



Example: Oxygen atom (8 electrons)

depends on 24 coordinates

rough table of the wavefunction

10 entries per coordinate: ⇒ 1024 entries
1 byte per entry: ⇒ 1024 bytes
1010 bytes per DVD: ⇒ 1014 DVDs
10 g per DVD: ⇒ 1015 g DVDs

= 109 t DVDs

( )81 r,,r 


Ψ

Why don’t we just solve the many-particle SE?



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles



ESSENCE OF DENSITY-FUNTIONAL THEORY

• Every observable quantity of a
quantum system can be calculated
from the density of the system
ALONE

• The density of particles interacting
with each other can be calculated as
the density of an auxiliary system of
non-interacting particles

Hohenberg-Kohn theorem (1964)
Kohn-Sham theorem (1965) 
(for the ground state of matter)



Static Density Functional Theory: 

Some remarks



compare ground-state densities  ρ(r) resulting from different 
external potentials  v(r).

QUESTION: Are the ground-state densities coming from 
different potentials always different?

ρ(r)

v(r)



v(r) Ψ (r1…rN)
ρ (r)

single-particle
potentials having
nondegenerate 
ground state

ground-state
wavefunctions

ground-state
densities

Hohenberg-Kohn-Theorem (1964)

G: v(r)  → ρ (r)   is invertible

A
G

Ã



HOHENBERG-KOHN THEOREM

1. v(r)                  ρ(r)
one-to-one correspondence between external potentials v(r) and ground-state 
densities ρ(r)

2. Variational principle
Given a particular system characterized by the external potential v0(r).  Then the 
solution of the Euler-Lagrange equation

yields the exact ground-state energy E0 and ground-state density ρ0(r) of this 
system 

3.

F[ρ] is  UNIVERSAL. In practice,  F[ρ] needs to be approximated

1—1

( ) [ ]HKE 0
r

δ
ρ =

δρ

[ ] [ ] ( ) 3
HKE F r d rρ = ρ + ρ∫ ( )ov r



Expansion of  F[ρ] in powers of e2

F[ρ] = F(0)[ρ] + e2 F(1)[ρ] + e4 F(2)[ρ] + ···

where: F(0)[ρ] = Ts [ρ] (kinetic energy of non-interacting particles)

( ) [ ] ( ) ( ) [ ]
2

12 3 3
x

r r 'ee F d r d r ' E
2 r r '

 
ρ ρ

ρ = + ρ
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[ ]( )extv ρ r ( )ρ r [ ]( )sv ρ r

HK 1-1 mapping for 
interacting particles

HK 1-1 mapping for 
non-interacting particles

Kohn-Sham Theorem

Let ρo(r) be the ground-state density of interacting electrons moving in the external
potential vo(r). Then there exists a local potential vs,o(r) such that non-interacting
particles exposed to vs,o(r) have the ground-state density ρo(r), i.e.

( ) ( ) ( )
2

s,o j j jv r  r r
2

 ∇
− + ϕ =∈ ϕ 

 
( ) ( )

j

N 2

o j
j (with 
lowest )

ρ r r
∈

= ϕ∑

proof:

Uniqueness follows from HK 1-1 mapping
Existence follows from V-representability theorem

( ) [ ]( )s,o s ov r v ρ r=

,



By construction, the HK mapping is well-defined for all those functions ρ(r)
that are ground-state densities of some potential (so called V-representable
functions ρ(r)).

QUESTION:  Are all “reasonable” functions ρ(r) V-representable?

V-representability theorem (Chayes, Chayes, Ruskai, J Stat. Phys. 38, 497 (1985))
On a lattice (finite or infinite), any normalizable positive function ρ(r), that
is compatible with the Pauli principle, is (both interacting and non-
interacting) ensemble-V-representable.

In other words: For any given ρ(r) (normalizable, positive, compatible with
Pauli principle) there exists a potential, vext[ρ](r), yielding ρ(r) as interacting
ground-state density, and there exists another potential, vs[ρ](r), yielding
ρ(r) as non-interacting ground-state density.

In the worst case, the potential has degenerate ground states such that the
given ρ(r) is representable as a linear combination of the degenerate
ground-state densities (ensemble-V-representable).
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Define vxc[ρ](r)  by the equation

[ ]( ) [ ]( ) ( ) [ ]( )3r '
: d r '

r r 's ext xcv ρ r v ρ r v ρ r
ρ

= + +
−∫

[ ]( )Hv ρ r
vs[ρ] and vext[ρ] are well 

defined through HK.

KS equations

Note: The KS equations do not follow from the variational principle.
They follow from the HK 1-1 mapping and the V-representability
theorem.

fixed
( )ov r

to be solved selfconsistently with ( ) ( ) 2

o jρ r r= ϕ∑



Four steps needed

Step 1: Basic Theorems, exact features

Step 2: Find approximate functionals for

Step 3: Write code that solves the equations

Step 4: Run code for interesting systems/questions

( ) ( )xcv r ' r ρ 
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Motivation

(r, r ') G(r, r ',0 )+γ =

MBPT RDMFT

)'tt,'r,r(G −

“Functional Theories”

DFT

)r,r()r( γ=ρ

Functional:
Φxc[G]

or  Σxc[G]
easy (e.g. GW)

Functional:
Exc[γ]

difficult

Functional:
Exc[ρ]

or  vxc[ρ]
very difficult

For each of these functional theories there exist static and TD versions



Basic 1-1 correspondence:
The time-dependent density determines uniquely
the time-dependent external potential and hence all
physical observables for fixed initial state.

( ) ( )v rt rt1-1←→ ρ

Time-dependent density-functional formalism 

KS theorem:
The time-dependent density of the interacting system of interest can
be calculated as density

of an auxiliary non-interacting (KS) system

with the local potential

( ) ( )
2N

j = 1 
ρ rt  = rtjϕ∑

( ) ( ) ( ) ( )3
S

r ' t
v r ' t ' rt v rt d r '

r r '
ρ

 ρ = + +  −∫

( ) [ ]( ) ( )
2 2

j S ji rt v rt rt
t 2m

 ∂ ∇
ϕ = − + ρ ϕ ∂  




( ) ( )xcv r ' t ' rt ρ 

(E. Runge, E.K.U.G., PRL 52, 997 (1984))



define maps ( ) ( )F : v r t t  Ψ


 ( ) ( )F : t r t  Ψ ρ
 

densities

( )r tρ


wave 
functions 

( )tΨ

potentials

( )v r t
F

 

˜ F 
solve tdSE 
with fixed

 

Ψ t o( ) = Ψo

( )
( ) ( ) ( )

r t

ˆt r t

ρ =

Ψ ρ Ψ





( ) ( ) ( )s s
s

ˆ ˆ ˆr r r+ρ = ψ ψ∑  

G

( ) ( )G : v r t r t  ρ
 



Proof of basic 1-1 correspondence between             and( )v r t ( )ρ r t



i. the basic 1-1 mapping and 
ii. the TD V-representability theorem (R. van 

Leeuwen, PRL 82, 3863 (1999)). 

The TDKS equations follow (like in the static case)   
from:
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LINEAR RESPONSE THEORY

t = t0 : Interacting system in ground state of potential v0(r) with density ρ0(r)
t > t0 : Switch on perturbation v1(r t) (with v1(r t0)=0). 

Density: ρ(r t) = ρ0(r) + δρ(r t)

Consider functional ρ[v](r t) defined by solution of interacting TDSE

Functional Taylor expansion of ρ[v] around vo:

[ ] ( ) [ ] ( )0ρ v rt ρ v     rt  = + 1v

[ ] ( )
( )

3δρ v  rt
           d r'dt'

δv r't'
0v

+∫ ( )1v r ' t '

[ ] ( )0ρ v  rt=

[ ] ( )
( ) ( )

2
3 3δ ρ v  rt1                             d r'd r"dt'dt"

2 δv r't' δv r"t"
0v

+ ∫ ∫ ( ) ( )1 1v r ', t ' v r", t " ( )2ρ rt

( )1ρ rt

( )oρ r

…



ρ1(r,t) = linear density response of interacting system

( ) [ ] ( )
( )

δρ v  rt
rt, r ' t ' :

δv r't'
0v

χ = = density-density response function of 
interacting system

Analogous function ρs[vs](r t) for non-interacting system

[ ] ( ) ( ) ( ) [ ] ( )
( )

S S 3
S S S S,0 S S,0

S

δρ v  rt
ρ v  rt ρ v       rt ρ v  rt             d r'dt'

δv r't'
S,0v

   = + = + +    ∫ S,1v ( )S,1v r't'

( ) [ ] ( )
( )

S S
S

S

δρ v  rt
rt, r ' t ' :

δv r't'
S,0v

χ = = density-density response function of 
non-interacting system



GOAL: Find a way to calculate ρ1(r t) without explicitly evaluating 
χ(r t,r't') of the interacting system

starting point:    Definition of xc potential

[ ]( ) [ ]( ) [ ]( ) [ ]( )xc S ext Hv ρ rt : v ρ rt v ρ rt v ρ rt= − −

Notes: • vxc is well-defined through non-interacting/ interacting 1-1 
mapping.



[ ]( )
( )

[ ]( )
( )

[ ]( )
( )

( )xc S extδv ρ rt δv ρ rt δv ρ rt δ t t'
δρ r't' δρ r't' δρ r't' r r'

0 0 0ρ ρ ρ

−
= − −

−



( )xcf rt, r't' ( )1
S rt, r't'−χ ( )1 rt, r't'−χ ( )CW rt, r't'

[ ]( )
( )

[ ]( )
( )

[ ]( )
( )

( )xc S extδv ρ rt δv ρ rt δv ρ rt δ t t'
δρ r't' δρ r't' δρ r't' r r'

0 0 0ρ ρ ρ

−
= − −

−



1 1
xc C Sf W − −+ = χ − χ

( )xcf rt, r't' ( )1
S rt, r't'−χ ( )1 rt, r't'−χ ( )CW rt, r't'

[ ]( )
( )

[ ]( )
( )

[ ]( )
( )

( )xc S extδv ρ rt δv ρ rt δv ρ rt δ t t'
δρ r't' δρ r't' δρ r't' r r'

0 0 0ρ ρ ρ

−
= − −

−



1 1
xc C Sf W − −+ = χ − χ • χχS •

( )xcf rt, r't' ( )1
S rt, r't'−χ ( )1 rt, r't'−χ ( )CW rt, r't'

[ ]( )
( )

[ ]( )
( )

[ ]( )
( )

( )xc S extδv ρ rt δv ρ rt δv ρ rt δ t t'
δρ r't' δρ r't' δρ r't' r r'

0 0 0ρ ρ ρ

−
= − −

−



( )S xc C Sχ f W  χ χ χ+ = −

1 1
xc C Sf W − −+ = χ − χ • χχS •

( )xcf rt, r't' ( )1
S rt, r't'−χ ( )1 rt, r't'−χ ( )CW rt, r't'

[ ]( )
( )

[ ]( )
( )

[ ]( )
( )

( )xc S extδv ρ rt δv ρ rt δv ρ rt δ t t'
δρ r't' δρ r't' δρ r't' r r'

0 0 0ρ ρ ρ

−
= − −

−



( )S S C xcχ χ χ W f  χ= + +

Act with this operator equation on arbitrary v1(r t) and use χ v1 = ρ1 :

• Exact integral equation for ρ1(r t), to be solved iteratively

• Need approximation for

(either for fxc directly or for vxc)

( ) ( ) ( ) ( ) ( ){ } ( )3 3
1 S 1 C xc 1ρ rt = d r'dt'χ rt, r't'  v rt + d r"dt" W r't', r"t" + f r't', r"t"  ρ r"t"

 
 
 

∫ ∫

( ) [ ]( )
( )

xc
xc

δv ρ r't'
f r't', r"t"

δρ r"t"
0ρ

=



Adiabatic approximation

[ ] ( ) [ ] ( )adiab static DFT
xc xcv ρ  rt := v         rt( )ρ t

e.g.  adiabatic LDA: ( ) ( )ALDA LDA
xc xcv rt : v         α= = −( )ρ rt ( )1 3ρ rt +

( ) ( )
( ) ( ) ( ) ( ) ( )

ALDA ALDA
xcALDA xc

xc

δv rt v  f rt, r't' δ r r' δ t t'
δρ r't' ρ r

0 0ρ ρ r

∂
⇒ = = − −

∂

( ) ( )
( )

2 hom
xc
2

eδ r r' δ t t'
n

0ρ r

∂
= − −

∂

In the adiabatic approximation, the xc potential  vxc(t) at time t 
only depends on the density ρ(t) at the very same point in time.



Total photoabsorption cross section of the Xe atom versus photon
energy in the vicinity of the 4d threshold.

Solid line: self-consistent time-dependent KS calculation [A. Zangwill and P.
Soven, Phys. Rev. A 21, 1561 (1980)]
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Ribbon diagram of the wt-GFP
structure. The α-helices are shown in
red, the β-strands are shown in
green, and the chromophore is
shown as a ball-and-stick model.

Brejc et al., Proc. Natl. Acad. Sci. 94, 2306
(1997)



Computed photoabsorption cross section
of the neutral (thick solid line) and
anionic (thick dashed line) GFP
chromophores, along with experimental
results (thin solid line and crosses,
respectively).
For comparative purposes, the anionic
results is divided by 4 with respect to the
neutral results.

Marques et al., PRL 90, 258101 (2003)

Inset: decomposition of the
computed spectra of the
neutral chromophore in the
three directions, showing the
inherent anisotropy of the GFP
molecule.

GFP-chromophore 
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Discrete poles



Looking at those frequencies, Ω, for which ρ1(ω) has poles,
leads to the  (non-linear) eigenvalue equation

(T. Grabo, M. Petersilka, EKUG, J. Mol. Struc. (Theochem) 501, 353 (2000))

( )( ) q
'q

'q'qqq'qq   A βΩ=βδω+Ω∑
where

( ) ( ) ( )r'ΦΩ,r'r,f
r'r

1 rΦ'rdrdαA q'xcq
33

q'qq' 







+

−
= ∫∫

( )a,jq =

( ) ( ) ( )rrr j
*
aq ϕϕ=Φ

jaq ff −=α

jaq ε−ε=ω

double index



Atom
Experimental Excitation

Energies 1S→1P
(in Ry)

KS energy
differences
∆∈KS (Ry)

∆∈KS + K

Be 0.388 0.259 0.391
Mg 0.319 0.234 0.327
Ca 0.216 0.157 0.234

Zn 0.426 0.315 0.423

Sr 0.198 0.141 0.210
Cd 0.398 0.269 0.391

from: M. Petersilka, U. J. Gossmann, E.K.U.G., PRL 76, 1212 (1996)

∆E = ∆∈KS + K
∈j - ∈k

( ) ( ) ( ) ( ) ( )3 3
j j k k xc

1K d r d r ' r r ' r ' r f r, r '
r r '

∗ ∗  
= ϕ ϕ ϕ ϕ +  − 

∫ ∫



Excitation energies of CO molecule

State Ωexpt KS-transition ∆∈KS ∆∈KS + K
A 1Π 0.3127 5Σ→2Π 0.2523 0.3267

a 3Π 0.2323 0.2238

I 1Σ - 0.3631 1Π→2Π 0.3626 0.3626

D 1∆ 0.3759 0.3812

a' 3Σ+ 0.3127 0.3181

e 3Σ - 0.3631 0.3626

d 3∆ 0.3440 0.3404

approximations made: vxc and fxc
LDA ALDA

T. Grabo, M. Petersilka and E.K.U. Gross, J. Mol. Struct. (Theochem) 501, 353 (2000)



Quantum defects in Helium

Bare KS
exact
x-ALDA
xc-ALDA (VWN)
x-TDOEP

( )
[ ]n 2

n

1E a.u.
2 n

   = −
− µ

M. Petersilka, U.J. Gossmann and E.K.U.G., in: Electronic Density
Functional Theory: Recent Progress and New Directions, J.F. Dobson, G. Vignale,
M.P. Das, ed(s), (Plenum, New York, 1998), p 177 - 197.



(M. Petersilka, E.K.U.G., K. Burke, Int. J. Quantum Chem. 80, 534 (2000))



Failures of ALDA in the linear response regime

• response of long chains strongly overestimated
(see: Champagne et al., JCP 109, 10489 (1998) and 110, 11664 (1999))

• in periodic solids, whereas,

for insulators, divergent.2
q 0f 1 qexact

xc    →→

( ) ( )f q, , cALDA
xc ω ρ = ρ

• charge-transfer excitations not properly described 
(see: Dreuw et al., JCP 119, 2943 (2003))

• H2 dissociation is incorrect:

(see: Gritsenko, van Gisbergen, Görling, Baerends, JCP 113, 8478 (2000))

( ) ( )1 1
u g RE E 0    + +

→∞Σ − Σ → (in ALDA)



L. Reining, V. Olevano, A. Rubio, G. Onida, PRL 88, 066404 (2002)

ALDA

Solid Argon

BSE

Excitons are completely missing for simple xc functionals like ALDA!
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