Antiferromagnetic long-range order in the Fermi-Hubbard model with ultracold atoms

B

Christie Chiu

Markus Greiner, Harvard University

Fermions in optical lattices

High T_c superconductivity

"Strange metal" AF "Pseudogap" Fermi liquid d-wave SF Hole doping

Fermi-Hubbard model

P.W. Anderson: minimal model for cuprate superconductors

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{H.c.} \right) + \underbrace{U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}}_{i\downarrow}$$

tunneling

On-site interaction

Fermions in optical lattices

High T_c superconductivity

Cold atom proposal: 2002

W. Hofstetter, J. I. Cirac, P. Zoller, E. Demler, and M. D. Lukin PRL 89, 220407

Fermi-Hubbard with cold atoms: 2008 Esslinger, Bloch, Hulet, Takahashi, ...

R. Jördens, et.al., Nature 455, 204 (2008)
U. Schneider, et al., Science 322, 1520 (2008)
S. Taie, et al., Nature Physics 8, 825 (2012)
T. Uehlinger, et al., PRL 111, 185307 (2013)
M. Messer, et al., PRL 115, 115303 (2015)
P. M. Duarte, et al., PRL 114, 070403 (2015)
C. Hofrichter, et al., PRX 6 021030 (2016)

Hole doping

Fermi-Hubbard model

P.W. Anderson: minimal model for cuprate superconductors

 $\hat{H} = -t \sum \left(c_{i,\sigma}^{\dagger} c_{j,\sigma} + \text{H.c.} \right) + U \sum \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$ $\langle i,j\rangle,\sigma$

tunneling

On-site interaction

Quantum gas microscopy

Quantum gas microscopy

Detection

Out of equilibrium

Hole propagation

Correlation propagation

Spin waves

M. Cheneau, et al., Nature 481, 484 (2012)
T. Fukuhara, et al., Nature Phys. 9, 235 (2013)
T. Fukuhara, et al., Nature 502, 76 (2013)
S. Hild, et al., PRL 113, 147205 (2014)
P. Preiss, et al., Science 347, 1229 (2015)
A. Kaufman, et al., Science 353, 794 (2016)

Novel probing tools

Local observables

Spin/Density correlator

Full information

M. Endres, et al., Nature 487, 454 (2012) R. Islam, et al., Nature 528, 77 (2015) P. Preiss, et al., PRA 91, 041602 (2015) T. Fukuhara, et al., PRL 115, 035302 (2015)

Quantum gas microscopy

Control

Hermite-Gaussian modes

Arbitrary Potentials

Digital Micromirror Device (DMD)

Boxes/ Edges

Site addressing

C. Weitenberg, et al., Nature 471, 319 (2011) P. Zupancic et al., Opt. Express 24, 13881 (2016) ...

Lower temperatures

Lattice loading

Equilibrium

•••

Entropy redistribution

T.-L. Ho, *et al., PNAS 106,* 6916 (2009) J.-S. Bernier, *et al., PRA 79,* 061601 (2009) W. Bakr *et al., Nature 480,* 500 (2011)

Raman sideband imaging

S.Blatt et. al. Phys. Rev. A **92**, 021402(R) (2015)

M.F. Parsons et. al. Phys. Rev. Lett. **114**, 213002 (2015) S.Blatt et. al. Phys. Rev. A **92**, 021402(R) (2015)

Lattice

2015 in Fermi Gas Microscopy

Kuhr Group (Glasgow) Nature Physics 11, 738 (2015)

Zwierlein Group (MIT) Phys. Rev. Lett. **114**, 193001(2015) **Thywissen Group (Toronto)** Phys. Rev. A **92**, 063406 (2015)

Gross/Bloch Group (Munich) Spin Polarized Band Insulator Phys. Rev. Lett. **115**, 263001 (2015)

Greiner Group (Harvard) Phys. Rev. Lett. **114**, 213002 (2015) Also: Bakr group (Princeton) and many more (10+)

M.F. Parsons et. al. Phys. Rev. Lett. **114**, 213002 (2015) S.Blatt et. al. Phys. Rev. A **92**, 021402(R) (2015)

Lattice

Mott Insulator

Doublon Band Insulator

Experimental Parameters

- Balanced two-component spin mix of Li-6 in hyperfine |1> and |2> states
- Atom numbers: N = 100-1000
- Repulsive interactions: $a = 37-515 a_0$
- 1064nm optical lattice
- Lattice depth: 7–16 E_R

Large Doublon Band Insulator

Increasing Interactions U/t

Metal

Gross/Bloch group (Munich) Non-int. Band insulator: A. Ohmran et al., PRL 115, 263001 (2015)

Band Insulator

Zwierlein group (MIT) L. Cheuk et al., PRL 116, 235301 (2016)

Mott Insulator

Bakr group (Princeton)

W. Bakr et al.: unpublished

D. Greif et al., Science 351, 953 (2016)

From metals to Mott insulators

From metals to Mott insulators

From metals to Mott insulators

Antiferromagnetism in the Fermi-Hubbard model

 $U\gg t$

Antiferromagnetism in the Fermi-Hubbard model

Antiferromagnetism in the Fermi-Hubbard model

3D Fermi-Hubbard model

3D Fermi-Hubbard model

Temperature

Theory:

Lee et al., Rev. Mod. Phys. 78, 17 (2006) Varma et al., Nature 468, 184 (2010) Paiva et al., PRL 107, 086401 (2011) Kozik et al., PRB 87, 205102 (2013)

Detection via local singlets: Zurich D. Greif, et al. Science, 340, 1307 (2013)

Detection via Bragg scattering: Rice R. Hart, et al. Nature, 519, 211 (2015)

Above long-range ordering temperature T_{Néel} Short-range antiferromagnetic correlations Globally averaged observables

Measuring the spin correlator

 $\langle S_i^z S_{i+d}^z \rangle = (\bigcirc \bigcirc) + (\bigcirc \bigcirc) - (\bigcirc \bigcirc) - (\bigcirc \bigcirc)$

Antiferromagnetic correlations

M. Parsons et al., Science 353, 1253 (2016)

Towards long-range order

Gross/Bloch group (Munich) 1D AFM chains M. Boll et al., *Science* 353, 1257 (2016)

Zwierlein group (MIT) Charge & spin correlations L. Cheuk et al., *Science* 353, 1257 (2016)

Theory:

Maier et al., PRL 95, 237001 (2005) Gull et al., PRL 110, 216405 (2013)

M. Parsons et al., Science 353, 1253 (2016)

Entropy engineering

(preliminary)

In collaboration with Márton Kanász-Nagy, Richard Schmidt, Fabian Grusdt, and Eugene Demler

Doping in the Hubbard model

Candidates:

Stripe Order

Incommensurate AFM Order

Pseudo-gap states Spin liquid

...

Temperature

Doping in the Hubbard model

momentum q_X (1/a)

Doping 0.0% 27.1% 2.3% 14.5% 19.9% 2π 5 $S^Z(\mathbf{0})$ qy (1/a) $S^Z(\mathbf{q}) \pi$ -5 0 $2\pi 0$ $2\pi 0$ $2\pi 0$ $2\pi 0$ 2π 0 π π π π π q_X (1/a) $q_X (1/a)$ $q_X (1/a)$ q_X (1/a) q_X (1/a)

Outlook: hole dynamics

Single Hole in 1D

Theory: Carlström et. al. PRL 116, 247202 (2016)

Outlook: hole dynamics

Single Hole in 2D, AFM background

Two Holes in 2D, AFM background

Theory collaboration with Eugene Demler, Fabian Grusdt, Annabelle Bohrdt, Marton Kanasz-Nagy, Michael Knap

Theory: Carlström et. al. PRL 116, 247202 (2016)

Thank you

Li team:

Christie Chiu Daniel Greif Geoffrey Ji Anton Mazurenko PI: Markus Greiner

Li team former members: Sebastian Blatt Florian Huber *Maxwell Parsons* Widagdo Setiawan Kate Wooley-Brown

Rb team: Adam Kaufman Alexander Lukin Tim Menke Matthew Rispoli Robert Schittko Eric Tai

Er team: Susannah Dickerson Anne Hebert Aaron Krahn Greg Phelps

DARPA

