Possible cubic Dirac point and quadratic Weyl point in ε -TaN

Peng-Jen Chen (陳鵬仁)

Institute of Physics, Academia Sinica

Institute of Atomic and Molecular Sciences, Academia Sinica (beginning from 7/1/2019)

06/25/2019 at the 17th Workshop on First-Principles Computational Materials

Outline

- feature of electronic structure in materials with space group 194
- order of Dirac point and Weyl points with high chiral charge
 - Computational results
 - discussions

Structure and symmetries in materials with space 194

- inversion
- mirror symmetry
 ➤ three M_{||} and two M_⊥

- C₃ rotation symmetry
- S₆ screw symmetry (rotation + half translation along the rotation axis)

Band dispersion around $k_z = \pi/c$ in materials with space group 194

- The two sublattices are symmetric under the screw operation.
- The states on the rotation axis do not sense the difference due to the rotation; each sublattice acts as if it is a duplicate of the other.
- The bands are "folded back" when they hit the zone boundary ($k_z = \pi/c$).
- A DP can happen when two such "band foldings" are close in energy.

Electronic and topological properties of ε -TaN

TABLE I. The parities at the TRIM of ε -TaN. It is apparent that the 2D plane with $k_z = 0$ (containing Γ and M points) reveals nontrivial Z_2 . The $k_z = \pi/c$ plane, on the other hand, is Z_2 -trivial.

Г	3M	А	3L
_	+	+	+

Dirac semimetals

- Dirac point (DP): crossing of two doubly degenerate bands
- Mostly, the Dirac bands show linear dispersion.

Order of Dirac point

in-plane dispersion

linear DP
$$H_{\text{Dirac}}(\mathbf{q}) \sim \begin{pmatrix} q_x \tau_x + q_y \tau_y + q_z \tau_z & 0\\ 0 & -q_x \tau_x - q_y \tau_y - q_z \tau_z \end{pmatrix} \qquad E \propto |q_{||}|$$

quadratic DP
$$H_{\text{Dirac}}(\mathbf{q}) \sim \begin{pmatrix} (q_x^2 - q_y^2)\tau_x + 2q_xq_y\tau_y + q_z\tau_z & 0\\ 0 & -(q_x^2 - q_y^2)\tau_x - 2q_xq_y\tau_y - q_z\tau_z \end{pmatrix} \qquad E \propto |q_{||}|^2$$

cubic DP
$$H_{\text{Dirac}}(\mathbf{q}) \sim \begin{pmatrix} (q_{+}^{3} + q_{-}^{3})\tau_{x} + i(q_{+}^{3} - q_{-}^{3})\tau_{y} + q_{z}\tau_{z} & 0\\ 0 & -(q_{+}^{3} + q_{-}^{3})\tau_{x} - i(q_{+}^{3} - q_{-}^{3})\tau_{y} - q_{z}\tau_{z} \end{pmatrix} \quad E \propto |q_{||}|^{3}$$

Order of Dirac point versus rotation symmetry

ARTICLE

Received 24 Mar 2014 | Accepted 1 Aug 2014 | Published 15 Sep 2014

DOI: 10.1038/ncomms5898

Classification of stable three-dimensional Dirac semimetals with nontrivial topology

Bohm-Jung Yang¹ & Naoto Nagaosa^{1,2}

$$H(\mathbf{k}) = \sum_{i,j=0}^{3} a_{ij}(\mathbf{k}) \sigma_{i} \tau_{j} = \begin{pmatrix} h_{\uparrow\uparrow}(\mathbf{k}) & h_{\uparrow\downarrow}(\mathbf{k}) \\ h_{\downarrow\uparrow}(\mathbf{k}) & h_{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix}$$
$$h_{\uparrow\uparrow}(\mathbf{k}) = f(\mathbf{k}) \tau_{+} + f^{*}(\mathbf{k}) \tau_{-} + a_{5}(\mathbf{k}) \tau_{z}$$
$$h_{\uparrow\downarrow}(\mathbf{k}) = g(\mathbf{k}) \tau_{x} \text{ when } P = \pm \tau_{z}$$
$$h_{\uparrow\downarrow}(\mathbf{k}) = g(\mathbf{k}) \tau_{y} \text{ when } P = \pm \tau_{0}$$

Table 1 Classification table for 3D topological Dirac semimetals.								
C _n	P	(u _{A, ↑} ,u _{B, ↑})	f(k ± , kz)	g(k ± , kz)	2D topological invariant	H _{Dirac} (q)	Materials	
C ₂	$ au_z$	_	_	_	_	Not allowed		
C ₂	τ_0	_	—	—	—	Not allowed	17	
C ₃	τ_z	$\left(e^{i\pi},e^{i\pi\over 3} ight)$	βk_+	γk _	$v_{2D} = 1$	Linear Dirac	Na ₃ Bi ¹⁷	
C ₃	τ_0	$\left(e^{i\pi},e^{i\pi\over 3} ight)$	$\beta k_z k_+ + \gamma k^2$	$\eta k_z k + \xi k_+^2$	$v_{2D} = 0$	Linear Dirac		
C ₄	τ_z	$\left(e^{i\frac{\beta\pi}{4}},e^{i\frac{\pi}{4}}\right)$	ηk_+	$\beta k_z k_+^2 + \gamma k_z k^2$	$n_{\rm M} = \pm 1$	Linear Dirac	Cd ₃ As ₂ ¹⁸	
C ₄	τ_0	$\left(e^{\frac{j\pi}{4}},e^{\frac{j\pi}{4}}\right)$	$\eta k_z k_+$	$\beta k_+^2 + \gamma k^2$	$n_{\rm M} = 2 \operatorname{sgn}(\beta - \gamma)$	Linear Dirac		
C ₆	τ_z	$(e^{i\frac{\pi}{2}}, e^{i\frac{\pi}{6}})$	βk_+	$\gamma k_z k_+^2$	$n_{\rm M} = \pm 1$	Linear Dirac		
C ₆	τ_0	$\left(e^{irac{\pi}{2}},e^{irac{\pi}{6}} ight)$	$\beta k_z k_+$	γk_{+}^{2}	$n_{\rm M} = \pm 2$	Linear Dirac		
C ₆	τ_z	$\left(e^{\frac{5\pi}{6}},e^{\frac{\pi}{2}}\right)$	βk_+	γkzk_	$n_{\rm M} = \pm 1$	Linear Dirac		
C ₆	τ_0	$\left(e^{\frac{5\pi}{6}},e^{\frac{1}{2}}\right)$	$\beta k_z k_+$	γk²_	$n_{\rm M} = \pm 2$	Linear Dirac		
C ₆	τ_z	$\left(e^{\frac{5\pi}{6}},e^{i\frac{\pi}{6}}\right)$	$\eta k_z k_+^2$	$\beta k_+^3 + \gamma k^3$	$n_{\rm M} = 3 {\rm sgn}(\beta - \gamma)$	Quadratic Dirac		
C ₆	τ_0	$\left(e^{\frac{\beta\pi}{6}},e^{i\frac{\pi}{6}}\right)$	ηk_{+}^{2}	$\beta k_z k_+^3 + \gamma k_z k^3$	$n_{\rm M} = \pm 2$	Quadratic Dirac		

Dispersion of the Dirac bands

 $k_y = 0$

linear DP: $E \propto |q_{||}|$

 \overline{X}

quadratic DP: $E \propto |q_{||}|^2$ cubic DP: $E \propto |q_{||}|^3$

Application of an out-of-plane Zeeman field

Methods to compute the chiral charge of a Weyl point

Methods to compute the chiral charge of a Weyl point

2. change in Chern number

$$C(k_z) = \frac{1}{2\pi} \int_{BZ} \Omega(k_z) d^2k$$

It requires that the effective 2D system (fixed k_z) be gapped.

Methods to compute the chiral charge of a Weyl point

3. Ratio of the rotation (screw) eigenvalues of conduction and valence bands (u_c/u_v)

For C_m invariant systems			chiral charge	
m	u_c/u_v	<i></i>	Q	
2	-1	•	$\operatorname{sgn}(a - b)$	
3	$e^{\pm i2\pi/3}$		±1	
4	$\pm i$		±1	
	-1		2sgn(a - b	
6	$e^{\pm i\pi/3}$		±1	
	$e^{\pm i 2\pi/3}$		±2	
	-1		3sgn $(a - b $	
		((

PRL 108, 266802 (2012)

This method applies when the Weyl points are located at the rotation (screw)-invariant momenta (e.g. on the rotation axis).

Since *m* cannot exceed six in a real material, there seems to be an upper limit of chiral charge ($C \le 3$).

Upper limit for chiral charge?

 $H_{\rm eff}(\mathbf{K} + \mathbf{q}) = f(\mathbf{q})\sigma_+ + f^*(\mathbf{q})\sigma_- + g(\mathbf{q})\sigma_z$

m	u_c/u_v	Constraints on f	$H_{ m eff}$	Q
6	$e^{\pm i\pi/3}$	$f(q_+e^{i\pi/3}, qe^{i\pi/3}) = e^{\pm i\pi/3}f(q_+, q)$	$m\sigma_z + aq_+\sigma_+ + \text{H.c.}$	±1
	$e^{\pm i2\pi/3}$	$f(q_+e^{i\pi/3}, qe^{i\pi/3}) = e^{\pm i2\pi/3}f(q_+, q)$	$m\sigma_z + aq_{\pm}^2\sigma_+ + \text{H.c.}$	±2
	-1	$f(q_+e^{i\pi/3}, qe^{i\pi/3}) = -f(q_+, q)$	$m\sigma_{z} + (aq_{+}^{3} + bq_{-}^{3})\sigma_{+} + \text{H.c.}$	3sgn(a - b)

TABLE II. The calculated phases (θ) , in unit of $\frac{n\pi}{3}$, of the screw eigenvalues $(\lambda = e^{i\theta})$ of the eight bands labeled in Fig. **3**(a). Difference in *n* between two crossed bands indicates the chiral charge of the WP.

Upper limit for chiral charge?

$$\frac{u_c}{u_v} = \frac{e^{i\theta_1}}{e^{i\theta_2}} = e^{i2\pi C/m}$$

$$\downarrow$$

$$\Delta\theta = \theta_1 - \theta_2 \times 2\pi C/m$$

$$e^{iA} = e^{iB} \rightarrow A = B \pm 2n\pi$$

- The value of *C* so obtained is simply the chiral charge mod *m*.
- There (in principle) should not be an upper limit for the chiral charge.

TABLE II. The calculated phases (θ) , in unit of $\frac{n\pi}{3}$, of the screw eigenvalues $(\lambda = e^{i\theta})$ of the eight bands labeled in Fig. **3**(a). Difference in *n* between two crossed bands indicates the chiral charge of the WP.

band	$ A\uparrow\rangle$	$ A\downarrow\rangle$	$ B\uparrow\rangle$	$ B\downarrow angle$	$ C\uparrow\rangle$	$ C\downarrow\rangle$	$ D\uparrow\rangle$	$ D\downarrow\rangle$
n	-2	5	1	2	0	3	3	0
λ	$e^{-i\frac{2\pi}{3}}$	$e^{i\frac{5\pi}{3}}$	$e^{i\frac{\pi}{3}}$	$e^{i\frac{2\pi}{3}}$	1	-1	-1	1

Constraint from the topological nodal-lines

Candidate system	Space group	Relevant symmetry	Shape of line nodes	Number of line nodes
$\hat{H}^{(0)}$	59	\widetilde{M}_x^{\perp} or \widetilde{M}_y^{\perp}	open straight	2
$\hat{H}^{(0)} + \delta H^{(1)}(k)$	11	\widetilde{M}_x^{\perp}	open	1
BaTaS	194	\widetilde{M}_z^{\perp}	open straight	3
SrIrO ₃	62	$\widetilde{C}_{2z}^{\parallel,\perp}$ and $\widetilde{C}_{2y}^{\parallel}$	closed loop	1

PHYSICAL REVIEW B 95, 075135 (2017)

The off-centered glide symmetry protects the topological nodal-lines (TNLs) at $k_z = \pi/c$ plane for materials with space group 194.

- The winding number (Berry phase) of each TNL is $1(2\pi)$.
- Viewing the crossing point A as an effective "topological point", we speculate that the phase change would be π (each TNL contributes π/3)

Phase difference when crossing A point

Comparison study: Na₃Bi

with out-of-plane Zeeman field

The symmetry representations in space group 194 cannot guarantee a Weyl point with |C| = 4.

Cubic Dirac point as a single point?

Classification of stable three-dimensional Dirac semimetals with nontrivial topology

Bohm-Jung Yang¹ & Naoto Nagaosa^{1,2}

NATURE COMMUNICATIONS | 5:4898 | DOI: 10.1038/ncomms5898

Table 2 Classification table for 3D Dirac SMs with a single Dirac point.							
C _n	P	u_{A,↑}	f(k ± , kz)	g _z (k _± , k _z)	H _{Dirac} (q)	Material	
C ₂	$ au_x$	$e^{i\frac{\pi}{2}}$	$k_z F_1^{(1)}(k_{x,y}) - i F_2^{(1)}(k_{x,y})$	$\alpha k_x + \beta k_y$	Linear Dirac	Distorted spinels ¹⁶	
C ₃	$ au_x$	_	_	_	Not allowed		
C ₄	$ au_x$	e ^{± <i>i</i>[#]/4}	$F_1^{(2)}(k_{x,y}) - ik_z F_2^{(2)}(k_{x,y})$	αk_{\pm}	Linear Dirac	BiO ₂ ¹⁵	
C ₆	$ au_{x}$	e ^{±is}	$k_z F_1^{(3)}(k_{x,y}) + i F_2^{(3)}(k_{x,y})$	αk_{\pm}	Linear Dirac		
C ₆	$ au_x$	e 13#	$k_z F_1^{(3)}(k_{x,y}) + i F_2^{(3)}(k_{x,y})$	$F_3^{(3)}(k_{x,y}) + iF_4^{(3)}(k_{x,y})$	Cubic Dirac		

- A single Dirac point is located at time-reversal invariant momenta (TRIM).
- This is a consequence of a four-band model and is not universally true.

Four-band model for a Dirac point

- The operation of *P* maps states belonging to the same band.
- a pair of DPs

$$P = \pm \tau_x \text{ (odd)}$$

- The operation of *P* maps states belonging to different bands.
- single DP at the TRIM

Cubic Dirac point can be present only when $P = \pm \tau_x$ and must appear as a single point at the TRIM.

Eight-band model and beyond

PHYSICAL REVIEW B 93, 085427 (2016)

- In our case, the four-band model is not enough to describe the behaviors around the DP.
- In an eight-band model, $P = \pm \tau_x$ can hold for DPs away from the TRIM (but remaining on the rotation axis).

- Similar band crossings are also found in (SG-194 phase) PbTaSe₂.
- For binary (ternary) SG-194 materials, there exist DPs in a eight-band (twelveband) manifold.

Summary

- In materials with space group 194:
 - > the screw symmetry gives rise to "band folding" at $A(0, 0, \pi/c)$.
 - > TNLs are present on $k_z = \pi/c$ plane and cross at A.
 - > When two such "folded bands" are close in energy, a cubic Dirac point can take place.
- Under the application of out-of-plane Zeeman field, high-order Weyl points may appear due to accidental band crossing. The chiral charge of such Weyl point is connected to the chirality of the TNLs.
- In ε -TaN, as well as ε -NbN, high-order Weyl points ($C = \pm 4$) are found and confirmed by several numerical schemes.
- Eight-band model is required to describe such a Dirac point and the split Weyl points. More interesting yet complicated behaviors are expected in ternary (and beyond) 194materials.