First principle study & STM experiment on Dirac nodal-line semimetal ZrGeTe

Yun Yen

Advisor : Prof. Guang-Yu Guo, Tien-Ming Chuang

Department of physics, National Taiwan University

Institute of Physics, Academia Sinica, Taiwan

2019.6.25

Outline

- Introduction
 - Dirac Nodal-line semimetal ZrGeTe
 - Scanning Tunneling Microscope (STM)
 - Quasiparticle interference (QPI)
- STM experiment on ZrGeTe
- First principle study on ZrGeTe
- CEC & QPI fitting
- Conclusions

Topological Semimetals

p.c. Chih-Chuan Su

ZrGeTe

(ZrSiS-family compound)

Diamond- shaped Bulk state

Butterfly MR (Anisotropic) Possible application!

Ali, Mazhar N., et al. Science advances 2.12 (2016): e1601742.

Scanning Tunneling Microscope (STM)

Quasiparticle Interference (QPI)

When scatters are introduced,

- The impurity breaks the translational invariance of the electronic liquid
- This allows in first order for mixing of different momentum states.

Quasiparticle Interference (QPI)

First Principle study on ZrGeTe

Calculation Details

- The electronic band structure is carried within the **Density Functional Theory (DFT)** with **PAW_PBE potential** as exchange-correlation.
- Vienna Ab-initio Simulation Package (VASP) (WIEN2k/QuantumEspresso for double check)

Bulk calculation	9-Layer Slab calculation (w SOC) (20Å vaccum layer)	(PAW_PBE)		
(w/wo SOC)		Zr	4	5s4d5p
ENCUT = 400 eV	ENCUT = 400 eV	Zr_sV	12	4s4p5s4d
25 x 25 x 25	40 x 40 x 1	Те	6	s2p4
Monkhorst-Pack k-mesh	Monkhorst-Pack k-mesh	Ge	4	s2p2
Zr_sV/Ge_d/Te	Zr_sV/Ge_d/Te	Ge_d	14	3d4s49

[1] J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1997)[2] G. Kresse and D. Joubert. augmented-wave method. Phys. Rev. B 59, 1758 (1999)

POTCAR

NELECT

VRHFIN

Dirac nodal-line

Bulk Band structure

O Dirac crossing protected by crystalline or symmetry (Glide mirror symmetry)

Crossing by band inversion

9-Layer slab band structure

С

Gapless between **Surface state** and **Bulk-projection state** !

Rashba-splitting helical spin-texture surface state

In-Plane Spin texture!

Constant Energy Contour (CEC) & QPI fitting

QPI q-vectors

All q-vectors can be identified with JDOS calculation P.S. After some energy shift: STM energy = DFT energy + 50 meV

Joint Density of States (JDOS) (NO Umklapp scattering)

Constant Energy Contour (CEC) 60 x 60 k-mesh with interpolation

q1 Umklapp scattering of q2. q2

scattering between X-point surface states.

q3 _____

scattering between diamond-shape bands.

q4 —

Umklapp scattering between bulkprojection pockets (Z-R)

q5 —

Umklapp scattering of q3.

Possible Scenario :

💽 Zr

💽 Ge

o Te

Mirror

Plane

ZrSiSe T-matrix simulated QPI

Consider phase difference between sites

P4/nmm Nonsymmorphic zone folding

Nica, Emilian M., Rong Yu, and Qimiao Si. *Physical Review B* 92.17 (2015): 174520.

FORBIDDEN!

Umklapp scattering of q2.

q2 ______ scattering between X-point surface states.

q3 _____

Q.

scattering between diamond-shape bands.

q4 —

Umklapp scattering between bulkprojection pocket (Z-R)

Umklapp scattering of q3.

ALL 5 q-vectors are within <u>non-symmorphic reshaped 1st BZ</u>

Conclusions & Future works

• ZrGeTe is a platform that host interplay between several interesting exotic quantum phases, including **Dirac Semimetal (DSM)**, **Dirac nodal line**, **Weak TI/TCI... etc.**

Zhang, Tiantian, et al. Nature 566.7745 (2019): 475.

 Our bulk calculation confirms the <u>Dirac line node</u> on the BZ-boundary, and the similar diamondshaped bulk Fermi surface as ZrSiS family, which might possess useful properties such as large anisotropic MR.

• All the STM QPI signals can be identified with 9-layer slab calculation. Also, the **nonsymmorpic effect possibly plays a role in the QPI patterns like ZrSiSe**.

Thanks for your attention!

T=4.4K

Rashba-splitting helical spin-texture surface state

